TZWorks® Yet Another Registry
Utility (yaru) Users Guide

Copyright © TZWorks LLC
www.tzworks.com

Contact Info: info@tzworks.com
Document applies to v1.90 of yaru
Updated: Apr 15, 2024

Abstract

yaru is a GUI registry utility that can display the internal
registry hive components and structures. yaru can operate
on a registry hive directly from a live volume, an image of a
volume or a VMWare volume. yaru runs on Windows,
Linux and Mac OS-X.

http://www.tzworks.net/
mailto:info@tzworks.net

Table of Contents

A W N R

O 00 N o U

11
12
13
14
15
16

INEFOAUCTION ettt ettt et e bt e s bt s ae e et e et e e bt e sbeesaee st e eabeenbe e beeaneesneeennean 2
Registry Hive and COMPONENTS........uiiiiiiiie ettt e e e saae e e e e tte e e e et e e e e eabeeesenbaeeeenseeeeennrenas 3
LOCATION Of HIVES ... eeiieieeiii ettt ettt e st e st e s sbee e sabe e e bt e e sabeesabeeesabeesabeesreeesareenans 4
HOW O USE YOI Ut ss s snssnnnnanan 4
4.1 Reading Registry Hives from LOgICal IMageS......ccccuuiiiiiiiiieiiiiee et crieee et vee e s 5
4.2 Parsing Hives from @ LiVe VOIUME......couiiii ettt et et e e et e e e ata e e e e 6
4.3 Common Registry Artifacts useful to Forensic Investigators.........ccoceevecieeiecciee e, 6
4.4 SEArChING fOr TEXE PAtteINS...cci i iiiee ettt et e et e e e et e e e e ette e e e ebteeeeeabteeeeessanaesanes 8
4.5 Searching for BiNary PatterNsoi ittt e e st e e e sbte e e e sbeaeeesanes 9
4.6 Searching for Entries exceeding some threshold Size..........cccoveiiiiieciiiiciiecece e, 11
4.7 Searching for High ENtropy data.......cceeeiiiiiiiciiie ettt e e s va e e s aaee e 11
4.8 SEArChing fOr TIME RANEES....ccccuiiie ettt e e e e et e e e et e e e e eata e e e esataeeeeassaeeesnnssneeaan 12
Unlinked Allocated ChUNKScoouiiiiieeee ettt st s 13
(DL (o To I Y=Y < 1 A YA =S RUP 14
EXPOrting KEYS and Data ..cccccuiiiiiiiiiei ittt ettt e e et e e s stae e e s eabae e e e et e e e e ennbeee e e sabreeeenareeas 16
Brute Force Extraction of Keys — Carving.....ccuueiiiiiii ittt sre e e e e ae e e e 18
Validation of Parsed RESIAUAIS.........coiiiiiiiiiee ettt sttt s 20
(oY =d=q1 o V=ao) B Vot u Y/ RSP 22
Creating a “Send To” SHOMCUL FOI YArUcccuvieieiieeeeee et et 24
(@e] a0 a1 a Ve l M1 TN @ 7o) o) o - PP 24
(U T Do Y=o N =T 0 ol o] Fo 1o TSP 25
KNOWN ISSUBS....ciiiiiiiiiiiiiii ittt bbb e s ba e s ab b e s s s aaae e e e 25
X-WiNAOW DEPENUENCIES..ceeiiiiiiiiieiee e e e eecciiee e e e e e eecttre e e e e e s e essabeeeeeeeeesssnsbaeeeeaeeesaanssssnsesaesesnasrens 25
Authentication and the LICENSE File........cooeiiiiiiie e 25
16.1 Limited versus Demo versus Full in the tool’s OUtpUt BanNer........cceeeeeciieeeeiiiee et 26
REFEIEINCES ...ttt st sttt e bt e s bt e sat e et e e be e s b e e sb e e sanesabesane e beens 27

17

Copyright © TZWorks LLC Apr 15, 2024 Page 1

TZWorks® Yet Another Registry Utility
(yaru) Users Guide

Copyright © TZWorks LLC
Webpage: http://www.tzworks.com/prototype_page.php?proto_id=3
Contact Information: info@tzworks.com

1 Introduction

yaru is a platform independent Windows registry viewer. Inspired by the desire to look into the
Windows registry metadata, so as to better forensically analyze the registry hives, yaru was designed
with a portable and extensible architecture in mind so that it could be compiled to run on various
operating systems. The registry parsing engine is written in standard C/C++ and has no dependencies on
the Windows registry API functions. This means that the parsing may have trouble on certain untested
boundary conditions.

The GUI portion of yaru leverages off the FOX (Free Objects for X) library, which was designed to be
cross platform. The FOX library is freely available and is distributed in source form under Library GNU
Public License (LGPL). Currently, there are compiled versions of yaru that will run on Windows, Linux
and OS-X.

The Windows version of yaru has the ability to take a snapshot of any of the active hives and examine
the internal structure of the hive. Since the Windows operating system locks down the active hives
from other processes reading them, yaru can resort to raw NTFS disk reads to read any of the desired
hives. Consequently, this requires the user to run this tool with administrative privileges. While this
approach adds complexity to yaru, it ensures that all metadata is available for analysis, as well as
ensures that there is no corruption or changes to the active hive during analysis.

Some other rudimentary functionality includes:

e Show allocated (but unused) key value data space [referred to here as cell slack space].

e Show unallocated hive space [referred to here as hive slack space].

e Able to traverse the hive slack space and enumerate deleted keys.

e Report generation capability. For common registry forensics artifacts, a number of options are
available to generate reports from the live hives, copies of hives or hives from unmounted
partition files. The latter requires a bit-for-bit (uncompressed) copy of the partition image.

e Optional logging capability that records the user selections along with data values into a
separate XML file for later review. A separate XML file is created for each session.

e Ability to export any key in the hive under evaluation to a registration (.reg) file to be used for
analysis. The format tries to mimic the version 5.00 of the Windows registry editor, with some
additional metadata in commented form.

Copyright © TZWorks LLC Apr 15, 2024 Page 2

mailto:info@tzworks.net

e Ability to process any hive using user defined templates. These templates allow one to
customize what data is to be extracted. While these templates have a very primitive set of
commands, they can be useful for repetitive tasks.

e Simple search capability: (a) key names, (b) value names, (c) date ranges, and (e) strings (that
greater than 4 characters)

e The ability to verify that all allocated chunks have valid links to the registry. This was discussed
in Timothy Morgan's paper [ref 8] as an anti-forensics technique.

2 Registry Hive and Components

When talking about the forensics artifacts in the Windows registry, some discussion on the architecture
of the registry is in order. According to the Windows 2000 server resource kit *?, the registry “is a
hierarchical database that contains the value of variables in Windows ... and in the applications and
services that run on Windows... The registry consists of nested containers known as subtrees, keys, and
subkeys. These are like folders. The data is... stored in the registry entries, the lowest element in the
registry. The entries are like files.... An entry consists of a name, a data type, which defines the length
and format of data that the entry can store, and a field known as the value of a registry entry.”

Unfortunately, the Windows registry internals are Microsoft proprietary. Therefore, finding an open
source document that accurately documents the internals without error, is difficult and any data in the
open is most likely derived from empirical results from looking at hexadecimal dumps of raw registry
hives. The first attempt to document the internals of the registry was from a document written many
years ago (circa 1998) that was distributed on the Internet from an author identified with only the
initials ‘BD’ ¥°. Below is a screen shot of a diagram used in BD’s document. While the figure was titled a
“Greatly Simplified Structure of the NT Registry”, it appeared to have accurately shown the major
key/value/data components and their interrelationships. Along with the diagram contained some
definitions of the structures for each of the blocks.

- +
W |
e + o R o I + |
| "nk" | | | 1f-rec. | | nk-rec. | |
| ID | | | # of keys | | | parent |--—+
| Date | | | 1st key | ——+ - |
| parent | | Fom + o +
| suk-keys | ——————- +
| walues | ———mmmmmm B oo———————
| SK-rec |- + | 1. wvalue |--» +————————— +
| class | ——+ o + | wk-rec. |
Fomm + | [
W | data |——» +——————- +
Fom— - + o + | wmmxx |
| Class name | +o—— +
o +
W
o + o +
+o———= > | next sk |---x | MNext sk |-—+
+-—	prev sk	<-——-	prew sk	
		.	e	
	B + B +			
[A				
o - +				
o +

Copyright © TZWorks LLC

Apr 15, 2024

Page 3

BD's diagram refers to registry key name structures as “nk” and key value structures as “vk”. The
security key associated with each registry key is shown as “sk”. This nomenclature was based on each
structure’s respective signature when looking at a binary dump of each type (eg. “nk”, “vk”, “sk”). This s
consistent with what other authors have published nearly a decade later. This included various articles
in the Microsoft Development Network, Harlan Carvey’s section on registry analysis in his book on
Windows Forensic Analysis, and more recently, published papers by Thomassen ' and Norris'>to name
a few.

Taking the results from all these open sources and arming oneself with a hex editor, one can use the
structures documented thus far to manually walk the entire registry with reasonable accuracy.

3 Location of Hives

The registry hives are in various locations, depending whether they are system related or user account
related. Some of the more common registry hives can be found in the following locations:

Ntuser.dat %userprofile%\ntuser.dat

UsrClass.dat (xp) %userprofile%\Local Settings\Application Data\Microsoft\Windows\UsrClass.dat
(vista and later) %userprofile%\AppData\Local\Microsoft\Windows\UsrClass.dat

System %systemroot%\system32\config\system

Sam %systemroot%\system32\config\sam

Software %systemroot%\system32\config\software

Security %systemroot%\system32\config\Security

Components (vista and later) %systemroot%\system32\config\Components

BCD (vista and later) %systemdrive%\boot\bcd

Syscache.hive (vista and later) System Volume Information\ Syscache.hive

Schema.dat %systemroot%\System32\SMI\Store\Machine\schema.dat

AmCache.hve (win 8 and later) %systemroot%\AppCompat\Programs\AmCache.hve

ELAM (win8 and later) %systemroot%\system32\config\elam

BBI (win8 and later) %systemroot%\system32\config\bbi

DRIVERS (win8 and later) %systemroot%\system32\config\drivers

4 How to Use yaru

When a hive is loaded into yaru, the hive is broken up into 4 main segments: (a) the normal hive data
that is viewable by the normal registry editors, (b) the unallocated space within the hive, (c) any
allocated space that should have a parent key but does not, and (d) any deleted keys and their
associated values that have not been overwritten. The 5 segment shown is for an experimental option
to carve the hive that is invoked via the Options Menu. The carve option will group all the keys it finds

Copyright © TZWorks LLC Apr 15, 2024 Page 4

as a function of their modification date forming a quasi-histogram. The histogram is broken up into valid
and deleted keys giving additional insight to the registry changes on a particular period. The carving
option is discussed in more detail in a later section in this user guide.

File View QOptions Reports Time Format Help
Registry Keys Key/Value data

Sl) E:\testcase\ hives\test\NTUSER. mo @UUS LM - I S M0 1Y)
o
_'C:I AppEvents 7 Timestamp: @x@1de2ab64bda4sl? (01/07/2015
1 Consol
+ onsole
(1 Control Panel owner sid [S-1-5-32-544]
(] Environment group sid [5-1-5-18]
= (3] eunc -)
%3 Keyboard Layout = | Normal hive data viewable by most RIC AL
i = <Y Y registry viewers TE | R
. Network access allowed Admins DECETE | R
#(Printers access allowed Users READ_CONTR
+([Software
#(System o

=20 unallocated space -

#(20 chunks 0x08 - 0x10 bytes
+(0 chunks 0x18 - 0x50 bytes
([chunks 0x58 or more bytes
=10 allocated ‘unlinked' space
#(] chunks 0x08 - 0x10 bytes
(0 chunks 0x18 - 0x50 bytes
([0 chunks0x58 or more bytes

00 deleted keys Deleted k d values that have b
(0 NTUSER.mod.test.DAT]‘ e:tfafte de"s and vaiues that have been

=3 Carved (by week)

2009/07/08 - 00446/0 Histogram of when keys were modified
2014/09/08 - 00430/0 (resolution is by week)

2015/01/01 - 00001/2
1 I 2|

Unallocated chunks within hive

Allocated space within hive that should
have a parent key but don’t (abnormal)

4.1 Reading Registry Hives from Logical Images

Under certain conditions, yaru can read the registry hives directly from a logical image that was saved as
a file (without mounting the image as a file system). There is one basic assumption that yaru makes
when reading the unmounted partition, is that the NTFS unmounted partition is a single file and is a
binary match of the original logical partition. One can do this via the File -> Open Unmounted Image:

File View Options Reports Time

Open hive... Ctl-0
Open Unmounted image... Ctl-U
Open VMWare Disk... Ctl-v
Open Volume Shadow... Ctl-S
Run CmdFile... Ctl-R
Save As... Ctl-A

The other option is to open the hive via the command line via the following switch:

Copyright © TZWorks LLC Apr 15,2024 Page 5

-ntfsimage <unmounted partition> <path\file of the hive>

Here’s an example. Note that since the registry path of the hive is not mounted, it does not have a drive
letter when specifying where the hive file is. Thus the path is relative to root.

-ntfsimage c:\test\imagel.dd \Windows\System32\Config\system

4.2 Parsing Hives from a Live Volume

To load a hive from a system volume one can use the shortcuts in the menu. There are options for each
of hives. For those hives that are in more than one location, such as the user hives, if they are selected a
menu will allow the user to choose which user hive to load.

File View Options Reports Time
Open hive... Ctl-0
Open Unmounted image... Ctl-U
Open VMWare Disk... Ctl-v
Open Volume Shadow... Ctl-S
Run CmdFile... Ctl-R
Save As... Ctl-A
Open SAM (local) Ct-s |
Open System (local) Ctl-Y
Open Software (local) Ctl-F
Open Security (local) Ctl-1
Open user hive (local) Ctl-H
Open Components (local] Ctl-N
Open BCD (local) Ctl-B
Open AmCache (local) Ctl-C
Quit Ctl-Q

During the load operation, yaru scans the hive for deleted registry entries as well as indexes the hive for
faster searching. Once the load operation completes one can view any entry or scan for artifacts by
selecting the Reports-> Currently loaded hive.

File View Options | Reports Time Format
Currently loaded hive
Live System >

=1 E:testcase\hives Extracted hives >

Registry k

4.3 Common Registry Artifacts useful to Forensic Investigators

While one can dump the data associated with many keys that are of interest to investigators, it is useful
to know the relationships between certain raw data and how these bits of data can paint a story of a

Copyright © TZWorks LLC Apr 15,2024 Page 6

sequence of events. yaru groups some of the more common artifacts into canned reports. Shown

below are the current groups for various hives.

File View Options vgeports Time Format

i i
= E:testcase\hives Extracted hives >
(2 ControlSet001
(3 ControlSet002
(] MountedDevices
(] RNG
@[Select
(3 Setup
=@ wrA
(] unallocated space

Currently loaded hive L:-:. s

Help

Password hashes
USB artifacts
Persistence artifacts
Software hive
System hive

Sam hive

Security hive

User hive
AmCache hive

+ (] deleted keys

Selecting a report from the “Currently loaded hive” will review the current hive loaded in yaru and

generate a report specific for that hive.
hive based on the report selected and then generate a report.

Selecting a report from the “Live System” will load the proper

Whichever report is selected, the results that are generated separate each field with a pipe delimiter to

allow for easy viewing as well as inclusion into another tool (such as excel) for analysis. Below is a
portion of a report from a system hive showing the various services. After the report is generated one
can ‘right-click’ on the report output and select the “export text to file” option to copy the data to a file,

which can be used elsewhere.

reg-UTC

23:43:55.
23:43:55.
23:43:55.
23:43:55.
23:43:56.
23:43:55.

| start

L Lo

Export (text) to file...

Services\ACH
Services\CLH
Services\CN{
Services\Con
Services\Dif
Services\Fi)

Export stats on data...

Export (binary data) to file

Group

Boot Bus Extender
Filter

Base

System Bus Extender

FSFilter Bottom

23:43:55.
23:43:55.

Services\Fltmg

FSFilter Infrastruct

Services\Fs_Rec
23:43:55. Services\KSecDD

23:43:55.

File System
Base

Services\KSecPkg
23:43:55.

Cryptography
FSFilter Anti-Virus

Services\MpFilter

23:43:55.

Services\Mup

Network
D QaRre o

If one wishes to display the date/time in a different format, one can use the following menu options.

File View Options Reports 'IimeFormat

Registry K
s el Time Resolution »

[~ Dutc ot [

=1 E:\testcase\hives\systel
([ControlSet001

Help

dd/mm/yyyy
yyyy/mm/dd

Copyright © TZWorks LLC Apr 15,2024

Page 7

=1 E:\testcase\hives\syste
+ (3 ControlSet001
+ (] ControlSet002

File View Options Reports | Time Format

R Date Format Lo (7
egi s o
ISy, Time Resolution » seconds

« millisecs

microsecs

4.4 Searching for Text Patterns

One can search for partial names using the “Find String pattern” option. The string that is entered will

be interpreted by yaru as ‘case insensitive’ and will scan for both Unicode and ASCII strings that have

this partial string pattern. Note: for case sensitive searches use the “Find Binary Pattern” option.

Options Reports Time Format

Allocated space (find) »
UnAIIated space (find) »

Compare >
Dump Hex Ctl-D
Carve Ctl-C
Logon Ctl-L
Log off Ctl-G

Find Key Name Ctl-K
Find Value Name Ctl-v
Find Large entries (in bytes) Ctl-S
Find High entropy entries Ctl-E
Find All Strings

Find String Pattern Ktl-s
Find Binary Pattern Ctl-P

Find Date Range in Keys
Find Date in Range anywhere in data

The output results show (a) the offset of the string found, (b) whether the match was Unicode or ASCII,

(c) the string that caused a hit, as well as (d) the governing path/key that encapsulated the value

containing the data.

For example, if | wanted to find all the keys and values that have the letters “USB”, | would get

something like this.

Copyright © TZWorks LLC

Apr 15, 2024

Page 8

<offset> <string>
0x00098260
0x000ab638
0x000c2f28

USB Monitor

usbperf
USB#VID_04F9&PID_014A&MI_02
Brusbser
USB#VID_04F9&PID_0146&MI_02
USB#VID_04F9&PID_0157&MI_02

USB#VID_04F9&PID_0121&MI_02
USB#VID_04F9&PID_0122&MI_02
USB#VID_04F9&PID_010E&MI_02

USB#VID_07CF&PID_1002

USB#VID_04F9&PID_0120&MI_02
USB#VID_04F9&PID_013A&MI_02
USB#VID_04F9&PID_0135&MI_02

USB#VID_04F9&PID_013E&MI_02
USB#VID_04F9&PID_013F&MI_02

USB#VID_04F9&PID_011E&MI_02

USB#VID_04F9&PID_0110&MI_0210&MI

USB#VID_04F9&PID_012B&MI_022B&MI
USB#VID_04F9&PID_012F&MI_022F&MI
USB#VID_04F9&PID_0130&MI_0230&MI
USB#VID_04F9&PID_0173&MI_0273&MI

g T T T T T T O)

As can be seen from the output above, what is different about yaru’s search engine, as opposed to a hex

: <governing key [may be buried in one of the key/value strucg

: SYSTEM\Controlset001\cControl\Print\Monitors\USB Monitor\
wudfusbccidoriver :
TsusbFlt :

usbhub :

SYSTEM\Controlset001\control\safesoot \Network\wudfusbccidQ
SYSTEM\Controlset00l\services\TsusbrFlt\
SYSTEM\Controlset001\services\usbhub'

: SYSTEM\Controlset00l\services\eventlog\Application\usbperf\

: SYSTEM\Controlset001\control\CriticalDeviceDatabase\USB#VIQ

: SYSTEM\Controlset001l\services\Brusbser\

: SYSTEM\Controlset00l\control\CriticalDeviceDatabase\USB#VID_
: SYSTEM\Controlset001\Control\CriticalDeviceDatabase\USB#VID

USB#VID_04F9&PID_010F&MI_02 :
: SYSTEM\Controlset00l1\cControl\CriticalDeviceDatabase\USB#VID,
: SYSTEM\Controlset0O0l\Control\CriticalDeviceDatabase\USB#VI

: SYSTEM\Controlset001\Control\CriticalDeviceDatabase\USB#VID

: SYSTEM\ControlsetO0l\control\CriticalDeviceDatabase\USB#VID_|
USB#VID_04CB&PID_0100 :

SYSTEM\Controlset001\Control\CriticalDeviceDatabase\uUsB#VIQ

SYSTEM\Controlset001\control\CriticalpeviceDatabase\USB#VIQ

: SYSTEM\Controlset00l\Control\CriticalDeviceDatabase\USB#VID.
: SYSTEM\Controlset001\control\CriticalDeviceDatabase\usB#VvID_\
: SYSTEM\Controlset00l\control\criticalpeviceDatabase\USB#VID.
USB#VID_04F9&PID_0136&MI_02 :

SYSTEM\Controlset001\control\CriticalDeviceDatabase\USB#VID.

: SYSTEM\Controlset00l\cControl\CriticalDeviceDatabase\USB#VID.
: SYSTEM\Controlset001\cControl\CriticalDeviceDatabase\USB#VID
USB#VID_04F9&PID_0111&MI_02 :

SYSTEM\Controlset001l\control\CriticalDeviceDatabase\USB#VI

: SYSTEM\Controlset00l1\cControl\CriticalDeviceDatabase\USB#VID
USB#VID_04F9&PID_0125&MI_02 :
: SYSTEM\Controlset001\Control\CriticalDeviceDatabase\USB#VID
USB#VID_04F9&PID_011D&MI_021D&MI :

SYSTEM\Controlset001\cControl\CriticalDeviceDatabase\USB#VID,

SYSTEM\Controlset001\control\cCriticalDeviceDatabase\USB#VID

: SYSTEM\Controlset001\Control\CriticalDeviceDatabase\usB#VvI8
: SYSTEM\Controlset001\Control\CriticalDeviceDatabase\USB#VIQ
: SYSTEM\Controlset001\cControl\CriticalDeviceDatabase\USB#VID
: SYSTEM\Controlset00l\Control\CriticalDeviceDatabase\USB#VID,
USB#VID_054C&PID_0010&REV_0328 :

SYSTEM\contro]‘SetOOl\contr:o]\cr1't'ica"lDeviceDatabase\USB#v A
e onrrolSerad or 4

editor, is when the pattern is found the output displays the governing key that the pattern is in.

4.5 Searching for Binary Patterns

The binary pattern search option is shown below:

Compare >
Dump Hex Ctl-D
Carve Ctl-C
Logon Ctl-L
Log off Ctl-G

'thions Reports Time Format

Allocated space (find) »
UnAIIated space (find) »

Find Key Name Ctl-K
Find Value Name Ctl-v
Find Large entries (in bytes) Ctl-S
Find High entropy entries Ctl-E

Find All Strings
Find String Pattern KS
Find Binary Pattern Ctl-P

Find Date Range in Keys

Find Date in Range anywhere in data

To use it properly, input the hex values delimited by spaces.

If one understands the internals of the registry, various structures can be searched for within the
registry. Below is an example of searching for the ‘db’ type data structure on a system hive along with

the results that are returned:

Search [quoted string or hex pattern delimited by spaces]

String/Pattern to find: |f0 ff ff ff 64 62

Optional offset: IO

Qancell Find I

Copyright © TZWorks LLC

Apr 15, 2024

Page 9

Since the ‘db’ structure is 0x10 bytes long with a ‘db’ signature, we crafted the pattern of bytes to be
negative 0x10 bytes, which is OxfffffffO or in little endian format, fO ff ff ff and the signature for ‘d’ is
0x64 and ‘b’ is 0x62. This allows the search to only return those allocated cells chunks that are 0x10

bytes in size and contain the ‘db’ signature following the negative size, which will return all the ‘db’ type
chunks in the hive. The optional offset field is usually 0, but if one wanted to see the preceding bytes,
one can put a negative offset if desired.

<offset> :

000c2eb0 :
00539568 :
@05f45F0 :
@e6fc31e :
©87522¢8 :
20945fe8 :
8095¢5¢8 :
@0bc4cls :

<pattern>

22222

Binary pattern {f@ ff ff ff 64 62} in allocated space [8]

: <governing key [may be buried in one of the key values]>
ed 20 e@ e5 e@ 00 @1 2@ 20 0@ : SYSTEM\ControlSet@e@l\Control\Session Manager\AppCompatCache
ed 20 2@ 72 c3 @0 40 88 Sa @@ : SYSTEM\ControlSet@@2\Control\Session Manager\AppCompatCache
02 @@ a@ 37 S5f @@ 55 52 4c @@ : SYSTEM\ControlSet@@2\Control\ProductOptions\

@4 @0 60 b3 6f @@ f© el 6f @@ : SYSTEM\ControlSet@@2\services\ialm\Device®\

17 @2 be da e7 20 20 20 0@ ee : SYSTEM\ControlSet@@2\services\rdyboost\Parameters\
82 20 10 51 94 20 00 00 00 @8 : SYSTEM\ControlSetee@l\Control\ProductOptions\

15 @0 20 f0 e8 00 20 20 00 ee : SYSTEM\ControlSet@el\services\rdyboost\Parameters\
©4 00 e8 bl 26 @0 70 c4 bc @0 : SYSTEM\ControlSet@@l\services\ialm\Device@\

From the output above, one can see the governing keys that use this very large datatype

(AppCompatCache, ReadyBoost parameters, etc.).

If desiring to see the raw data at one of the locations, one can select the “Dump Hex” choice from the
“Options” menu, and the following dialog will pop up. After entering the offset to view, size to dump
and whether you want the hex dump to be appended to the current output, one can see the desired

data at the specified offset. For this example we just selected the first returned offset from the ‘db’

structure.

Options Reports Time For
Allocated space (find) »
UnAllocated space (find) »

Compare »
Dump Hex Ctl-D
Ct el ~
Ld Address to dump out [hex is preceded by 0x]
Ld

Starting address: IOxOOOcZebO

Size to dump (in bytes): IOx:lO

¥ ‘Append dump to current output

Cancel | Dump datal

The result will show 0x40 bytes at offset Oxc2eb0 appended to data in the current view. In this case we

were only interested in the first 0x10 bytes and added a few more to see the data that followed the

Copyright © TZWorks LLC Apr 15, 2024 Page 10

structure. This approach to reviewing the internal data is quick and provides immediate context of what
subkeys the data is associated with.

Binary pattern {f@ ff ff ff 64 62} in allocated space [8]

<offset> : <pattern> : <governing key [may be buried in one of the key values]>

000 5y : f@ ff ff ff 64 62 ©d ©0 0 e5 €0 00 ©1 00 00 0@ : SYSTEM\ControlSet@e@l\Control\Session Manager\AppCompatCache\
©0529568 : f@ ff ff ff 64 62 ©d 00 @0 72 c3 @0 40 88 Sa @@ : SYSTEM\ControlSet@@2\Control\Session Manager\AppCompatCache\
@05F45F0 : fO ff ff ff 64 62 ©2 00 a@ 37 5f @0 55 52 4c 00 : SYSTEM\ControlSet@@2\Control\ProductOptions\
@06fc31@ : f@ ff ff ff 64 62 @4 00 60 b3 6Ff 0@ f@ el 6Ff @0 : SYSTEM\ControlSet@@2\services\ialm\Device®\
©07522c8 : f@ ff ff ff 64 62 17 00 b0 da e7 ©0 00 00 0@ @0 : SYSTEM\ControlSet@@2\services\rdyboost\Parameters\
00945fe8 : fO ff ff ff 64 62 02 00 10 51 94 ©0 00 00 00 00 : SYSTEM\ControlSet@@1\Control\ProductOptions\
0@95c5c8 : f@ ff ff ff 64 62 15 00 20 O e8 00 00 20 00 00 : SYSTEM\ControlSet@@l\services\rdyboost\Parameters\
@0bc4cl8 : fo ff ff ff 64 62 ©4 00 e8 bl 26 @@ 70 c4 bc @@ : SYSTEM\ControlSet@@l\services\ialm\Device®@\
|eeac 2ebd: O ff ff ff 64 62 ©d 00 e@ eS5 e@ 00 01 @0 00 @@db..........
@00c 2ecB: e8 ff ff ff 6c 68 02 00 40 31 e6 00 fa b6 86 b41h..@l......
©00c 2edd: 78 ©3 77 00 a8 df 22 ¢5 a8 ff ff ff 6e 6b 20 0@ x.w..."..... nk .

©00c 2ee@: 34 64 d6 40 ©c 9e cf 01 00 00 00 02 dO0 @1 €0 @0 4d.@............

4.6 Searching for Entries exceeding some threshold size
In one is concerned about searching on large registry values, one can use the “Find Large entries (in
bytes)” option. This is shown below.

’ Options Reports Time Format

Allocated space (find) » Find Key Name Ctl-K
UnAIIated space (find) » Find Value Name(Ctl-v

Compare > Find Large entries (in bytes) Ctl-S
Dump Hex Ctl-D Find High entropy entries Ctl-E
Carve Ctl-C Find All Strings

Log on Ctl-L Find String Pattern Ctl-S
Log off Ctl-G Find Binary Pattern Ctl-P

Find Date Range in Keys

Find Date in Range anywhere in data

When this option is selected one will be able to specify the number of bytes that is the threshold. The
operation will search all the values in the registry returning those at or above the number specified.

4.7 Searching for High Entropy data

High entropy is another way to specify randomness in the data. Randomness is one of the artifacts in a
dataset whenever it is encrypted or compressed, so computing the entropy of dataset is one of the ways
to find encrypted values. In yaru, the option is “Find High entropy entries” and is shown below.

Copyright © TZWorks LLC Apr 15,2024 Page 11

Carve

Compare

Dump Hex

Logon
Log off

Options Reports Time Format

Allocated space (find) »
UnAll ated space (find) »

»
Ctl-D
Ctl-C
Ctl-L
Ctl-G

Find Key Name

Find Value Name

Find Large entries (in byte:
Find High entropy entries

Find All Strings
Find String Pattern

Find Binary Pattern

Find Date Range in Keys

Find Date in Range anywhere in data

tl-E

Ctl-K
Ctl-v

Ctl-S
Ctl-P

When this option is selected one will be able to specify the percent entropy desired to be the threshold

as well as how many bytes to examine. The operation will search all the values in the registry returning

those at or above the percent entropy specified. Other statistics will also be displayed such as the mean

and standard deviation of the dataset. The data will be ordered with the highest entropy values first.

reg date [UTC]
86/03/2016 17
e6/e3/2016 17
e6/e3/2016 17
86/@83/2016 17
e6/@83/2016 17
86/03/2016 17
86/03/2016 @0
@6/03/2016 ee
e6/e3/2016 17
86/83/2016 17
e6/83/2016 17
86/03/2016 ©0:39
86/03/2016 ©08:
86/83/2016 17
e6/e3/2e16 17
87/14/2009 @4:

42
:42:
142:
142:
142:
42
48
:48:
142:
142:
142:

39:
142
142:
49:

15.
15.
15.
15.
15.
15.
.758
.758
15.
15.
15.
189,
e9.
15.
15.
21.

408
4es
408
488
48
408

408
488
488
744
744
488
408
13e

offset

exeeld42ads
exeeldadse
2xeel428a8
8xe8142658
exeel421a8
exeels233e
@xe8eac3le
@xeeba36fe
exeela24de
8xe8141e68
exee7cseze
exe@baf520
exeeblslse
exealazeze
exee7c7ede
8xee574a88

size

0x000001fC
exeeeeelfc
@xeoeeelfc
8x000001fC
2xeeeeelss
9x00000154
@xéeooolee
@xeeeeelee
2xeeeeelss
2x0eeeels4
@xeeeeelfc
0x00000166
0x00000166
2x@eesals4
@xeoeeelfc
@x00000160

Randomness search results, from: 8% entropy and higher; examining all bytes in data.
Algorithm used is the Shannon-Wiener Diversity Index adjusted for Evenness converted to a percent.

%entropy | mean std dev
93 119.65 79.922
92 119.26 77.437
92 118.18 77.483
92 127.49 80.692
90 118.@6 75.927
89 115.92 79.159
88 120.20 80.260
88 120.34 808.216
88 113.98 77.987
88 115.55 78.240
85 109.34 85.311
34 107.e0 83.663
34 106.56 83.384
83 1e4.81 81.215
8e 99.27 85.636
32 le2.85 $3.004 |

value
PowerKey-SF-RC6-29
PowerKey-SF-QP-eC
PowerKey-SF-RC6-0C
PowerKey-5F-55-0@
PowerkKey-BB-RC6-29
PowerKey-BB-QP-@C
Mapping

Mapping
PowerKey-BB-QP-29
PowerKey-BB-55-@@
PowerKey-SF-QP-8C
EncryptedSettings
EncryptedSettings
PowerKey-BB-RC6-8C
PowerKey-SF-RC6-29
AuditPolicySD

subkey

SYSTEM\ControlSet@@l\servig
SYSTEM\ControlSet@Bl\servid
SYSTEM\ControlSet@el\servid
SYSTEM\ControlSet@@l\servid
SYSTEM\ControlSet@el\servid
SYSTEM\ControlSet@@l\servig
SYSTEM\ControlSet@@l\servig
SYSTEM\ControlSet@B2\servid
SYSTEM\ControlSet@el\servid
SYSTEM\ControlSet@@l\servid
SYSTEM\ControlSet@e2\servid
SYSTEM\ControlSet@82\servig
SYSTEM\ControlSet@@l\servig
SYSTEM\ControlSet@Bl\servid
SYSTEM\ControlSet@@2\servid
SYSTEM\ControlSet862\Contrd

4.8 Searching for Time Ranges

yaru has two options for searching for timestamp ranges. The first is to scan through all the key/subkey

timestamps. The second is to scan through all the binary data looking for timestamp signatures and

displaying the governing key for the binary data. The governing key would include child values that have

timestamps embedded into their data. The date range that is inputted by the user is in terms of UTC
(prior versions to v1.39, used local time).

Copyright © TZWorks LLC

Apr 15, 2024

Page 12

vgptions Reports Time Format

Allocated space (find) » . Find Key Name Ctl-K
UnAIIated space (find) » Find Value Name Ctl-v

Compare > Find Large entries (in bytes) Ctl-S
Dump Hex Ctl-D Find High entropy entries Ctl-E
Carve Ctl-C Find All Strings

Logon Ctl-L Find String Pattern Ctl-S
Log off Ctl-G Find Binary Pattern Ctl-P

Find Date Range in Keys
Find Date in Range anywhere in data

If using the first option, then the output will include only timestamp and path of the key. If using the
second option, “Find Date in Range anywhere in the data”, then the output will include the raw offset of
the data along with timestamp and path of the governing key. The first option will only show one
timestamp per key, which is what you would expect. The second option may show many timestamps
per key. Below is some sample output for a sample query.

FILETIME search results, range: 01/07/15 00:00:00.000 to 01/08/15 00:00:00.000

offset time [raw value] equivalent time governing key [may be buried in one of the key value
0x0001c418 0x01d02a9284b5dd5a 01/07/2015 15:56:37. SYSTEM\ControlsSet00l1\services\BITS\

0x0007a0a8 0x01d02a2eb14979f2 01/07 /2015 04:02:02. SYSTEM\Controlset001\services\bDnscache\Parameters'\Dn:
0x006db6c0 | 0x01d02a8a256b98ad4 | 01/07/2015 14:56:41. SYSTEM\Controlset00l\services\VSs\Diag\Systemrestore
0x006db754 | 0x01d02a8a22f83a4f | 01/07/2015 14:56:37. SYSTEM\Controlset001l\services\vss\Diag\SystemRestore
0x006db7d4 | 0x01d02a8a22f84dd8 | 01/07/2015 14:56:37. SYSTEM\Controlset001\services\Vss\Diag\sPpP\
0x006db85c | 0x01d02a8a233a4e85 | 01/07/2015 14:56:37. SYSTEM\Controlset001\services\vss\Diag\SsPP\
0x01d02a8a249ad4 5b 01/07/2015 14:56: SYSTEM\Controlset001\services\vss\Diag\SPP\
0x01d02a8a249ad4 5b 01/07 /2015 14:56: SYSTEM\Controlset001\services\VvSs\Diag\SPP\
0x01d02a8a24acc2c8 | 01/07/2015 14: SYSTEM\Contro]SetOOl\serv1ces\vss\D1ag\SPP\
0x01d02a9balcdfb7e | 01/07/2015 g SYSTEM\Controlset001l\services\ialm\Device0\
0x01d02aa6e9c9864b | 01/07/2015 5 SYSTEM\Controlset001\services\ialm\Device0\
0x01d02aa68bd565e9 | 01/07/2015 : SYSTEM\Controlset00l\services\ialm\Device0\
0x01d02aa03a629cc3 | 01/07/2015 2 SYSTEM\ControlSet001\services\ialm\DeviceO\
0x01d02aa037346053 | 01/07/2015 17: SYSTEM\Controlset001\services\ialm\Device0\
0x01d02aa017fcd4ldc | 01/07/2015 17: SYSTEM\Controlset001\services\ialm\Device0\
0x01d02aa014c9e69a | 01/07/2015 $ SYSTEM\Controlset001\services\ialm\Device0\
0x01d02aa00b345b80 | 01/07/2015 z SYSTEM\Controlset00l\services\ialm\DeviceO\
0x01d02aa004034da6 | 01/07/2015 s SYSTEM\Controlset001\services\ialm\Device0\
0x01d02aa000cc71e7 | 01/07/2015 : SYSTEM\Controlset001\services\ialm\Device0\
0x01d02a9f7084d4cc | 01/07/2015 : SYSTEM\Controlset001\services\ialm\DeviceO\
0x01d02a9b2314f53f | 01/07/2015 5 SYSTEM\Controlset001\services\ialm\Device0\
0x01d02a9a26296eb9 | 01/07/2015 3 SYSTEM\Controlset001\services\ialm\Device0\
0x01d02a9abeca76af 01/07 /2015 3 SYSTEM\Controlset001\services\ialm\Device0\
0x01d02a99868ada2e | 01/07/2015 g SYSTEM\Controlset001\services\ialm\Device0\
0x01d02a995d055fdb | 01/07/2015 2 SYSTEM\Controlset001\services\ialm\Device0\
0x011e5434 0x01d02a8cc9a22fbl 01/07 /2015 g SYSTEM\Controlset001l\services\ialm\Device0\
0x011e5764 | 0x01d02a89ed4aal8f6 | 01/07/2015 5 SYSTEM\Controlset001\services\ialm\Device0\
0x011e5854 | 0x01d02a73c47ee300 | 01/07/2015 : SYSTEM\Controlset00l\services\ialm\Device0\
0x011e5884 0x01d02a5a000cb380 01/07 /2015 s SYSTEM\Controlset00l\services\ialm\Device0\
0x01d02a88939b8cd9 | 01/07/2015 8 SYSTEM\Controlset001\services\nwOlssndis\Parameters\
0x01d02a88939b8cd9 | 01/07/2015 : SYSTEM\contr01setOOl\serv1ces\nwOlssnd1s\Parameters\w~
0x01d02ab481233780 | 01/07/2015 : SYSTEM\Controlset001\Control\Session
0x01d02ab481233780 | 01/07/2015 & SYSTEM\Controlset001\Control\Session

0x012c2484 | 0x01d02ab42e2f6193 | 01/07/2015 : SYSTEM\Controlset001l\control\Session

0x012c24b4 | 0x01d02ab347c46609 | 01/07/2015 z SYSTEM\Controlset001\cControl\Session

0x012¢2514 | 0x01d02ab31a07aeald | 01/07/2015 . SYSTEM\Controlset001\Control\Session

0x012c2544 | 0x01d02ab292bc16c3 | 01/07/2015 : SYSTEM\Controlset001\control\session

0x012c25d4 | 0x01d02a9balcdfb7e | 01/07/2015 3 SYSTEM\Controlset001\cControl\Session

0x012c2634 0x01d02aa6e9c9864b 01/07 /2015 = SYSTEM\Controlset001\cControl\Session

0x012¢c2664 0x01d02aa68bd565e9 01/07/2015 s SYSTEM\contro1setOOl\contro]\sess1on

0x012c2694

5 Unlinked Allocated Chunks

For certain malware, there is a technique to hide data in a hive by taking an unallocated chunk of the
space and changing the metadata to make it an allocated chunk. This in effect allows the chunk of space
from being reused by the registry, however it is difficult to find these chunks and identify them as

Copyright © TZWorks LLC Apr 15, 2024 Page 13

‘unlinked’ to the hive tree. The older versions of yaru had an option to scan for these unlinked
allocated chunks via the menu entry and the resulting output would show the offset and size of the
chunk.

Starting with version 1.39, this menu option is deprecated and any unlinked ‘allocated’ chunks found
during the initial load get reported as part of the hive tree. Since having unlinked ‘allocated’ chunks is
not a normal occurrence, we needed to create a contrived example to show how yaru reports these
artifacts. For this example, we took one of our hives and created various blocks of different sizes and
then we just simply unlinked them by deleting all references to them. yaru easily finds them and
reports them as follows:.

File View Options Reports Time Format

Registry Keys Key/Value data
[E:\testcase\hives\test\NTUSER Lest.dat offset: 20032020
=[] unallocated space size: €408
#1(chunks (08 - 010 bytes 0003 a02e: f8 fb ff £f 54 68 69 73 20 69 73 20 74 68 65 20This is the
—Cl chunks 0:18 - 0x50 bytes @883 a@38: 64 61 74 61 20 77 65 2@ 75 73 65 64 20 74 6f 20 data we used to

= 2003 aB4@: 73 74 6Ff 72 65 20 69 6e 20 74 68 65 20 75 6e 6c store in the unl
L1 00012628 : 0028 28 76 61 6c 75 65 20 69 6e 20 6Ff inked value in o

[0001448 : 0040 = | Normal unallocated space |2e 74 68 65 2@ 68 69 76 65 73 2e ne of the hives.
@ chunks 0658 or more bytes Lwﬂmﬂ" 6f 72 74 75 Be 61 74 65 6c 79 2c Unfortunately,
2003 ab806: 20 74 68 69 73 20 74 65 63 68 6e 69 71 75 65 20 this technique

53 0003943 : 0220 2003 aB9@: 69 73 20 72 61 74 68 65 72 2@ 73 74 72 61 69 67 is rather straig
(23 00039¢f8: 0108 eee3 ala@: 68 74 2d 66 6f 72 77 61 72 64 20 74 6Ff 20 64 6f ht-forward to do
(] 00032428 : 0be8 0003 a0b0: 2e 20 20 54 63 65 20 72 65 73 75 6c 74 20 6F 66 . The result of
- S - 0003 ac@: 20 74 68 69 73 20 69 73 20 6f 6e 65 2@ 68 61 73 this is one has
71 allocated ‘unlinked’ space = 2003 a0dl: 20 61 20 68 60 64 64 65 6e 20 73 74 6F 72 61 67 a hidden storag
+ (] chunks 0:08 - 0x10 bytes 2083 aBeB: 65 28 74 68 61 74 28 74 68 65 28 6Ff 78 65 72 61 e that the opera
= R 74 65 6d 2@ 77 69 6c 6c ting system will
DS‘;}"(‘)’;’Z?’:‘: Scﬁ bytes Abnormal allocated space thathave | 7e 72 6# 74 65 63 74 26 try to protect
- ' no parent link or reference to them | 69 66 66 69 63 75 6¢c 74
=110 chunks 0x58 or more bytes 2e @0 00 00 00 @0 °0 ee
e - 0408 2003 al30: 00 00 @0 C0 OO 0O DO 00 ©D 00 00 00 00 °0 0O 09
B DU 20120 - 2003 al4l: ©0 00 0 00 0O 0O B0 00 ©P 00 0O 0O 0O 0 00 08
4 deleted keys 2003 alSe: ©¢ 00 0@ G0 G2 G0 9G @G ©P 0@ 00 80 0e e 00 08

6 Deleted Registry Keys

yaru only pulls out deleted key names and any data associated with those keys as opposed to blindly
pulling out all signatured components (eg. deleted values, security keys, etc) without having an
association to a parent key name.

After selecting which file/hive to analyze, yaru traverses the hive for both allocated and unallocated
space. Of the allocated space identified, yaru reconstructs the registry hive within a tree view structure
similar to how Microsoft's regedit displays a registry hive. For the unallocated space identified, yaru
categorizes each of the chunks into one of three bins: (i) chunks between 0x08 and 0x10 bytes, (ii)
chunks between 0x18 and 0x50 bytes and (iii) chunks greater than 0x50 bytes. One can view each
unallocated chunk in the form of a hex dump by selecting the desired chunk. The latter bin is the most
important for carving out deleted keys, since registry key chunks require at least 0x50 bytes of space to
store the common key header information (more if there is a name for the key).

Copyright © TZWorks LLC Apr 15, 2024 Page 14

File View Options Reports TimeForma

Registry Keys

=1 iC:\Windows\system32\config\system:
+(ControlSet001
+ (] ControlSet002
+ [MountedDevices
+ (] RNG
+(Select
+ (] Setup
=) WPA
=1 hive unallocated space
+ ([chunks 0x08 - 0x10 bytes
+(chunks 0x18 - 0x50 bytes
+ (] chunks 0x58 or more bytes
=1 deleted keys
+ (] SYSTEM
+(unk_path

yaru traverses all the unallocated chunks of greater than 0x50 bytes and looks for the ‘nk’ magic
signature which denotes the chunk may have contained a registry key prior to being unallocated. Of
those keys determined to be possible deleted keys, a number of boundary condition tests are performed
to minimize the number of false positives. Tests such as date range checking, size checking, and
whether valid offsets specified in the header are conducted. If the boundary checks are passed, yaru
then proceeds to see if it can enumerate any values for the deleted key as well as try to locate the
parent key. If a parent key is found, yaru recursively traverses up the parent hierarchy to find the entire
path up to the root.

Once completed, yaru outputs the resulting deleted keys in the form of a tree view. If it was possible for
yaru to reconstruct the parent hierarchy from a deleted key, then the hierarchy is shown for that key as
part of the tree. To visually delineate between deleted and undeleted keys, a red x is overlaid over the
folder or file icon for deleted keys/values. For those keys where the parent could not be determined,
they are collected in a catchall tree node titled “unk_path”.

Copyright © TZWorks LLC Apr 15, 2024 Page 15

File View Options Reports Time Format Help
Registry Keys Key/Value data

(] C:\Windows\system32\config\system | SYSTEM\ControlSet@@l\services\eventlogiApplication\Microsoft Security Client\
#(0 hive unallocated space

=l deleted keys
-

Timestamp: @x@lcfc26celbcS3cc (©8/28/2014 03:05:11.126 UTC)

=0 SYSTEM
Lm0 | eesesesee- raw header ---------
=] ControlSeto01 @lle 518: 50 @@ 8@ 8B Ge 6b 28 88 cc 53 6C el 6¢ ¢2 ¢f 81nk ..SL.I1...
=0 services 1b 80 80 @0 00 0B 60 00 88 B8 80P...........

=120 eventlog . | Path reconstruction done | s ee oo pe e 77 €6 £5 £Foii....
FF FF £f 00 00 00 00 00 00 00 B0

=1L Application @lle Sf50: OO 6@ PO G0 O 00 00 0@ 49 00 0 00 19 66 06 00 Tovunnn.
X [IEETIETIEE | e11e sfee: 4d 69 63 72 6F 73 6F 66 74 28 53 65 63 75 72 69 Microsoft Securi
422 iphipsve @lle 5F78: 74 79 20 43 6¢c 69 65 6e 74 ty Client
+(] TCPIPE
([Control
#(Enum
+ (0 ControlSet002 ==
=11 unk_path -

= (X Device Parameters
X Instancelndex fome
(B LogConf
+[XI Properties
X Linkage
+ X Ndi

Path reconstruction was not possible here

=

On the left pane is an expand view of one section of the deleted keys. Notice there are combinations of
folder icons that do not have a red x with those overlaid with a red x. This representation was meant to
help show the context of where a deleted key might have been deleted from. Also keep in mind, yaru
generates these results from a deterministic, best guess standpoint. Thus, for example, if the ‘nk’
signature was deleted from the chunk, the key will not be found using this algorithm. On the right pane,
the details about a selected deleted key along with the relevant hex dump of the key header are shown.

7 Exporting Keys and Data

Occasionally one will need to pull information from the key or value for offline analysis. There are
various modes one can pull data from yaru. The two main ones are: (a) extracting the binary data and
(b) extracting the subkey hierarchy in a useable format.

If needing to extract the raw data, one just navigates to the subkey/value that is of interest and then
right clicks on the data window, whereupon a pop-up menu will allow on to export the data as text or
binary to a desired file. Below is an example of exporting the BootPlan from the ReadyBoost services
key. The BootPlan data can get very large and thus to analyze this data, it would be best to export the
data and view it in your favorite hex editor.

Copyright © TZWorks LLC Apr 15, 2024 Page 16

File View Options Reports Time Format

Registry Keys Key/Value data
+ 1 KUPULU

5 :J SYSTEM\ControlSet@@2\services\rdyboost\Parameters\BootPlan
+] RdpVideoMiniport

+ (] RDPWD BootPlan REG_BINARY
~ @000 ©0G0: 02 00 Oc 80 19 2a 00 8@ 2c 2e 0@ 00 39 @0 00 00
=83 rdyboost @000 0010: db 20 Sa cc 7a dl cf @1 @0 00 00 @0 @0 @0 00 0
+ ([AttachState @000 0020: 0O 40 00 00 01 00 00 @0 0O 50 00 00 00 00 00 00
520 Parameters @000 0030: 00 10 00 00 01 @0 00 @0 00 70 00 00 00 00 00 00

N 0000 2040: ©O 30 00 00 @1 ©0 ©0 02 ©© co 00 o0 ©0 °0 00 ee
g ReadyBootVolumeUniq pppp eese: ©e 20 22 00 01 00 20 02 e0 88 81 00 00
ReadyBootPlanAge 0000 2060: ©0 S50 °0 ee Ex s
; ort (text) to file...
B LastBootPlanUserTime 0000 0070: 00 3000 00 P

g © %1% 2

2000 ©030: 08 at ee ee 20 ee

B} 2000 ©0090: 0@ Se ee ee 2e ee

+ S Performance 0000 ©20a0: ©0 00 °1 eo 20 00
D DisplayName 2000 20b0: ©0 00 01 ed'vw 20 oo
20P0 PACH: a1 on o 2

If one needs to recursively extract the subkey’s and values starting with a parent and including all the
children, the option to do this is available by right clicking on the parent subkey in the tree view and
selecting the various Export Keys options. In this example, we are pulling all the subkeys associated with
the “deleted keys” and exporting them to a file. The format will use the standard Windows Registry
Editor Version 5.00 format. The file just needs to be renamed with a .reg extension, if one wishes to
import the same data back into a registry. This, by the way, is not recommended unless you make a
backup of your original registry hive. Anytime you add entries in this way can cause your registry to
become unstable and hence the reason we put a .txt extension on the exported file.

File View Options Reports TimeFormat

Registry Keys

= c:AWindows\system32\config\system SYSTEM\
#(Z] ControlSet001
#(Z] ControlSet002
(] MountedDevices
+(RNG
+(0 Select
#(3 Setup
=0 wpA
a (unnamed)
() hive unallocated space
= (0 deleted keys
& ﬂ Put comment in Leg file...
#(3 unk_pat Export Key to File [this level only]

Timestamp

Export Keys to File [recursive]
Export Key to Screen [this level only]

Export Keys to Screen [recursive]
Export (binary data) to file

When viewing a portion of the output, one will see both keys that were not deleted as well as keys and
values that were deleted. This is purposely done so that the deleted keys/values have some context
when viewing the hierarchy and their parent timestamps. Also it is useful when recreating the portion
of the hive from scratch when renaming the file to .reg. Below is a sample output.

Copyright © TZWorks LLC Apr 15, 2024 Page 17

[HKEY_LOCAL_MACHINE\SYSTEM\DriverDatabase]
; LastWriteTime: 10/23/2013 18:82:36.775 UTC
; key not deleted |[[shown to help retain context]]

[HKEY_LO?AL_I':%ACHINE\SYSTEM\DriverDatabase\DriverIn< Keys that were not
; LastWriteTime: 10/23/2013 10:02:36.773 UTC

; key not deleted [shown to help retain context] CHEEE T e SO 1

help retain context
[HKEY_LOCAL_MACHINE\SYSTEM\DriverDatabase\DriverPagdkages]

; LastWriteTime: 10/23/2013 10:02:36.772 UTC
; key not deleted [shown to help retain context] _J

[HKEY_LOCAL_MACHINE\SYSTEM\DriverDatabase\DriverPackages\heci.inf_amd64_88551q23
; LastWriteTime: 10/23/2013 1€:02:35.278 UTC
"Version"=hex:00,00,09,00,00,00,00,00,7d,e9,36,4d,25,e3,ce,11,bf,c1,08,00,2b,

e1,03,18,00,c0,93,9f,e5,57,cd,01,ef,04,00,00,01,00,08,00,00,00,00,00,00,00,

00,00
"Provider"="Intel"
"InfName"="heci.inf"
"OemPath"="C:\\Windows\\System32\\DriverStore\\FileRepository\\heci.inf_amd64 |53
'SignerName"="Microsoft Windows Hardware Compatibility Publisher"
*SignerScore"=dword:8deeeees

Values that were deleted

8 Brute Force Extraction of Keys - Carving

Included with version 1.45 of yaru is the added ability to carve out keys and values from hives that are
only partial. This option is considered prototype. The key extraction is comprehensive in the sense that
it will carve out keys that are valid, deleted or in slack space. The value extraction is more limited in the
sense it will truncated long runs of binary data.

The purpose of adding in this functionality was specifically to pull artifacts from the registry
transactional logs; however, it can be used to carve any hive. As background, the registry transactional
logs have the same name as the hive counterparts, but have the extension logX where the X is a number
of the log, since there can be more than one. The transactional logs have a valid hive header, but only
have a small subset of the hive data; essentially the required data that was used to handle a registry
transaction.

In the past, if you tried to open a transactional log with yaru it would have trouble parsing it. With this
version it will automatically detect whether it is a transactional log and revert to carving the keys and
based on the available data in the log, try to reconstruct each of the key’s paths.

If you open a normal hive, then the behavior is the same as it was in the past. The registry will be
parsed; any slack or unallocated space identified as well as any deleted keys. If one wishes to also carve
the keys from this hive one can explicitly invoke it via the menu, under Options -> Carve.

Copyright © TZWorks LLC Apr 15,2024 Page 18

Options Reports Time For
Allocated space (find) »
UnAllocated space (find) »

Compare >
Dump Hex

Carve %
Logon Ctl-L
Log off Ctl-G

After a carving operation, the tree-view pane on the left will create a root entry called “Carved (by
week)” and with child entries that form a sort of histogram. Each of the child entries will group keys by
date in increments of 1 week per entry. Gaps in time between entries imply there were no keys
modified during that week in time. Clicking on any of the entries will list the keys for that time period.

File View Options Reports Time Format Help
Registry Keys Key/Value data
=0 E:testcase\hives\system\L4| Start Date: ©7/08/2009 00:00:00.000 : 1c9ff5f89504000 f'
(@3 ControlSet00l Stop Date: ©1/14/2011 23:59:59.999 : 1cbb44726Fd3FFF
= Sorted by most recently modified
+ (1 ControlSet002
+ (] MountedDevices reg date | reg-uTC | offset | type | key name
21 RNG ©7/14/2009 | ©7:48:40.691 | ©x0e0660b0 | | 8cSe7fda-e8bf-4a96
©7/14/2009 | ©7:48:40.691 | @xe0e66150 | | a18413@8-3541-4fab
+([Select ©7/14/2009 | ©7:48:48.691 | ©x@@5c6e60 | | 8cSe7fda-e8bF-4a96
+(Setup ©7/14/2009 | ©7:48:48.691 | ©x@@5c6F50 | | a18413@8-3541-4ab
5 & WPA ©7/14/2009 | ©7:48:40.676 | ©x@00588d8 | | 381b4222-F694-41F0
- ©7/14/2009 | ©7:48:40.676 | ©x@@5c6d98 | | 381b4222-F694-41F0
+(unallocated space ©7/14/2009 | ©7:48:31.036 | ©x@02d6470 | | Dynamic vC
9 deleted keys ©7/14/2009 | ©7:48:31.036 | ©xee609eds | | Dynamic vC
o ©7/14/2009 | ©7:48:30.911 | exee2de2se | | Software Installat
=/ Carved (by week) . ©7/14/2009 | ©7:48:30.911 | @xeec324e0 | | Software Installat
07/14/2009 | ©7:48:30.802 | ©x002d4420 | | 8dc86f1d-9969-4379
2011/01/15 - 19946/0 ©7/14/2009 | ©7:48:30.802 | @xeese979@ | | 8dc86f1d-9969-4379
©7/14/2009 | ©7:48:28.927 | 9x002d1638 | | Handwriting Recogn
2011/01/22 - 00096/0 : - x00c321e0@ | | Handwriting Recogn
2011/02/01 - 00188/0 Each entry is 1 week period [exeeecicss | | query
B 2011/02/15-00096/0 | | (Gaps = no keys modified) ~[x¢2¢5198 | | HEREISES
B 2011/07/22 020300 | ez : s
: ge
B 2011/10/22 - 00180/0 Format is | Clip Redirector
B 2011/11/01 - 00054/0 YYYY/MM/DD - Valid keys / Deleted keys : g??ﬁ;:;;i;ﬁ:;.—
2011/11/08 - 00004/0 ©07/14/2009 | ©7:48:28.739 | ©x00609020 | | DND Redirector
B 2011/11/15 - 00008/0 ©7/14/2009 | ©7:48:28.739 | exee6e9sbe | | utilities -
NI A 000 | Nn7.40.n0 720 | nunncnnnan | | shmnm~~
B 2011/11/22-00008/0 v « | 2

The entries also show after each of the annotated dates, the number of valid keys and the number of
deleted keys found during that period. This is useful for a quick triage to see what period of time keys
were deleted. Once a time period is selected the keys modified during that time period are displayed on
the right window. Not shown in the screenshot above, but if one scrolls to the right, if the full path was
able to be constructed, it is displayed as well.

If we pick an entry with many deleted entries and truncate some of the output, to show how the one
can use this technique to locate some critical USB entries that were deleted, it would look something
like the screenshot below. The entry shows that during the week of 22 July 2013, 29358 keys were
modified and 560 keys were deleted.

Copyright © TZWorks LLC Apr 15,2024 Page 19

B 2013/06/08 -
2013/06/22 -
2013/07/01 - 00044/2
2013/07/08 - 0004221
2013/07/15 - 00042/12
2013/08/01 - 00484/49
2013/08,/08 - 000040
2013/08/15 - 00002/0

00014/8
00022/5

@7/3e/2e13
a7v/38/2813
@7/3e/2813
@7/38/2813
a7/3e/2813
@7/3e/2e13
a7/38/2813
@7/3e/2813
a7/38/2813
@7/3e/2813
@7/38/2813
a7/3e/2813

al:
al1:
el:
el:
a1;
al:
al:
el:
al:
el:
8l:
a1;

25:
25:
25:
25:
25;
25:
25;
25:
25:
25:
25:
25;

15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.

414
414
414
414
414
414
414
414
414
414
414
414

Bx@154F8d8
Bx8154Fb28
@x@l54+ces
Bx@154Fc73
8x@1559968
@x@155cdes
@x@155edde
@x@15b6368
Bx815b8163
@x@15b8lcl
@x@15b8e18
@x@15b8eb8

del
del
del
del
del
del
del
del
del
del
del
del

Device Paramete
LogConf
{54@8b947e-8b4a-57 2}
eooooead

LogConf

eceaaeRe

tahatatatatl]

Device Parametery
(afstatatalaietc]
{B3daB326-97a6"~ H
eoeaeeas

atabalatatatl]

SYSTEM\ControlSet@@2\Enum\USE\Vid_BE@FEPid_8@81\1C659DAEE
SYSTEM\ControlSet@a2\Enum\USB\Vid_@EBF&Pid_8681\1C659DAEE
SYSTEM\ControlSet@@2\Enum\USB\Vid_@E@FEPid_8@81\1C659DAEE
SYSTEM\ControlSet@e2\Enum\USE\Vid_@E@FaPid_2@81\1C659DAEE
SYSTEM\ControlSet@@l\Enum\USB\Vid_@E@F&Pid_28081\8eDacaCCD|
SYSTEM\ControlSet@@l\Enum\USE\Vid_BE@FEPid_8@81\1C659DAEE
SYSTEM\ControlSet@al\Enum\USB\Vid_BE@F&Pid_8881\1C653DAEE
SYSTEM\ControlSet@@2\Enum\USE\Vid_@E@FEPid_8@el\BelCCeEC3
SYSTEM\ControlSet@a2\Enum\USB\Vid_@E#F&Pid_8@81\1C659DAEE
SYSTEM\CentrolSet@@2\Enum\USB\Vid_BE@FAPid_8881\1C65IDAEE
SYSTEM\ControlSet@e2\Enum\USE\Vid_BE@FEPid_8@81\1C659DAEE
SYSTEM\ControlSet@@2\Enum\USB\Vid_@E@F&Pid_8881\1C659DAEE

@x@15bafse del
Axf1ShEEs del

eaopaaRca SYSTEM\ControlSet@@2\Enum\USE\Vid_@E@FEPid_8@81\1C659DAEE

2013/08/22 - 00000, @7/38/2013 | @1:25:15.414
— _ a YSTEM\ ContrnlSetAA? Fnumy ISRV d AFAFSDId AARTVICASONLEE

s8] f1:25:15 414

For similar functionality, but with much more flexibility in output options, one can use the cafae tool. It
also has the carving functionality but can be scripted and the output easily sent to a post processer or
database.

9 Validation of Parsed Residuals

For any tool to be used in forensics, one must ensure the output generated is representative of the true
output of the underlying data. All tools that extract data will ultimately format the data from some
internal representation into a user readable form. This requires the tool to (a) parse the data accurately
and (b) ensure that the data presented to the user is formatted correctly to minimize any
misinterpretation of the output generated. When dealing with the Window registry hives, this is no
small feat. There are numerous boundary conditions that need to be taken into account. If one did this
type of validation manually it would be close to impossible to compare entries in some of the larger
hives, such as the software hive which can easily be larger than 25 MB in size.

To automate this verification process as much as possible, yaru has the capability to output its data in
the Microsoft registration file format (.reg format). This is done on a best effort basis and as problems
in the output are encountered, bug fixes are applied. Nonetheless, the .reg format offers a way to test
the output of yaru to that of the Microsoft regedit tool. Consider the simple scenario of making a copy
of a hive and then importing that hive into the Microsoft regedit utility for the sole purpose of exporting
the hive data into a .reg file. Repeating this process with yaru gives the user two representations of .reg
files of the same hive generated by two different parsers. The beauty of this approach is it will validate
not only the keys and value names but the underlying data as well. To get a complete list of the
key/values in the regedit tool, one must have system level permissions. For Windows XP, this is as
simple as using the 'at' command to spawn a command prompt and then invoking regedit from the

newly spawned command prompt.

Once two .reg files are generated from different parsing tools, one needs a tool to compare the files
easily. Simple differencing of the files using one's favorite differencing tool will not work as expected.
There are a number of reasons for this: (a) the order of the data in the .reg files cannot be guaranteed to
be the same, (b) the naming convention is affected when importing a hive into regedit, since it takes a
new unique name which gets imprinted on the resulting data in the .reg file generated, and (c)
miscellaneous artifacts that are added by one registry parser are not necessarily accounted for in
another registry parser. To help with some of the issues, yaru incorporates an option that can take two

.reg files, parse each of them, reorder the keys so they are suitable for comparison, remove any

Copyright © TZWorks LLC Apr 15, 2024 Page 20

commented fields and display the differences. One caution to keep in mind is that the .reg file uses
Unicode as the native file format. Therefore if manually editing a .reg file, do not resave it into an 8 bit
ASCII format due to the risk of losing data.

Below is an output of analyzing two .reg files from the software hive on a Windows 7 box. One of the
.reg files was created with the Microsoft regedit utility and the other was created with yaru. For this
example, the user only logged on to regedit with Administrative privileges (as opposed to System
privileges) so some of the keys/values will not be accessible from the regedit tool. These differences will
be clearly shown is the comparison.

& Registry Editor @ Registry Editor 2 Registry Editor
[File] Edit View Favorites Help File Edit View Favorites Help File Edit View Favorites Help
Import...

4/ Computer 418 Computer
N = »-), HKEY_CLASSES_ROQT
Expo b - Ju HKEY_CLASSES_ROOT 1

; % | HKEY_CURRENT_USER
Load Hive... e b}, HKEY_CURRENT_USER 4|, HKEY_LOCAL_MACHINE
Unload Hi 4 IR =T -V A W T W-TH N1 -

Connect N Step 1 Step 2 Step 3
nconnee| (load the hive) (validate the load) (export the loaded hive)

Pt Cu+P), SECURITY "] SOFTWARE
it > -}y SOFTWARE b)i SYSTEM

>)i HKEY_CURRENT_CONFIG oV ved ool HKEY_U
5| HKEY_C New

I
2 verl|

|, SYSTEM L 1 Expand
|2

ATI Technologies
- Ju CBSTEST
1. Classes Delete

ot Find...
J
)

b~y Clients Rename
J
J
)

Using regedit to generate
a .reg file for any hive

‘ge::lg Export e
1 o Permissions...

-4 DTS

Copy Key Name

Copyright © TZWorks LLC Apr 15, 2024 Page 21

[ru] yaru - full ver: 1.45; Copyright (c) TZWorks LLC - License #1¢ Compare two .reg files

File View _. Options Reports Time Format
Allocated space (find) »
UnAllocated space (find) »

Dump Hex ct-D Gancel | [Compare|

Carve Ctl-C

1st .reg snapshot |C:\dump\ver1‘sw.export.reg

2nd .reg snapshot IC:\dump\verZ.sw.export.reg

Using yaru to compare two .reg files

p——

Comparing reg files:
C:\dump\verl.sw.export.reg
C:\dump\ver2.sw.export.reg

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Media Center\Service\Recording\Restrictg
3 new key

[HKEY_LOCAL_MACHINE\SOF TWARE\Microsoft\Windows\CurrentVersion\Media Center\Service\Recording\Restrictsg

; new value

"ccc=hex:48,e7,8e,92,58,b3,13,e6,a¢ Since the user only had Administrator Privileges (instead of
f2,8a,ef,92,95,¢5,58,07,16,38,30,4 gystem Privileges) when exporting the data from regedit
%e,6d,d1,2c,6a,55,8c,dd,f9,65,ea, !
47,50,e8,ac,65,34,60,07,52,¢6,e2,] there were some keys that were not exported.
85,66,e2,b7,32,3,6e,ec,608,a2,17,4
15,5a,61,22,9d,53,¥@,0e,5a,40,d8,
c3,8e,77,a5,53,14,0b,¢6,1d,5¢,fe,{ yaru on the other hand exported all the keys even the

41,24,76,ef 44,98,7 e] -~ ;
g:’gé’ 1,24,76,8%,02,20,44,98,70,4 ones requiring special permissions for regedit.

HKEY MACH FTWAR o1 .
E :E;tg&”‘- CAINENSOFTHARE\WOWEA3] The compare utility shows these differences as new keys
and values, since they yaru export included them and the

HKEY_LOCAL_MACHINE\ SOF THARE \Wow643 . i
L " regedit export did not.

; new value

4 differences were detected

While this technique is great for validating the results of yaru, it is can also be used for comparing a
before and after hive to see the new and deleted keys/values. The only pre-requisite is one must export
the keys/values from the same parent key to do a valid comparison.

10 Logging of Activities

To review one's past steps, it is useful to be able to refer to a log file that records all the steps one took
during an analysis of a hive. This is also useful for debugging purposes when discovering some new
registry key or trying to analyze some new registry format. For this reason, yaru incorporates a logging
capability. To minimize the cluttering of log files, yaru starts off with logging turned off by default.
However, when turned on, yaru will record all the users’ activity, including what selections were made.
To keep the log file manageable in size, any output that is sent to a file is not logged.

Copyright © TZWorks LLC Apr 15, 2024 Page 22

File View '_thionsr Reports Time Form
Allocated space (find) »
UnAllocated space (find) »

Compare >
Dump Hex Ctl-D
Carve Ctl-C
Log off Ctl-G

To make the format as extensible as possible, yaru incorporates XML as the file format. The date and
time of creation is appended to the log file name to ensure uniqueness. Each log entry is also time
stamped. Unfortunately there are no configuration settings to identify where the log file is archived or
under what conditions to log data. For now, yaru generates a log file in the directory that yaru starts
in. When logging is stopped, an XSL file will be created that will allow the resulting log file to be
rendered in any web based browser. Adhoc comments can be injected into the log at any time by right
clicking and selecting "Put comment in Log File".

To view the log file when finished and it the logging is turned off, just open the XML file that was created
in your favorite browser. Below is an example of the XML output rendered in Internet Explorer. The log
includes timestamps and what action transpired. Any comments added are included as well.

-

e <2)| L] C:\dump\wintest\2014 09171 O ~ & & C\dump\wintest\2014_09_... [l
[Date Time [Data A
09/17/2014|19:23:09||[init: yaru - full wver: 1.36; Copyright (c) TZWorks LLC - License #1cf9e36eaés

09/17/2014|[19:23:09|turning log on:
09;"1‘?;"2014| 19:23:15||lexpanded: ControlSet001
09/17/2014|19:23:2
09/17/2014(|19:23:4
[08/17/2014|18:23:4
09/17/2014((19:23:59|/examining: Parameters
09/17/2014|[19:23:59||SYSTEM\ControlSet00l\services\Tcpip\Parameters

[

expanded: services

(=]

expanded: Tcpip

o

|expanded: Parameters

Timestamp: 0x0lcfd2a3efl185c36 (09/17/2014 18:19:34.988 UIC)

owner =sid [S5-1-5-32-544]
group =id [S5-1-5-32-544)

Discretionary Access Control List

access allowed 5-1-3-4 READ CONTROL

access allowed Local System DELETE | READ CONTROL | WRITE_DAC | WRITE_OWK
access allowed Local Service READ CCNTROL

access allowed Network Service | RERD CONTROL

access allowed Admins | RERD CONTROL | WRITE_DAC | WRITE_OWK
access allowed Users READ CCNTROL

access allowed Network Configuration Operators DELETE | READ CONTROL

access allowed S-1-5-80-2840520708-3855866260-481812779-327648279-1710889582Y

qqqqqq =7 e € 2 £ &8N 2N0I1OCLERT EOITTIELTND 119E2TENSZE ANELOTANED AANETNIOOE

Copyright © TZWorks LLC Apr 15,2024 Page 23

11 Creating a “Send To” Shortcut for yaru

A useful shortcut to use yaru in a fast seamless way is to create a “Send To” option. This allows ones to
right click on any hive in Windows, from the Explorer menu and open the hive in yaru. For a typical
Windows 7 system, one would create a normal yaru shortcut in the following directory:
C:\Users\[desired user acct]\AppData\Roaming\Microsoft\Windows\SendTo. After this is done, edit the
properties of the shortcut target to include the option -hivefile. This option is required for yaru to pull
the hive you selected.

-
#~ yarub4 Properties

Secutty | Detais | Previou
Gm | Shortcut » Coq
@m yaru64

Target type: Application

Target location: Release

Target: c:\tools\yaru64 exe -hivefile

Start in: c:\tools|

Shortcut key: None

Run: {Notmal window

Comment:

12 Command Line Options

When running in Windows, yaru cannot output to the console, but one can redirect the standard
output (stdout) to a file. This is not a limitation with Linux or Mac. One can use this approach
when using commands that do not invoke the GUI.

Commands to use with GUI [opens the GUI with the hive specified]

-hivefile <filename>

-ntfsimage <unmounted partition> <path\file of the hive>

Commands that do not invoke the GUI

-cmdfile <filename> =run yaru from a cmdfile with a list of lcmds

-cmd <options> =run a command using the yaru registry engine.

Copyright © TZWorks LLC Apr 15, 2024 Page 24

13 User Defined Templates

These are text files that allow one to automate key/value extraction. The parsing rules for these
templates are discussed in more detail in the cafae user’s guide. The cafae user’s guide can be
downloaded from this URL: https://tzworks.com/prototypes/cafae/cafae.users.guide.pdf.

14 Known Issues

1. When running under Vista or Windows 7, any network shares established prior as a regular
(non-admin) user, will be isolated from other accounts (including the admin account). This
problem occurs because User Account Control (UAC) treats members of the Administrators
group as standard users. Therefore, network shares that are mapped by logon scripts are shared
with the standard user access token instead of with the full administrator access token.

2. yaru may run out of memory processing some very large registry hives with many deleted files.
To address this issue, use the 64-bit version of yaru.

3. When using yaru to compare .reg files from two different snapshots in time where the
snapshots are generated from tools other than yaru (eg. from regedit.exe) one needs to ensure
the .reg file is saved in the old NT4 format (which is text based) versus the default format (which
is binary based). yaru's comparison option only works with text based .reg files.

15 X-Window Dependencies

For this tool to work, the X Window System libraries are required for both Linux and
macOS (they are not required for Windows). These libraries use the X11 protocol and
graphics primitives to render the graphical user interface components. These libraries
are common on Unix-like OS's.

If one is unfamiliar with X Windows or the libraries associated with it, one can
download an installer package from XQuartz.org, which is an open-source effort to
develop a version of the X Windows System that runs on Linux and macOS.

After the X11 libraries are installed, one needs to ensure they are running prior to
running this tool.

16 Authentication and the License File

Copyright © TZWorks LLC Apr 15, 2024 Page 25

This tool has authentication built into the binary. The primary authentication mechanism is the digital
X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools
(Windows, Linux and macOS). The runtime authentication validates that the tool has a valid license. The
license needs to be in the same directory of the tool for it to authenticate. Furthermore, any
modification to the license, either to its name or contents, will invalidate the license.

16.1 Limited versus Demo versus Full in the tool’s Output Banner

The tools from TZWorks will output header information about the tool's version and whether it is
running in limited, demo or full mode. This is directly related to what version of a license the tool
authenticates with. The limited and demo keywords indicates some functionality of the tool is not
available, and the full keyword indicates all the functionality is available. The lacking functionality in the
limited or demo versions may mean one or all of the following: (a) certain options may not be available,
(b) certain data may not be outputted in the parsed results, and (c) the license has a finite lifetime
before expiring.

Copyright © TZWorks LLC Apr 15, 2024 Page 26

17 References

AU h WN R

10
11

12

13

Document on various Internet sites titled "WinReg.txt" by B.D.

Various articles in MSDN.

Windows Forensic Analysis DVD Toolkit, Harlan Carvey

Wikipedia, the free encyclopedia section on Windows Registry.

Various forensic artifacts discussed in Computer Forensic Essentials from SANS Institute.
Forensic Analysis of Unallocated Space in Windows Registry Hive Files, by Jolanta Thomassen,
Dissertation for Master of Science submitted to The University of Liverpool, dated 04 Nov 2008.
The Internal Structure of the Windows Registry, by Peter Norris, MSc Thesis submitted Defence
College of Management and Technology, Dept of Informatics and Sensors, Cranfield University.
Feb 2009.

Recovering Deleted Data from the Windows Registry, by Timothy D. Morgan, Digital
Investigation 5 (2008) S33-S41.

FOX-toolkit version 1.6.47.

B.D. WinReg.txt. http://home.eunet.no/pnordahl/ntpasswd/WinReg.txt, 1998.

Thomassen, Jolanta. Forensic Analysis of Unallocated Space in Windows Registry Hive Files.
Dissertation for Master of Science submitted to The University of Liverpool, 2008.

Norris, Peter. The Internal Structure of the Windows Registry. Defence College of Management
and Technology, Dept of Informatics and Sensors, Cranfield University, 2009.

X Window System Libraries by XQuartz.org.

Copyright © TZWorks LLC Apr 15, 2024 Page 27

http://en.wikipedia.org/wiki/Windows_Registry
http://forensics.sans.org/
http://www.fox-toolkit.org/
http://xquartz.org/

	1 Introduction
	2 Registry Hive and Components
	3 Location of Hives
	4 How to Use yaru
	4.1 Reading Registry Hives from Logical Images
	4.2 Parsing Hives from a Live Volume
	4.3 Common Registry Artifacts useful to Forensic Investigators
	4.4 Searching for Text Patterns
	4.5 Searching for Binary Patterns
	4.6 Searching for Entries exceeding some threshold size
	4.7 Searching for High Entropy data
	4.8 Searching for Time Ranges

	5 Unlinked Allocated Chunks
	6 Deleted Registry Keys
	7 Exporting Keys and Data
	8 Brute Force Extraction of Keys – Carving
	9 Validation of Parsed Residuals
	10 Logging of Activities
	11 Creating a “Send To” Shortcut for yaru
	12 Command Line Options
	13 User Defined Templates
	14 Known Issues
	15 X-Window Dependencies
	16 Authentication and the License File
	16.1 Limited versus Demo versus Full in the tool’s Output Banner

	17 References

