

Abstract
tac is a standalone, command-line tool that parses the

Windows Timeline records introduced in the April 2018

Win10 update. The Window Timeline functionality makes

use of a SQLite database to store which applications have

been run.

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v0.33 of tac

Updated: Apr 15, 2024

TZWorks® Timeline
ActivitiesCache Parser (tac) Users
Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 15, 2024 Page 1

Table of Contents

1 Introduction .. 2

2 How to Use tac .. 5

2.1 Recovering Discarded Records .. 6

2.2 Processing Multiple Databases ... 7

2.3 Bypassing the Embedded SQLite library ... 7

3 Use of the SQLite library ... 8

4 Supporting Artifact files .. 8

5 Timestamps ... 9

6 Available Options .. 10

7 Authentication and the License File .. 11

8 References .. 11

Copyright © TZWorks, LLC Apr 15, 2024 Page 2

TZWorks® Timeline ActivitiesCache Parser
(tac) Users Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=41

Contact Information: info@tzworks.com

1 Introduction

In the spring of 2018, Microsoft released a Win10 update (version 1803) with the capability to show a
chronology of actions taken by the user. This new application is called Timeline and is part of Windows
Task View. It allows one to go back in time to find the items previously worked on. It has a history from
the most recent tasks to a few weeks ago (up to 30 days). Whether going back to a previous Internet
search done some time ago, or continuing on with the document that was been read or edited, the
functionality is built into the Timeline application to track this.

For the forensic analyst, since this service is turned on by default, the amount of data that can be
collected with an account’s activity is very useful. To disable the capability, one would need to explicitly
turn it off in the Privacy settings.

If the activity history was not turned off, then the analyst can retrieve items, such as: which file was
viewed and/or edited, website visited, corresponding timestamps, etc.

The database storing the user’s activity is the ActivitiesCache.db. Each user account has its own
database, and it can be found in one of these locations:
C:\Users\<useracct>\AppData\Local\ConnectedDevicesPlatform\L.<useracct>\ActivitiesCache.db.
C:\Users\<useracct>\AppData\Local\ConnectedDevicesPlatform\<cid>\ActivitiesCache.db.

The first is for accounts that are locally logged into; whereas the second is for online accounts.

Below is a truncated output of looking into the records of the ActivitiesCache.db. One can see when the
application was run and how long it was running. The expiration time is something that allows the

mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 15, 2024 Page 3

timeline to only keep those items on the list that are within a set amount of time to keep the timeline of
items manageable. There are many other fields that are used in the database that are not shown
below; many of them still need to be studied to determine what they are and if they are of forensic
value.

The ActivitiesCache.db has a number of tables, many of which are used for indexing and fast searching.
The tac tool targets only two of these database tables; the Activity and the ActivityOperation tables.
Collectively, they contain all the information needed to reconstruct which applications were run.
Depending on the version of Windows 10 the database schema has more or less fields. The initial
schema in version 1803 is shown below. Later versions of Windows added more fields in the schema.
The tac tool is aware of the schema versions that exist in Win10 (specifically from v1803, v1809 and
v1903).

Copyright © TZWorks, LLC Apr 15, 2024 Page 4

The additional fields added from Win10 v1803 includes the following for the Activity Table:

For the ActivityOperation Table, the following fields were added:

As one can see, included in the metadata are various timestamps, the application (and sometimes the
path it was run from), the duration the application was in use, etc. While there is some data not
understood by this developer, there is plenty of useful critical data readily identifiable, such as: when a
specific application was run, by which user account, and if there were any associated documents/pages
used with the application. As more meaningful data is discovered, this tool will continue to evolve
accordingly.

Empirical testing shows that as an application is run, typically at least 2 entries in the Activity Table are
created (one with an ActivityType 5 and one with an ActivityType 6). What each number represents is
just a guess, but from the data thus far, it suggests that ActivityType 5 is the initial type representing
when the application started, and the ActivityType 6 is the ending type representing when the
application ended. The ActivityType 6 records the duration time (ActiveDurationTime). At this point,
these conclusions are preliminary and are subject to change as more data is analyzed. For the purposes
of completeness, the tac tool outputs both entries in the output.

Empirical testing also shows that when the user manually removes an item from the Windows Timeline,
the ActivityOperation Table records that action as well as the time this occurred via the CreatedTime
field.

Also, noteworthy, is the Windows Timeline doesn’t necessary display the application that was run within
the timeline, however, the application does get recorded in the ActivitiesCache database. Whether the
display inconsistency is due to the initial release of the Windows Timeline and whether Microsoft may
be focusing on Windows applications over 3rd party applications is unknown at this time. But since the
data does seem to be captured into the ActivitiesCache database, this artifact is very useful from a
forensics standpoint.

Copyright © TZWorks, LLC Apr 15, 2024 Page 5

2 How to Use tac

The screen shot below shows all the options available.

The semantics to run this tool just requires one to use the -db option and pass in the path/file of the

ActivitiesCache db to parse. The parsed output will dump to the screen, unless one redirects the output

to a file, as shown below:

The above command will only parse the more commonly used fields from the Activity and

ActivityOperation tables. To parse all the fields from those same tables, one can use the -all_fields

option in the command above.

Copyright © TZWorks, LLC Apr 15, 2024 Page 6

2.1 Recovering Discarded Records

When considering how to recover records that have been deleted or overwritten, the SQLite database

can be treated as a file system; as such, one can analyze which pages in the database are valid and

which are invalid. Of the valid pages, one can look into those areas that are slack space. Finally, one can

look into the journaling file and see which areas also can be considered for record recovery. Identifying

these unused areas (or areas marked as invalid), one can look at the data available and see if records of

interest can be extracted. tac has the -incl_slack option to do this. This will cause the tool to: (a)

traverse the database, and if available, the journaling file as well, (b) identify which areas are invalid or

which are slack space and (c) look for records that are of interest and extract them. From the empirical

testing on various sample database files, this has yielded a sizable number of records when compared to

the just extracting the valid records.

It goes without saying, that anytime a parser tries to reconstruct records from corrupted (partially

overwritten) data, it should be cause for concern. That is why this option is still experimental.

Consequently, using this option could cause the parser to crash if it tries to reconstruct a record that

causes an out-of-bound condition in the internal parsing algorithm. More datasets are required with

differing boundary conditions for this option in the tool to come out of the experimental category.

Even though the extra output produced by the -incl_slack option will include additional records, one

should be aware, that a recovered record is not necessarily a ‘deleted’ record, but can be copied version

of older record (and it may be identical). To provide additional tracking information, tac will output any

additional metadata in a separate column called “misc data”; a sample output of this field is shown

below:

Copyright © TZWorks, LLC Apr 15, 2024 Page 7

The above metadata will identify where the recovered record came from, as well as the offset into the

file. If a record was truncated, that will also be annotated. If the database was upgraded to a newer

schema, there may also be records from the older database schema present. From the example above

the shaded blue areas are recovered records prior to the database upgrading from Win10 v1803 to

v1809. Collectively, this should be enough data to give the investigator the information to manually

review the raw data in a hex viewer for verification purposes.

2.2 Processing Multiple Databases

If desiring to process many database files in one pass, one can put the artifact database in separate
subdirectories that share a common parent folder (or just enumerate them on a live system) and use
the -pipe option like so:

This will process all the databases and output the results into one file. To help distinguish which lines go

to which database file, an extra field is appended to each record identifying the source database.

If one cannot use the -pipe option, one can use the experimental -enumdir option, which has similar

functionality with more control. The -enumdir option takes as its parameter the folder to start with. It

also allows one to specify the number of subdirectories to evaluate using the -num_subdirs <#> sub-

option.

2.3 Bypassing the Embedded SQLite library

The tac tool has the SQLite library embedded into the binary. More information about this is discussed

in the section Use of the SQLite Library. Sometimes, however, one may not wish to use the SQLite

library for analyzing the records, so an option was added to bypass the SQLite library and use the

TZWorks internal SQLite algorithms to parse the database. This functionality can be invoked one of two

ways: (a) with the -carve option or (b) the -parse_chunk option. Out of the two options, one should

opt for the first, -carve option. This option will try to traverse the database (even corrupted ones) and

should pull out all the same information as if using the normal SQLite library plus recover any records in

the discarded pages. The difference here is the -carve option is more immune to database corruption

than the SQLite library is.

The purpose for the second option -parse_chunk, is to go a step further and operate on only a subset of

the database. More specifically, if at least a page of the database is available, this option will try to pull

out any Activity and ActivityOperation records it finds. The limitation of this option is the data is

segmented on page boundaries; this means any data crossing into other pages will be truncated.

Copyright © TZWorks, LLC Apr 15, 2024 Page 8

3 Use of the SQLite library

The ActivitiesCache.db is a SQLite database. For the purposes of the tac tool we statically link in the

SQLite library to ensure the tool has minimal dependencies. The source code for the SQLite library is an

amalgamation of the SQLite ‘C’ source files, version 3.32.3. More information about SQLite, the

documentation and the source code can be seen at the official SQLite website [http://www.sqlite.org/].

Normally when we build a tool to parse a raw artifact, we prefer not to use outside libraries, however, in

this case, the SQLite library has an option to open a SQLite database in ‘read-only’ mode. From the

testing done and from the documentation, it appears this is acceptable for this release. As an

experimental option, we incorporated our internal library to assist parsing the slack and free space of a

SQLite database. This gives the tac tool the ability to recover additional records that have been deleted

or overwritten. More testing in this area needs to be done to ensure the record recovery is robust to

malformed records that have been overwritten.

4 Supporting Artifact files

The SQLite architecture uses a transactional system to ensure all database commits are done in an

atomic fashion. This is implemented via the use of temporary files to allow the system to rollback to a

previous state should the database abruptly quit in the middle of a transaction due to an unexpected

power failure or a crash of the application controlling the SQLite database. The supplemental files used

for this database are: ActivitiesCache.db-wal and ActivitiesCache.db-shm.

The first supplemental file is the 'write-ahead' log (WAL) and the second is the 'shared memory' file

(SHM). The WAL file acts as a buffer for new records or changes to existing records to be recorded prior

to flushing them to the database. This is the supplemental file of interest of the two from a forensics

standpoint. The WAL file, by its nature, can grow very large since it can record many transactions prior

to flushing them to the database.

Below is a screenshot of the user account testuser. One can see these files present below. Just looking

at the size of the WAL file, which in this case is over 50% of the normal ActivitiesCache.db file, it should

be clear that there is a significant amount of data contained in the file that has either been flushed to or

is waiting to be flushed into the database.

http://www.sqlite.org/

Copyright © TZWorks, LLC Apr 15, 2024 Page 9

From a forensics standpoint, this offers the investigator additional data to analyze. Not only is the

current record present, but potentially the previous version of the record as well. This occurs when the

WAL contains the latest record prior to the commit (flush) while the database contains the older record.

In addition to the above behavior, it is common for the WAL file to save more than one transaction prior

to the overall commit (flush to the database). Unfortunately, there is not a simple SQLite query to pull

out invalid older records or examination of slack space. To build up this history, consisting of previous

records, one needs to reconstruct them. This requires traversing the SQLite file internals to locate and

extract invalid records, data in slack space, etc, and then try to match the data to the proper table

schema available.

5 Timestamps

The timestamps stored in the ActivitiesCache db are atypical for Windows. Normally the Windows

operating system uses FILETIME to record timestamp data. In some cases, other timestamps like

OLETIME will be used. In either case, the typical timestamps include a resolution down to the fractional

seconds. This is not the case with the timestamps stored in the ActivitiesCache db. The times stored

here are expressed in 4 byte time_t type format (which is commonly called Unix time). For this

particular format, the timestamp resolution is in seconds (as opposed to fractional seconds) and as such,

the tac tool has no need for a -timeformat option (which is used in other TZWorks tools), since the only

purpose for -timeformat is to express time in varying fractional second resolutions.

From the two tables that tac is analyzing, there are at least 7 different timestamps available for the

Activity table and 8 for the ActivityOperation table.

Copyright © TZWorks, LLC Apr 15, 2024 Page 10

6 Available Options

Option Description

-db
Specifies which database file to act on. The format is:

 -db <activitiescache db to parse>

-csv

Outputs the data fields delimited by commas. Since filenames can have commas,
to ensure the fields are uniquely separated, any commas in the filenames get

converted to spaces.

-csvl2t Outputs the data fields in accordance with the log2timeline format.

-bodyfile

Outputs the data fields in accordance with the 'body-file' version3 specified in
the SleuthKit. The date/timestamp outputted to the body-file is in terms of UTC.
So if using the body-file in conjunction with the mactime.pl utility, one needs to
set the environment variable TZ=UTC.

-base10
Ensure all size/address outputs are displayed in base-10 format versus
hexadecimal format. Default is hexadecimal format.

-all_fields Show all fields available for CSV output

-username

Option is used to populate the output records with a specified username. The

format is:

-username <name to use>.

-hostname

Option is used to populate the output records with a specified hostname. The

format is:

-hostname <name to use>.

-pipe
Used to pipe files into the tool via STDIN (standard input). Each file passed in is

parsed in sequence.

-enumdir
Experimental. Used to process files within a folder and/or subfolders. Each file is
parsed in sequence. The syntax is -enumdir <folder> -num_subdirs <#>.

-filter

Filters data passed in via stdin via the the -pipe or -enumdir options. The
syntax is -filter <"*.ext | *partialname* | ...">. The wildcard character '*' is
restricted to either before the name or after the name.

-no_whitespace
Used in conjunction with -csv option to remove any whitespace between the
field value and the CSV separator.

-csv_separator

Used in conjunction with the -csv option to change the CSV separator from the
default comma to something else. Syntax is -csv_separator "|" to change the
CSV separator to the pipe character. To use the tab as a separator, one can use
the -csv_separator "tab" OR -csv_separator "\t" options.

-dateformat
Output the date using the specified format. Default behavior is -dateformat
"yyyy-mm-dd". Using this option allows one to adjust the format to mm/dd/yy,
dd/mm/yy, etc. The restriction with this option is the forward slash (/) or dash (-

Copyright © TZWorks, LLC Apr 15, 2024 Page 11

) symbol needs to separate month, day and year and the month is in digit (1-12)
form versus abbreviated name form.

-quiet Show no progress during the parsing operation.

-incl_slack
Experimental option to look at slack space free blocks to see if any records are
present.

-carve
Experimental option. Bypass the SQLite embedded library and parse using
TZWorks internal algorithms. This is for the situation where the database to be
parsed is corrupted and the SQLite library has trouble parsing it.

-parse_chunk
Experimental option. Given a portion of the database (at least 1 page), this
option will examine the data to see if any records exist and parse out the
contents.

-utf8_bom
All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8 byte
order mark to the output using this option.

7 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

8 References

1. SQLite library statically linked into tool [Amalgamation of many separate C source files from
SQLite version 3.32.3].

2. SQLite documentation [http://www.sqlite.org].

	1 Introduction
	2 How to Use tac
	2.1 Recovering Discarded Records
	2.2 Processing Multiple Databases
	2.3 Bypassing the Embedded SQLite library

	3 Use of the SQLite library
	4 Supporting Artifact files
	5 Timestamps
	6 Available Options
	7 Authentication and the License File
	8 References

