TZWorks® Mozilla Cache Parser
(mcp) Users Guide

Copyright © TZWorks LLC
www.tzworks.com

Contact Info: info@tzworks.com
Document applies to v0.21 of mcp
Updated: Apr 15, 2024

Abstract

mcp is a standalone, command-line tool that parses cache
files associated with the Mozilla Firefox Browser. The tool
can target various Browser instances of cache and either
report the results in a CSV type format or archive the
results in a SQLite database. This tool has working versions
for Windows, Linux and OS-X.

http://www.tzworks.net/
mailto:info@tzworks.net

Table of Contents

1

2

N oo o o AW

INEFOAUCTION ettt ettt et e bt e s bt s ae e et e et e e bt e sbeesaee st e eabeenbe e beeaneesneeennean 2
1.1 Location of the Cache dataccceeieeiiiiiiieeeee et 3
L Lo)V (o T U LY = s T o N 3
2.1 Targeting SPeCific Cache files ... i e e s sraee e 4
2.2 Processing Cache Files in one or more SUbdireCtoriescccoccveeeiiiieeiiniiiee e 6
2.2.1 Parsing Multiple Mozilla Accounts and/or INSTaNCES........c.eeeecveeeiieeciiieeciee et 7
2.2.2 Archiving the CoNtENT DAta......ccccuiiiieiiiie et ecte e e e etr e e e s stae e e e etae e e esabaeeeseanaeeeean 8
2.2.3 Splitting the Mozilla Sessions into Separate Files........ccccccveeeieciiie e 9
CSV Field NAaMES / IMEANINEGccueeiuieeieeieeieeeieeeteeeteeeteeteebeesteesteesttesabeenbeebaessaessaessseesseesseestassssesssesns 10
[0 01 = L A oY o S PP PPP PR 11
JN Y] o] 1S @ 4[] o T3PPSR 11
Authentication and the LICENSE Fil......co.uiiiiiiiieeeeee e st 12
REFEIENCES ..ttt b e bt st s bt s bttt e b e s bt e she e s at e et e e beeebeeeaeesaeesabeeaneebeenes 13

Copyright © TZWorks, LLC Apr 15, 2024 Page 1

TZWorks® Mozilla Cache Parser (mcp) Users
Guide

Copyright © TZWorks LLC
Webpage: http://www.tzworks.com/prototype_page.php?proto_id=50
Contact Information: info@tzworks.com

1 Introduction

The Mozilla Cache Parser (mcp) targets the Mozilla Firefox cache and extracts useful information for the
examiner. This tool is not unique, in that there are other Mozilla cache parsers available; a few good
ones are even free. This tool was primarily created based on a need to provide more insight into the
association of the cache metadata (eg. timestamps, URL, http request/response, etc) and cache content
data (eg. data for the webpage that is displayed), especially when applied to the earlier versions of the
Mozilla formats. In addition, and from a tool developer's standpoint, the mcp codebase can be used as
framework for future work to evaluate Mozilla cache artifact data that may be corrupted or fragmented.

As background, the Mozilla cache, like any other browser cache, is a repository for web data a user has
viewed or downloaded. In general, the purpose of the cache is to store data locally, to allow the browser
quick access for later requests to that same website. The cache includes: website pages, files, and
images that were viewed by a user. In addition to the raw data that was received from a web server, the
Mozilla cache also contains useful metadata associated with each item. From the point of view of the
forensic examiner the data is interesting, since it contains items such as: the URL of the webpage,
number of times the page was fetched from the cache, filename/type/size, last modified time, last
fetched time, server time, etc. Having a tool available that can take advantage of this artifact data is
necessary to have insights into the user's activity.

Like any other application that stood the test of time, the Mozilla architecture (including cache
structure) has evolved over the years. The older version of the Mozilla cache architecture, consisted of
3 categories of files:

1. The CACHE_MAP_ which associates the metadata and raw data locations.

The CACHE 001 , CACHE 002 and _CACHE 003 block files. These 3 files contain
predefined chunks (ranging from small chunks to larger chunks) that are used to store the
metadata for the cache as well as some raw data from webpages.

3. The last category are the data files (and metadata) that are too large to fit within one of the
three block files listed in (2) above. If all the files are available, mcp will look at the data in all
the files to generate the results. Using the data in the CACHE _MAP_, mcp will annotate the
location of the raw cache data in the results. In the absence of the _CACHE_MAP_ file, this
associations will not be present.

Copyright © TZWorks, LLC Apr 15, 2024 Page 2

mailto:info@tzworks.net

The newer version of the Mozilla cache uses a separate file per webpage to store both the raw data and
the metadata associated with the webpage.

This section’s purpose is just a surface discussion on the cache formats primarily to set the stage to let
the user know that not all Mozilla cache data is structured the same. Fortunately, the mcp the tool can
handle the above various format nuances without using any special parameters. It was designed to
sense which parsing engine to use and internally adjust the algorithm to appropriately parse any of the
cache formats.

1.1 Location of the Cache data

Mozilla cache artifacts are located in the user’s directory. This varies depending on the operating system
used. Below is a table that breaks out the location by operating system.

(01 Cache location

Win XP %userprofile%\Local Settings\Application Data\Mozilla\Firefox\Profiles\<random
text>.default\Cache

Post Win XP | %userprofile%\AppData\Local\Mozilla\Firefox\Profiles\<random text>.default\Cache

0OSX /Users/[user acct]/Library/Caches/Firefox/Profiles/<random text>.default/Cache

Linux /home/[user acct]/.mozilla/firefox/<random text>.default/Cache

2 How to Use mcp

The screenshot below shows the options available. The formatting options are similar to the rest of the
TZWorks tools. The output can be rendered in either: delimited text (CSV and Log2Timeline) or SQLite.
The SQLite option was added primarily to allow one to parse the cache records while archiving the
results along with any companion content data. More on these options will be discussed later in this
document.

Copyright © TZWorks, LLC Apr 15, 2024 Page 3

2. Administrator: Windows PowerShell

Usage

mcp -file <cache file(s)> [-mapfile <_CACHE_MAP_ file>] [options]
mcp -enumdir <folder> -num_subdirs <# levels> [options]
dir <folder> /b /s /a | mcp -pipe

Format Options
—Csv
-csvlat
-dateformat mm/dd/yyyy
-timeformat hh:mm:ss
-no_whitespace
-csv_separator "|"
-basel@

output is CSV format

log2timeline output

yyyy-mm-dd" is the default
"hh:mm:ss.xxx" is the default
remove whitespace between delimiter
change delimiter to a pipe char

use basel® numbers

L T T T T T 1}

File Output Opions (some format opts above do not apply to SQLite)
-sqlite <output db> = *** create/put results in SQLite db
-out <output file> = put results in text delimited file

Folder Traversing Options
-pipe pipe files to parse
-enumdir <dir> -num_subdirs <#> pull from files from folder
-split_sessions *** Split sessions into separate files

To process cache files, one can either target a folder or individual cache files. The tool will
automatically determine which version of the format the cache files are in and adjust the parsing engine
accordingly. In fact, when parsing many subdirectories of artifacts where each subdirectory is a
different account or machine, the tool will dynamically adjust for the version of the cache being parsed
at that time and keep the mapping of the cache metadata to the cache content data sorted.

If processing a directory of cache files (either by using the -pipe command or the -enumdir command),
the tool will look for the Mozilla directory structure starting with the “Cache” or “Cache2” folder to
indicate when to start parsing. Alternatively, if targeting the older cache format, where you only have a
few files, one can use the option -file <cache file1 | cache file 2 | ...> as well.

2.1 Targeting Specific Cache files

As mentioned above, if one wants to target a specific cache file or a couple of cache files, one can use
the -file option. This was included in the options since it was needed during the debugging of the mcp
tool. With this option, it is useful to analyze one file at a time to help debug what is going on within the
parsing engine. Inthe example below, we are targeting a cache file that uses the older version of the
cache format (eg_ CACHE_001_). The results would be rendered in the test1.csv file.

>mcp64 -file .\cache_testl_CACHE_001_ -out testl.csv

Pipe delimited text is the default output that is rendered by the tool. On the left is the Mozilla version of
the cache format (major and minor version separated by a dot). Many of the other fields are the
metadata associated with Firefox requesting a page/data and the server serving up the webpage/data.
Shown in the screenshot is only the server timestamp, but also in the data (truncated in the screenshot

Copyright © TZWorks, LLC Apr 15, 2024 Page 4

below), is up to 6 — 8 timestamps that range from those associated with the server, browser and file

timestamps.
/cache_versmn request_type_reply_status serv_name serv_ serv_date ? fetch_ url \
timezone count
cache firefox [1.19] |{"request_type":"POST";"reply_status":"http/1.1200 ok"} ECS (mic/9ASGMT 05/16/2020 15:01:38 05, 1 id=5ec00001&uri=http://ocsp.digicert.com/,
cache firefox [1.19] |{"request_type":"GET";"reply_status":"http/1.1 200 ok"} sffe GMT 05/16/2020 15:00:51 2 2 https://www.google.com/images/searchbg
cache firefox [1.19] |{"request_type":"GET";"reply_status":"http/1.1 200 ok"} gws GMT 05/16/2020 15:00:51 ¢ 1 https://www.google.com/search?hl=en&s
cache firefox [1.19] |{"request_type":"GET";"reply_status":"http/1.1 204 no content"} gws GMT 05/16/2020 15:00:51 1 hnps://www.googIeA:om/gen_204?s:web&‘
cache firefox [1.19] |{"request_type":"GET";"reply_status":"http/1.1 200 ok"} ESF GMT 05/16/2020 15:01:13 / 1 https://fonts.googleapis.com/css?family=Ops
x ta-aal-Le t_type":"GET";"reply_status":"http/1.1 301 moved permanently"} Apache/2.4.6GMT 05/16/2020 15:00:12 1 https://www.mozilla.com/about/ t

1 Cache type/version Ft_type":"GET";"repIy_status":"hnp/L1 301 moved permanently"} cloudflare GMT 05/16/2020 15:01:38 £ 1 https://www.mozilla.org/firefox/about
cache firefox [1.19] J{"request type":"GET";"reply status":"http/1.1200 ok"} cloudflare GMT 05/16/202015:01:38 & 1 https://www.mozilla.org/en-US/about/

content_type content_ content_ cntdata_location_info extra_fields

filename size /
application/ocsp-response 471 {"src":"mapfile";"location":"_CACHE_001_";"offset":"0x7e00§ {server_response=["accept-ranges":"bytes";"age!
image/png desktop_se 665{{"src":"mapfile";"location":"_CACHE_001_";"offset":"0x6000' (server_response=["accept-ranges""'bytes";"alf

text/html; charset=UTF-8 search 50541){"src":"mapfile";"location":"B/A2/E4D38d01";"context_hint"{ {server_response=["alt-svc":"h3-27=

text/html; charset=UTF-8 gen_204 {server_response=["alt-svc":"h3-27=)
text/css; charset=utf-8 css 2404 {"src":"mapfile";"locgticat cocUC 001 Bouafs " {server_respo, ke L_all 4
text/html; charset=iso-8859-1 245|{"src":"mapfile”;"loc{ Context data location {server_respo Server’s response in JSON
text/html; charset=utf-8 about populated by tool’s heuristics {server_respo| key/value pair format 24
text/html; charset=utf-8 96069|{"src":"mapfile";"location”:"9/5B/C07A6d01";"context_hint"§ {server response=["accept-ranges":"bytes";"cac¥t

.

One should note that even though there is no_ CACHE _MAP_ file being used in the above example, the
mcp tool will still try to parse out where the “content data” is located. For the older Mozilla cache
formats (such as in this example), the association between the ‘metadata’ and ‘content data’ is recorded
inthe CACHE_MAP_ file, so without this mapping file being present, the mcp tool needs to use its
internal scanning to try to locate ‘content data’. For this example, content data was located within the
_CACHE 001 _file itself. This content data is then attempted to be matched with the metadata parsed.

On the field labelled ‘cntdata_location _info’ in the above output, this is where mep will put the guesses
between the metadata and content data associations. Therefore, if the output uses the notation
"rawscan”, then the tool is telling the user, this result is a product of the tools’ heuristics of comparison
and it deems it a match. The heuristics use a number of tests, including: size of the content data,
content data type, etc.

If one inspects the cache file at the offset suggested by the heuristics, one can verify whether this match
has some confidence of being correct, or whether it is just a ‘false positive’. Below is a hex dump for the
first entry above (offset 0x7e00). Those familiar with X509 certificates will recognize this is what the
data is, and it matches the content-type in the metadata which was expecting an “OCSP-Response”.

cncre or I

0,

.bPSVRL

2=NU. .2

0200515172815Z0s
0q0IO0. ..+

.€Q..2-3A}Q% etd

.b.Ui...PPSVNL»f

wunmwoo
» U= N

82
2B
B5
66
32
71
80
62

NMoOoOoOWOWLmoWw
NN ==20ONO
AOMONWHAE OO
M BEWNANO

Copyright © TZWorks, LLC Apr 15, 2024 Page 5

Going another level deeper, if one adds the _CACHE_MAP_ file into the mix during the parse option, the
command will look like this.

>mcp64 -file .cache_testl_CACHE_001_ -mapfile .\cache_testl_CACHE_MAP_ -out test2.csv

Since the mapfile was added during the parsing operation, the mep tool will make use of the
_CACHE_MAP_ file to associate all the metadata records to the content data. The companion output is
shown below. The output is truncated to just show the right side of the formatted data so one can see
how this compares to the previous example. One can see the mapfile associations allowing the mcp
tool to populate the content data with a higher confidence. For the most part most of the entries agree
with the heuristics done previously. Finally, one should note, that even though the CACHE 003 _file
was not parsed, it shows up as a source of the content data, since that was identified with the
_CACHE_MAP_ entry.

content_type content_ content_ cntdata_location_info | Contextdata location populated by
fleiaine: lsme __CACHE_MAP_ data an(_i thus have a
higher confidence of being accurate
application/ocsp-response 471 "src":"mapfile";"location":"_CACHE_001_";"offset":"0x1000";"
application/ocsp-response gtslol 472 "src":"mapfile";"location":"_CACHE_001_";"offset":"0x2200";"
application/ocsp-response gsr2 468 | {"src":"mapfile";"location":"_CACHE_001_";"offset":"0x2600";"
application/ocsp-response 471 | {"src":"mapfile";"location":"_CACHE_001_";"offset":"0x3000";"
application/ocsp-response gtslol 472 "src":"mapfile";"location":"_CACHE_001_";"offset":"0x3500";"
text/xml; charset=utf-8 rss.xml 5899 | {"src":"mapfile";"location":"_CACHE_003_";"offset":"0x025000
text/html; charset=UTF-8 12710 | {"src":"mapfile";"location":" CACHE 003 ";"offset":"0x027000

The above discussion focused on the older Mozilla cache format (version 1.x format). The later cache
formats overcome this mapping issue by integrating the cache’s metadata within the same file as the
content data. This eases the parsing logic since only one file needs to be analyzed for both the
metadata and content data.

2.2 Processing Cache Files in one or more Subdirectories

If desiring to process many Mozilla cache files in one pass, one can make use of mcp’s piping option
(-pipe) or the folder enumeration option (-enumdir). Either of these options allow one to target
multiple subdirectories during the parsing operation. Below is a simple way to target the cache filesin a
Mozilla account.

>dir C:\Users\tzlabs\AppData\Local\Mozilla\Firefox\Profiles /b /s /a | mcp64 -pipe -out test3.csv

If one is uncertain where exactly the Mozilla cache files are located, then the following works as well,
but is a little slower since the command will enumerate many other ‘non-cache’ files. The results,
however, should be the same.

>dir C:\Users\tzlabs /b /s /s | mcp64 -pipe -out testd.csv

Copyright © TZWorks, LLC Apr 15, 2024 Page 6

If desiring more control on the number of subdirectories to traverse, one can use the -enumdir option
along with the -num_subdirs sub-option. It would look like this for the above example:

>mcp64 -enumdir c:\users\tzlab -num_subdirs 10 -out test5.csv

For any of the above options to work with this tool, the Mozilla folder structure must be preserved after
the random session text string and before the ‘Cache’ or ‘Cache2’ folder. Why? It was a design choice
to allow the tool to easily tell the ‘type’ a file the tool was examining to assist in parsing; this assists the
tool to determine the version of the format of the cache being used (due to the naming convention).
Furthermore, the naming convention also allows the tool whether it should switch modes to handle
multiple Mozilla accounts during one session run.

2.2.1 Parsing Multiple Mozilla Accounts and/or Instances

Since mecp makes uses of the Mozilla directory structure, one can pass in a number of accounts for the
tool to process in one session. Internally, the mep tool will detect the change in Mozilla instance and/or
account and flush the current instance/account prior to processing the next instance/account. In this
way, the tool to conserves memory usage on the host machine. This is useful if trying to parse many
Mozilla cache collections at one time.

When outputting the results, the tool defaults by integrating the output into one file. For testing
purposes, this technique allows one to run the tool against many different versions of the Mozilla cache
and verify its accuracy and performance. Below is an example of one of the testcase setups that is used
internally to test out the tool. (Note: if the reader has a collection of other testcases that they are
willing to share, please contact TZWorks so they can be added to the current test suite). The collection
of data is taken from Mozilla versions 3 to 77.

Copyright © TZWorks, LLC Apr 15, 2024 Page 7

/

B ff_ver30.1_32bit
s ff_ver.4.0_32bit
. o - « M ffver.24.0_win8_dbake
M ff ver.4.0_ubuntu_64bit e
a— v
| ff_ver.5.0.1_romanoff_image « B Donald
W ff_ver.11.0_32bit e

W ffverila o [e

W ff_ver.24.0_32bit v B Mozilla
W ff ver.24.0 win8_dbake v R Firefox
M ff ver31.0_32bit v B Profiles

W f ver45.0_32bit v R 29bmrorbdefault
M ff ver52.0_32bit W Cache

W ff_ver.60.0_32bit B jumplistCache
B ff ver69.0.3 32bit W safebrowsing

W startupCache

LBEE Mozilla Testcases

l ff_ver.7o.u.1_s20It
M ff_ver.77.0.1_64bit

M thumbnails
B updates
R Roaming

&

When running the mcp tool against the root folder, in this case “sqlite\Mozilla”, it will traverse each of
the subfolders and try to target each cache file it finds.

>dir e:\sqlite\Mozilla /b /s /a | mcp64 -pipe -out test6.csv

When done, the results will be integrated into a very large results file. The context of the metadata is
preserved in the output, since there is a delimited field that includes the source cache path/filename.

2.2.2 Archiving the Content Data

With the default option, the tool sends the parsed output to delimited text. This is fine when only
wanting the results associated with the metadata and pointers to the content data. If desiring to archive
the content data as well, mep has an option to create and output the results into a SQLite database.

To invoke this option, use the -sqlite <db_name> in your command. All parsed results will include both
the record metadata and its associated content data. To view the results, one will need to be familiar
with the SQL syntax to query the database, or alternatively, will need a separate SQLite viewer to look at
the data. A good SQLite viewer is the “DB Browser for SQLite” and a reference is located at the end of
this document.

The database schema created by mcp consists of 4 tables: (a) cache_metadata_entries, (b)
cache_ctxdata_entries, (c) metadata and (d) ref. Only the first two tables have the records from the
parsed metadata and content data, respectively. The metadata table is used to record the session
parameters used when running the parser. The last table (ref), is not shown in the diagram, and is used
internally by mcp for bookkeeping only. The fields for the first three tables and their relationship are
shown below.

Copyright © TZWorks, LLC Apr 15, 2024 Page 8

\

| cache_metadata_entries Mapping of the

|-} metaref @ cache metadata to | metadata
[=) cache_version the cache content (=) runtime
|| url_hash | cache_ctxdata_entries .| chunk Used to document
|| url_etag >e) cnt-data_re; ; parent run.time stats for each
D http_response_status I B lic_num time the tool runs
|| SErV_name |=) content_type |==) lic_name
|| serv_timezone | cntfile_name |==) cmdline
|| serv_date |=) cntfile_create_time -] gen_hdrs
| serv_modify_date |=) cntfile_modify_time || col_hdrs
—| serv_expires_date [=) cntdata_offset | col_types

M::ey ::ets:i tfi;er:ds ;1 Z:Z:jz:_;e;c;;yutjtc | cntdata_size | extra_args

CaVioittyit =) —modity_ |=) cntdata_mds = host

.| browser_expires_utc |) cntdata_header_data) user
|| fetch_count l>®|_) cntdata_raw | file
|e) url | file_other
|=| url_params Contains the |l output_option
|| content_type raw content || Separator
|/ content_filename | notes
| content_encoding ;:i toolname
| content_size i artifact_szge
| http_response_fields Thesetnaldsrecordwhich | data_tbl_name
| cntdata_location_info table/keys for the previous | row_data_start
|.] metadata_file tables relate to a session run |~ row_data_end

o /

The records in the cache_metadata_entries table are similar to the information rendered in the CSV

output. The actual content data is stored in the cache_ctxdata_entries table under the field name
“ctxdata_raw”. This is a ‘blob’ type since the data can be either text or binary.

2.2.3 Splitting the Mozilla Sessions into Separate Files

One can take the discussion in the previous sections and modify the output so that the data is broken
out into separate files per Mozilla session. This applies to both the CSV and the SQLite output variants.
The syntax is the same as before, however, one just appends the sub-option -split_sessions to the
command. This tells the mcp tool to take whatever was specified as the output file to be appended with
a session number along with the random string used by the Mozilla folder name. Below is an example
using this syntax.

>dir e:\sglite\Mozilla

mcp64 -pipe -out test6.csv -split_sessions

When the processing is done, one will have a number of files (one per Mozilla session). The output
notation will be something like what is shown below. The output name specified (in this case “test6”)
will be the part of the name with an incremented number along with the folder name used by Mozilla
for that session.

Copyright © TZWorks, LLC Apr 15, 2024 Page 9

Mame
a test6_0001_pr3eipdg.default.csv
002_ghn94czv.def

y_0003_3vbvgana.default.csv

y_ 0004_bg7fyd4mo.defau
005_ghn94czv.d
006_3vbvgana.defau

007_bqg7fy4mo.defau

3 CSVField Names / Meaning

Below is a refence of all the CSV fields used and their meanings.

eld De 0
type Cache version number
url_hash SHA1 hash of the URL contained in the metadata. This is a computed
value by mep. This hash should be equivalent to the filename for those
cache versions that show a SHA1 hash for the name.
url_etag The HTTP etag that was present in the HTTP response

request_type_reply_status

HTTP request type (eg. GET, POST), and reply status (eg. HTTP/1.1 200 OK)

serv_name

Server name recorded in the HTTP Response

serv_timezone

Server time zone

serv_date

Server timestamp included in the HTTP Response

serv_modify_date

Server modify timestamp included in the HTTP Response

serv_expires_date

Server expire timestamp included in the HTTP Response

browser_fetch_utc

Browser - last time the cache was fetched

browser_modify_utc

Browser modify timestamp associated with the cache

browser_expires_utc

Browser expire timestamp associated with the cache

content_create_utc

Actual content data file create timestamp. This is only present if the
content file is a separate file. For Linux and OSX, this is the status change
timestamp

content_modify_utc

Actual content data file modify timestamp. This is only present if the
content file is a separate file.

Copyright © TZWorks, LLC

Apr 15, 2024 Page 10

fetch_count

Number of times the cache was fetched

url URL of the webpage visited

url_params Any URL parameters used. This is formatted as JSON.

content_type The content data type (eg. GIF, JPEG, text, etc) extracted from the HTTP
response

content_filename Last part of the URL prior to the URL parameters extracted from the HTTP
response

content_encoding

The encoding used on the content data (eg. gzip, br, etc) extracted from
the HTTP response

content_size

Size of the content data extracted from the HTTP response

content_location_info

The file and offset (if not zero) within the file where the content data is
located. This is formatted as JSON.

extra_fields The key/value pairs extracted from the HTTP response. This is formatted
as JSON.
file The original path/file containing the metadata

4 Limitations

This version of the tool has a number of limitations. They are listed below.

e The tool is still

prototype in nature being that this is the first version released. It still needs to

be tested against various types of files, corrupted files, etc. to ensure the tool can perform

consistently.
e The earliest ve

rsion of the Mozilla cache this tool has been tested on is v3.0.1. Therefore, prior

versions may or may not work; and if they seem to work, may or may not yield accurate results.

e The folder enu
as the naming
Mozilla or if ch
atall.

meration of the cache file option relies on the Mozilla directory structure as well
convention used by Mozilla. Therefore, if either of these things are changed by
anged by a user, the parsing engine will have unpredictable results or no results

e There are a couple of parsing engines within this tool; which engine is used is a function of the

Mozilla naming convention used for the cache file.

5 Available Options

Option

-CSv

-csvI2t

Description

Outputs the data fields delimited by commas. Since filenames can have
commas, to ensure the fields are uniquely separated, any commas in the
filenames get converted to spaces.

Outputs the data fields in accordance with the log2timeline format.

Copyright © TZWorks, LLC Apr 15, 2024 Page 11

-sqlite

-pipe

-enumdir

-filter

-no_whitespace

-csv_separator

-dateformat

-timeformat

-quiet
-split_sessions

-utf8_bom

Outputs the data into a SQLite database. The syntax is:

-sqlite <db name to create or use>.

Used to pipe files into the tool via STDIN (standard input). Each file passed in is
parsed in sequence.

Experimental. Used to process files within a folder and/or subfolders. Each file
is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs <#>.

Filters data passed in via STDIN via the -pipe option. The syntax is -filter <"*.ext
| *partialname* | ...">. The wildcard character '*' is restricted to either before
the name or after the name.

Only applies to -csv and -csvi2t options. Used in conjunction with -csv option to
remove any whitespace between the field value and the CSV separator.

Only applies to -csv and -csvi2t options. Used in conjunction with the -csv
option to change the CSV separator from the default comma to something
else. Syntax is -csv_separator "|" to change the CSV separator to the pipe
character. To use the tab as a separator, one can use the -csv_separator "tab"
OR -csv_separator "\t" options.

Output the date using the specified format. Default behavior is -dateformat
"yyyy-mm-dd". Using this option allows one to adjust the format to mm/dd/yy,
dd/mm/yy, etc. The restriction with this option is the forward slash (/) or dash
(-) symbol needs to separate month, day and year and the month is in digit (1-
12) form versus abbreviated name form.

Output the time using the specified format. Default behavior is -timeformat
"hh:mm:ss.xxx". One can adjust the format to microseconds, via
"hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no
fractional seconds, via "hh:mm:ss". The restrictions with this option is a colon
(:) symbol needs to separate hours, minutes and seconds, a period (.) symbol
needs to separate the seconds and fractional seconds, and the repeating
symbol 'x' is used to represent number of fractional seconds.

Show no progress during the parsing operation.

Split the Mozilla sessions into separate files.

All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8 byte
order mark to the output using this option.

6 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macQOS).

Copyright © TZWorks, LLC

Apr 15, 2024 Page 12

The other mechanism is the runtime authentication, which applies to all the versions of the tools
(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The
license needs to be in the same directory of the tool for it to authenticate. Furthermore, any
modification to the license, either to its name or contents, will invalidate the license.

7 References

1. Mozilla-central [https://hg.mozilla.org/mozilla-
central/annotate/80eff2b52d14/netwerk/cache2/CacheFileMetadata.h#!54]

2. Mozilla-central [https://dxr.mozilla.org/mozilla-central/source/netwerk/cache2/Cachelndex.h]

3. firefox-cache-forensics -FfFormat.wiki [https://code.google.com/archive/p/firefox-cache-
forensics/wikis/FfFormat.wiki]

4, Joachim Metz. Firefox cache file format
[https://github.com/libyal/dtformats/blob/master/documentation/Firefox%20cache%20file%20
format.asciidoc].

5. Endpoint Protection / Web Browser Forensics part 2
[https://community.broadcom.com/symantecenterprise/communities/community-
home/librarydocuments/viewdocument?DocumentKey=30e9590f-e848-4857-8bd1-
adf70638af36&CommunityKey=1ecf5f55-9545-44d6-b0f4-
4e4a7f5f5e68&tab=librarydocuments]

6. SQLite library statically linked into tool [Amalgamation of many separate C source files from
SQLite version 3.32.3].

7. SQLite documentation [http://www.sglite.org].

8. DB Browser for SQLite [http://sqlitebrowser.org/]

Copyright © TZWorks, LLC Apr 15, 2024 Page 13

http://sqlitebrowser.org/

	1 Introduction
	1.1 Location of the Cache data

	2 How to Use mcp
	2.1 Targeting Specific Cache files
	2.2 Processing Cache Files in one or more Subdirectories
	2.2.1 Parsing Multiple Mozilla Accounts and/or Instances
	2.2.2 Archiving the Content Data
	2.2.3 Splitting the Mozilla Sessions into Separate Files

	3 CSV Field Names / Meaning
	4 Limitations
	5 Available Options
	6 Authentication and the License File
	7 References

