

Abstract
fata is a standalone, command-line tool that parses the

FAT32 and exFAT filesystems. The results are displayed in a

delimited text type or CSV format where one file or folder is

displayed per line. fata requires no installation on the

target computer and can be run directly from a removable

device. The algorithm specifically targets the raw disk

sectors and/or volume clusters to parse the filesystem.

fata has binary versions that run in Windows, Linux and

macOS.

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v0.12 of fata

Updated: Apr 15, 2024

TZWorks® FAT/exFAT Analysis
(fata) Utility Users Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 15, 2024 Page 1

Table of Contents

1 Introduction .. 3

2 How to Use fata .. 4

2.1 Disk/Volume file enumeration options ... 4

2.1.1 Using Disk number that is attached to a system .. 5

2.1.2 Using a Mounted Partition letter .. 6

2.1.3 Using an Offline Image of the disk or volume ... 6

2.2 Extraction of Data ... 7

2.2.1 Copying file contents .. 7

2.2.2 Copying system data ... 7

2.2.3 Copying unallocated clusters .. 7

2.2.4 File content header information ... 8

2.3 Hashing .. 8

2.4 Mapping the results .. 9

2.4.1 FAT and exFAT internals and where it they are located in the output 10

2.4.2 Where files are copied to .. 12

2.4.3 Where system data is copied to .. 12

2.4.4 Mapping of unallocated space .. 13

2.5 Cluster Runs and how to read them ... 14

3 Scanning options ... 15

3.1 Scan ‘dd’ image file ... 15

3.2 Scan attached drives ... 16

4 Available Options .. 18

5 Internals of the FAT32 Filesystem ... 20

5.1 Volume Parameter Block .. 20

5.2 File Allocation Table (FAT) basics .. 23

5.3 FAT32 Volume layout .. 24

5.4 FAT Formatting options: ... 25

Copyright © TZWorks, LLC Apr 15, 2024 Page 2

5.5 Long File Name (LFN) Directory Entry Structure ... 25

5.6 LFN Sequence Numbers .. 26

6 Internals of the exFAT Filesystem ... 26

6.1 Main Boot Sector .. 27

6.2 Boot Sector Volume Flags ... 28

6.3 FAT Region .. 28

6.4 Data Region ... 28

7 Authentication and the License File .. 30

8 References .. 31

Copyright © TZWorks, LLC Apr 15, 2024 Page 3

TZWorks® FAT Analysis (fata) Utility Users
Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=55

Contact Information: info@tzworks.com

1 Introduction

This tool was created to be light weight and assist in the analysis of FAT32 and exFAT filesystems while
looking at only the raw disk sectors or volume clusters. The tool’s algorithm is operating system
agnostic when parsing the files or folders, and since it has no installation requirements, it is useful in
various live collection and triaging situations. Furthermore, the tool’s architecture was designed to be
extensible so as to act as an architecture framework for future FAT filesystem work.

When considering the FAT32 is typically the default filesystem for USB flash drives, coming up with a
portable tool that can analyze the contents of the internal structures with or without mounting the
device, as well as, not leaving a tool footprint on the system is useful in many forensic use-cases. Now
that exFAT is commonly available and used for large storage devices, extending the fata architecture to
handle that as well was a logic next step.

The fata tool parses all internal FAT32 and exFAT filesystem data, and attempts to condense the
reporting results in such a way as to make the output clear, while restricting the output to one line per
record (file or folder). Header information is provided, if requested to assist in the identification of the
file content without physically opening the file. Various hashing algorithms options are provided and
can be annotated to the output, if requested. By default, both disk and volume offsets are provided
where it makes sense, like for cluster runs, volume offset and directory entry locations. In this way, the
information allows one to validate any of the results produced by this tool.

In addition to the filesystem internals, fata, allows one to copy all the files that were enumerated;
and/or all the system structures, such as the Volume Boot Record, FAT table(s), Bitmap table,
unallocated clusters, etc. When found, deleted folders and files are shown and can be extracted, if
requested.

mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 15, 2024 Page 4

2 How to Use fata

The screen shot below shows the available options for this tool.

2.1 Disk/Volume file enumeration options

The basic options are the various file enumeration cases. One can enumerate the files via: (a) mounted

partition letter, (b) disk number and volume offset relative to disk start, or (c) by a single file that

contains a ‘dd’ image of another disk or volume. fata will return any file or folder it finds including

deleted ones. Included with each file/folder is a complete set of metadata that was used by the

filesystem internally to manage the file or folder. Each entry will be output on a separate line. The

formats available are: CSV or Log2Timeline formats. Both are delimited data formats so they can be

easily ported into an existing archival system.

Copyright © TZWorks, LLC Apr 15, 2024 Page 5

2.1.1 Using Disk number that is attached to a system

If one has a disk that is to be analyzed that is attached to the computer system where the fata tool is

run, then an option is available to analyze it as a raw disk. As a preparatory step, one first needs to find

the physical disk number that is to be analyzed (see the section on Scanning options). Once that is done,

one can invoke the -disk <number> command and the fata tool will enumerate the entire disk locating

all the volumes, and if the filesystem is either FAT or exFAT, will report all the files on the respective

volumes. If the disk has multiple volumes, one can target the specific volume by using the -offset

<value> sub-option. This value inputted should be the volume offset relative to the start of the disk (eg.

physical sector 0). For this last option, refer to the section of “Scanning options” to help locate the

volume offsets.

As an example, we used Mount Image Pro, to mount a disk image that contained a variety of FAT

partitions as shown below. The target image was mount point was physical disk 2.

Using the disk# parsing approach one can use fata to analyze all the FAT32 and exFAT volumes on the

mounted disk, using the following command.

The default output is pipe-delimited; a portion of the data is shown below.

Copyright © TZWorks, LLC Apr 15, 2024 Page 6

2.1.2 Using a Mounted Partition letter

If one wanted to target a mounted volume, one can use the -partition <letter>. This option is used for

Windows.

Using the same example as above, the partition letters G, H, or J would be something fata could parse.

The output is the same as the previous disk # parse, however, the root folder is annotated to show the

volume starting at a zero offset versus the disk offset of 0x100000.

2.1.3 Using an Offline Image of the disk or volume

The last option, can be used for Windows, Linux or macOS and will target a disk or volume in the form of

a file (eg. image). This option assumes the image is not compressed or encrypted; the image file needs

to be a ‘dd’ copy of a file. To process this image, one can use the -image <file> option. If the image file

has multiple volumes, one can target the specific volume by using the -offset <value> sub-option. This

value inputted should be the volume offset relative to the start of the image file. For this last option,

refer to the section of “Scanning options” to help locate the volume offsets.

Copyright © TZWorks, LLC Apr 15, 2024 Page 7

The results are the same as shown in the section “Using Disk number that is attached to a system”.

2.2 Extraction of Data

The fata tool has a few options to extract more than just file path and its metadata. One can also copy

the file contents, system filesystem structures that mange the filesystem and unallocated clusters. One

can select these options independently or in any combination thereof.

2.2.1 Copying file contents

If the option -copyfiles is invoked, the tool will try to copy any file will an extracted cluster run. This

includes both valid and deleted files. They are archived in the export/[VBR_<offset>] subfolder. See

section on “Where files are copied to” for an example on using this option.

2.2.2 Copying system data

If the option -copy_sysdata is invoked, the tool will try to copy system structures and store the data in

separate files. System structures include: Volume Boot Record (VBR), File Access Tables, Reserved

sectors, Bitmap table (for exFAT), etc. All the files created are binary data in that they reflect the actual

bytes from the data structures, with the exception of the offset_map.txt file. See section on “Where

system data is copied to” for an example on using this option.

2.2.3 Copying unallocated clusters

If the option -copy_unalloc_data is invoked, the tool will try to copy all the unallocated clusters and

store the data into one file. The reason why this is not included in the -copy_sysdata option, is the

resulting file that is generated can be very large depending on the size of the disk (or disk/volume

image) and the number of unallocated clusters it has. With multi-terabyte drives as typical and exFAT

able to make use of all the available space, one needs to plan accordingly when

using -copy_unalloc_data option, since depending on how much space is unallocated, this option

would create a very large file. For this reason, this functionality is split off from the -copy_sysdata

option. See section on “Mapping of unallocated space system” for an example on using this option.

Copyright © TZWorks, LLC Apr 15, 2024 Page 8

2.2.4 File content header information

During the parsing of the files, fata can take a look at the first sector of the raw file data to give the

analyst a view of the data. If a signature is present, then the type should match the extension of the file.

Conversely, if the type is generic (like a text document), then a portion of the string is displayed.

One uses the -header_info option to invoke this behavior. The output is rendered in a quasi-JSON

format in the ‘header_info’ column of the CSV output file. Below is an example of using this option and

how the output is rendered.

The output uses prefixes with each of the outputs If magic file signatures are found, they are prefixed

with “sig”. If no signatures are found, fata then looks for any printable text; these are prefixed with

“txt”. Finally, if no signature or text is found, then the first 10 bytes of the file header are displayed;

these are prefixed with “bytes”. One should note, the tool does not make an attempt to categorize all

magic file signatures, just some of the more common ones.

2.3 Hashing

There are three hashing options available to the user. One can select one or more hashing functions,

from MD5 (-md5), SHA1 (-sha1) or SHA256 (-sha256). The hashing only considers valid file data and

Copyright © TZWorks, LLC Apr 15, 2024 Page 9

ignores slack data. The results of the requested hashes are displayed in the ‘extra_info’ column of the

CSV output file.

2.4 Mapping the results

The results will be sent to whatever is specified in the -out <results> option. For example, if the option

is specified as: -out 2022-11-30/results.csv, the tool will create a relative folder [2022-11-30], if it

doesn’t exist, and the results of the file enumeration will be stored in results.csv.

Any other data that is requested either via (-copyfiles, -copy_systemdata,

or -copy_unalloc_data) a secondary export subfolder will be created (eg. 2022-11-30/export) and

depending on the options selected one or more tertiary folder(s) will be created.

Copyright © TZWorks, LLC Apr 15, 2024 Page 10

2.4.1 FAT and exFAT internals and where it they are located in the output

For the default parsing, where only the files and folders are enumerated, a CSV type file is created. The

CSV will have some fixed data fields and some variable data fields. The CSV fields and where they map

to are shown below:

Field Field name Data type

Type type Type of entry, whether it be a: file, subdir, deleted,
or volume label

Volume type vol_type fat32, or exFAT

Modified time modified_timestamp Default date/time format is: yyyy-mm-dd
hh:mm:ss.xxx. Could be either local or UTC

Access time access_timestamp Default date/time format is: yyyy-mm-dd
hh:mm:ss.xxx. Could be either local or UTC

Created time created_timestamp Default date/time format is: yyyy-mm-dd
hh:mm:ss.xxx. Could be either local or UTC

UTC time difference utc_diff Local (fat32), UTC+<offset value> (exFAT)

File or Folder name name Name of the file or folder without the path

Path of file or folder path Path of the file or folder without the name

Size of file without
slack

size_valid Size of the file that is used

File signature based
on starting bytes

header_info Only populated if the -header_info option is
selected. Looks at the bytes in the first sector of
the file. If it can be recognized, the type will be
displayed, if not, the first text found will be
displayed. This option is experimental in that it can
only recognize basic file formats.

Notes in a quasi-
JSON format

notes Data such as sector size, cluster size, volume
offset/size and volume serial number will be
displayed

Internals of the
file/folder in a quasi-
JSON format

extra_info Cluster run, attributes, DOS3.8 name (if applicable),
and data allocated will be displayed. If hashes are
requested, via -md5, -sha1, or -sha256, they will
also be shown here.

2.4.1.1 Notes Field

This field is a quasi-JSON paring of the {“name1”:”value1”; “name2”:”value2”; etc}. The data is defined

as follows.

Name Meaning Other info

sector_size Size of the sector in bytes

cluster_size Size of the cluster in bytes

vol_offset Volume offset relative to the
start of the disk in terms of
bytes

If using a partition type parse,
this value will be 0.

Copyright © TZWorks, LLC Apr 15, 2024 Page 11

vol_size Volume size in terms of bytes

vol_serial_number Volume serial number. For those volumes with a serial
number of 8 bytes, only the
least significant 4 bytes are
shown

2.4.1.2 Extra_info Field

This field is a quasi-JSON paring of the {“name1”:”value1”; “name2”:”value2”; etc}. The data is defined

as follows.

Name Meaning Other info

attributes Attributes flag in the Directory
Entry

Read Only, Hidden, System,
Volume label, Folder, archive,
etc

checksum_embeded Checksum contained in the
exFAT File Directory Entry

Only applies to exFAT

checksum_computed Checksum recomputed based
on the Directory Entry data

Only applies to exFAT and is
used to verify the directory
entry collection is valid

cluster_run All clusters used to store the
file/folder content

For folders, this is the cluster
run for all the children directory
entries. For files, this is the
cluster run for data content.
Cluster run notation is: <disk
offset of starting cluster>-<LCN
of starting cluster>:<number of
clusters>. This is done for each
fragment.

data_size_alloc Size of the allocated clusters,
translated to number of bytes

dir_entry_vol_offset Location of the start of the
Directory Entry collection for
this record.

Location is relative to the start
of the volume.

md5 MD5 hash of the data content Only applies to files and not
folders and only include valid
data (no slack data).

sha1 SHA1 hash of the data content Only applies to files and not
folders and only include valid
data (no slack data).

sha256 SHA256 hash of the data
content

Only applies to files and not
folders and only include valid
data (no slack data).

header_info Information about the initial
data in the file

Only applies to -csvl2t format,
since this already is a separate
csv field is in -csv. Only applies

Copyright © TZWorks, LLC Apr 15, 2024 Page 12

to files with data. Requires the
-header_info command line
option.

2.4.2 Where files are copied to

If the option -copyfiles in invoked, the tool will try to copy any file with a valid cluster run; this includes

both valid and deleted files. Extracted files are archived in the export/[VBR_<offset>] subfolder. Below

is an example of running fata targeting all the volumes in a disk image using just the -copyfiles option

and which folders are generated.

In this case, we will use the relative subdirectory [2022-11-30] to store the results. By including the

subdirectory in the -out parameter, the tool will create the subdirectory and the appropriate

subdirectories that are needed. From the example, the tool creates the export sub folder as well as sub

folders for each volume found that is either FAT32 or exFAT. These sub folders are annotated with the

image offset of the respective volumes. Inside these sub folders, the files/folders are copied.

2.4.3 Where system data is copied to

If the option -copy_sysdata in invoked, the tool will try to copy system structures and store the data

in separate files. System structures include: Volume Boot Record (VBR), File Access Tables, Reserved

sectors, Bitmap table (for exFAT), etc. All the files created are binary data in that they reflect the actual

bytes from the data structures, with the exception of the offset_map.txt file. The offset_map.txt file

identifies the actual disk offsets and where the binary data comes from. It also shows how it is mapped

to the file offset of the archived data. These collections of files are created for each volume parsed.

Copyright © TZWorks, LLC Apr 15, 2024 Page 13

For this example by adding the -copy_sysdata from the previous example, the tool generates the

extra [VBR_<offset>]_sysdata folder(s) for each volume parsed. The screenshot below shows the types

of system files generated depending on whether the filesystem is FAT32 or exFAT.

The contents of the offset_map.txt file are shown for the FAT32 filesystem starting at offset 0x3e00000.

2.4.4 Mapping of unallocated space

If the option -copy_unalloc_data is invoked, the tool will try to copy all the unallocated clusters and

store the data into one file. The reason why this is not included in the -copy_sysdata option, is the

resulting file that is generated can be very large depending on the size of the disk (or disk/volume

image) and the number of unallocated clusters it has. With multi-terabyte drives as typical and exFAT

able to make use of all the available space, one needs to plan accordingly when

using -copy_unalloc_data option, since depending on how much space is unallocated, this option

would create a very large file. For this reason, this functionality is split off from the -copy_sysdata

option.

When this option is invoked, it will create a cluster run of all the unallocated clusters, which will then be

placed in the offset_map.txt file. In this way, one can later examine any unallocated cluster from the

extracted data and map it back into the actual disk (or image) physical location.

Copyright © TZWorks, LLC Apr 15, 2024 Page 14

To see how this is represented, below is an example running fata with the same image that was done in

the previous section. The option used, however, will be to only extract unallocated clusters.

Based on the above command the following folders and files were created

The offset_map.txt output is shown below and only the unallocated clusters are shown. The highlighted

red section shows the absolute disk (or image file) offset along with the relative volume offset for this

entry. The yellow section shows where this entry maps to relative to the binary file

(unalloc_clusters.bin) that was created. In this way, one can examine the binary file and go back to the

original image and located any cluster fragments, or just verify the results.

2.5 Cluster Runs and how to read them

fata will output the cluster runs of the data that it parses. For folder type data, fata will identify the

cluster run of the Directory Entries for its first level children that includes both files and folders. For file

type data, the cluster run reported represents the actual content of the file data.

Copyright © TZWorks, LLC Apr 15, 2024 Page 15

For this example, the application Notepad++ subfolder contains 23 sets of directory entry collections for

its children. It happens that this requires 2 clusters to store all the directory entry collections and they

are not contiguous, which means each cluster represents a fragment. This is how fata displays the

cluster run.

Each fragment is broken up into 3 fields. The disk offset of the starting cluster (or the logical cluster

number – LCN), the LCN and the extent (the number of clusters that are contiguous). The disk offset is

provided so one can go to the starting cluster number quickly to examine the raw data.

3 Scanning options

If targeting a disk that is mounted or if processing a ‘dd’ image, one can find where the volumes are

located as well as the filesystem of each volume by using one of the two commands: -scandrives

or -scanimage. These scanning options are designed to assist the user locate filesystems and their

respective offsets, so as to target a specific volume instead of processing the entire disk/image.

The first command, -scandrives is only for mounted disks on the same system that the fata tool will

be running on. The second command, -scanimage is only for an unmount disk or volume image. The

fata tool only works with images that are not compressed or encrypted. Examples of both options are

shown below along with their respective outputs.

3.1 Scan ‘dd’ image file

To scan the volumes in an ‘dd’ type image, one uses the -scanimage. This is only works with images

that not compressed or encrypted. As an example, the sample image is called ‘mbr_mix.dd’. The image

file is a copy of a disk that has a MBR (master boot record), two FAT32 partitions, an exFAT partition,

and an NTFS BitLocker partition.

After enumeration of the volumes in the image, the following is outputted. Highlighted are the offset of

the volumes relative the start of the file and their respective filesystems.

Copyright © TZWorks, LLC Apr 15, 2024 Page 16

One can then use this data to process the desired volume, via the -image <name> and -offset

<value> options. Below is an example of processing the exFAT volume at disk offset 0x23200000.

3.2 Scan attached drives

 To scan all the attached drives on a system, one can use the -scandrives option. As an example, the
two attached disks have the following explorer profile. Disk 0 has the system volume which a NTFS
Bitlocker volume. Disk 1 has 5 volumes that have an exFAT filesystem with various cluster sizes.

With an administrator command shell, one can enumerate the disks and which volumes they include,

via:

If this was done in Windows, the disk identification will be an integer (eg. 0, 1, etc). If this was done on

macOS or Linux, one will get a device name in the form of a path (for macOS /dev/disk0, /dev/disk1, etc,

for Linux /dev/sda, /dev/sdb, etc).

Copyright © TZWorks, LLC Apr 15, 2024 Page 17

The results file is a pipe delimited CSV file. Highlighted are the exFAT volumes starting offset relative to

the physical disk and the volume letter that was used for mounting purposes. Given this data, one can

either analyze a specific volume either by the -disk <#> (if Windows) and -offset <value> option or

via the -partition <letter> option. The -partition option is only for Windows.

For example, in Windows, to target the ‘pluto’ volume, one can use either the -disk or -partition

options. Both are shown below. Note, the -disk option requires both the disk number and the offset of

the volume, whereas the -partition option only requires the mounted volume letter.

Copyright © TZWorks, LLC Apr 15, 2024 Page 18

4 Available Options

Option Description

-image

Process the volumes present in the image file. The syntax is: -image

<filename> [-offset <volume offset value>]. If no offset is provided, then all

the volumes in the image are processed. If the offset is provided, only that

volume is processed. This option can be used for Windows, Linux or

macOS

-disk

Process the volumes present in the physical disk number. The syntax is:

-disk <number> [-offset <volume offset value>] Windows
-disk /dev/disk<#> [-offset <volume offset value>] macOS
-disk /dev/sda (or sdb…) [-offset <volume offset
value>]

Linux

 If no offset is provided, then all the volumes in the disk are processed. If

the offset of the volume is provided, only that volume is processed.

-partition

Process the volume that equates to the partition letter passed in. The

syntax is: -partition <letter>. Note. This is only a Windows option.

-csv

Outputs the data fields delimited by commas. Since filenames can have
commas, to ensure the fields are uniquely separated, any commas in the

filenames get converted to spaces.

-csvl2t Outputs the data fields in accordance with the log2timeline format.

-no_whitespace
Used in conjunction with -csv option to remove any whitespace between
the field value and the CSV separator.

-csv_separator

Used in conjunction with the -csv option to change the CSV separator from
the default comma to something else. Syntax is -csv_separator "|" to
change the CSV separator to the pipe character. To use the tab as a
separator, one can use the -csv_separator "tab" OR -csv_separator "\t"
options.

-dateformat

Output the date using the specified format. Default behavior is -dateformat
"yyyy-mm-dd". Using this option allows one to adjust the format to
mm/dd/yy, dd/mm/yy, etc. The restriction with this option is the forward
slash (/) or dash (-) symbol needs to separate month, day and year and the
month is in digit (1-12) form versus abbreviated name form.

-timeformat

Output the time using the specified format. Default behavior is

-timeformat "hh:mm:ss.xxx" One can adjust the format to microseconds,

via "hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no

fractional seconds, via "hh:mm:ss". The restrictions with this option is a

colon (:) symbol needs to separate hours, minutes and seconds, a period (.)

Copyright © TZWorks, LLC Apr 15, 2024 Page 19

symbol needs to separate the seconds and fractional seconds, and the

repeating symbol 'x' is used to represent number of fractional seconds.

-out
Specifies the file to send the output to. Syntax is: -out <output file>.

-quiet Show no progress during the parsing operation.

-base10 Output values in base10. Default is base16.

-utf8_bom
All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8
byte order mark to the output using this option.

-copyfiles
Option that tells fata to extract file contents, if possible. The data for
these folders/files are put in the export subfolder that has the parent of
the base output folder.

-copy_sysdata

Option that tells fata to extract certain filesystem data structures. This
includes the: VBR (volume boot record), FAT (file allocation table), Bitmap
(if available for that filesystem), etc.

The output for these extra files are put in a [export/[VBR_xxxx]_sysdata]
subfolder where the root is the base output folder. Finally, for all the
sections extracted, a summary file (offset_map.txt) is created in the same
subdirectory.

-copy_unalloc_data

Option that tells fata to extract all the unallocated data into one file. Since
this resulting file will have fragmented clusters of unallocated data
consequently ordered, one can reconstruct the which clusters are
associated by volume offset, but referring to the offset_map.txt file where
each cluster is mapped.

The output for the unallocated clusters is a file [unalloc_clusters.bin], in
the subfolder [export/[VBR_xxxx]_sysdata] where the root is the base
output folder.

In addition to the sections extracted, the summary of all the extracted files
is presented in the offset_map.txt file.

-header_info
Option to examine the first sector of the file and if a signature is found, it is
displayed in the output.

-md5
Computes the MD hash of the valid file contents (does not include the slack
in the file).

-sha1
Computes the SHA1 hash of the valid file contents (does not include the
slack in the file).

-sha256
Computes the SHA256 hash of the valid file contents (does not include the
slack in the file).

-scandrives
Details about the volumes of the attached drives on the system where fata
is run.

Copyright © TZWorks, LLC Apr 15, 2024 Page 20

-scanimage
Details about the volumes in an image file. The syntax is: -scanimage <dd

file>. The ‘dd’ file needs to be uncompressed image of the disk or volume
and cannot be encrypted.

5 Internals of the FAT32 Filesystem

The FAT file system has four basic regions

Region Size in Sectors Contents

1 Reserved
Sectors

(num of reserved
sectors in VBR)

Volume Boot Sector; file system info sector
(FAT32 only); and other optional reserved sectors

2 FAT Region (num of FATs) * (sectors
per FAT)

File Allocation Table #1
File Allocation Table #2 (optional)

3 Root Directory
Region

(num of root entries *
0x20) / (bytes per
sector)

Root Directory (FAT12 and FAT16 only).
Eliminated as a separate region in FAT32 and
became part of the data region

4 Data Region (num of clusters) *
(sectors per cluster)

Data Region (for files and directories).. (to the
end of partition on disk)

The Volume Boot Record (VBR) is always located in logical sector 0 (LS 0) of the logical volume. The VBR
is created during the high-level formatting process of the volume and contains information about the
volume. The VBR of a primary partition will contain boot code needed to continue the boot process if
that partition is set as the active primary partition. The VBR is different than the Master Boot Record
(MBR). The MBR is located in physical sector 0 (PS 0) of the physical disk and contains the Master Boot
Code and Master Partition Table.

Note: that removable media does not always have an MBR; smaller media commonly have only a VBR.
In these cases, PS 0 of the physical disk is the same as the LS 0 of the logical volume. (PS 0 relates to the
disk and LS 0 relates to the volume).

Microsoft refers to the VBR for volumes formatted with a FAT file system as the Boot Sector with a BPB
(BIOS Parameter Block).

5.1 Volume Parameter Block

Offset Size Name Description

Copyright © TZWorks, LLC Apr 15, 2024 Page 21

0x00 3 JMP
Instruction

The Jump instruction continued from the MBR

0x03 8 OEMID String of characters that can indicate the OS used during format
MSWIN4.0 = Windows 95 per-OSR2
MSWIN4.1 = Windows 95 OSR2 through Windows 98
MS-DOS5.0 = indicates Windows 2k and newer

0x0B 2 Bytes per
sector

Start of the BPB; can contain values of 512, 1024, 2048, 4096

0x0D 1 Sectors per
cluster

Represents the number of sectors assigned to a single allocation
unit. If the value is positive, then the value is taken as is. If the
value is negative (high bit set), then the twos-complement is
taken and that resulting value is used as a power of 2 (eg. 1 << (-1
* sectors_per_cluster))

0x0E 2 Number of
Reserved
Sectors

FAT12, FAT16 should be a value of 1. FAT32 can be a value of 32
and higher.

0x10 1 Number of
FATs

Should always be a value of 2

0x11 2 Num of Root
Directory
Entries

Number of 0x20 byte directory entries in the Root Directory
region. For FAT32 is value is 0, since the root directory entries in
FAT32 are in the data area and are only restricted by the size of
the data area.

0x13 2 Total Sectors Count of sectors occupied by one FAT for FAT12 and FAT16
volumes. On a FAT32 volume is value is 0, and is represented at
offset 0x24

0x15 1 Media
Descriptor

Legal values include: 0xF0, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD,
0xFE and 0xFF. The two most common values are 0xF8 for fixed
media and 0xF0 for removable media

0x16 2 Sectors per
FAT

Count of sectors occupied by one FAT for FAT12 and FAT16
volumes. On a FAT32 volume this value is 0, and the value is
represented at offset 0x24.

0x18 2 Sectors per
track

This field is only relevant for media that have disk geometry with
CHS (Cylinder, Head, Sector).

0x1A 2 Number of
heads

This field is only relevant for media that have disk geometry with
CHS (Cylinder, Head, Sector).

0x1C 4 Hidden
Sectors

Count of hidden sectors preceding the partition containing the
FAT volume. Part of the BPB.

Copyright © TZWorks, LLC Apr 15, 2024 Page 22

0x20 4 Total Sectors Count of total sectors for the volume, including system areas. For
volumes where the total sector count exceeds the value that can
be stored in 16 bits.

This shows the remaining byte structure for a FAT12/16 VBR

Offset Size Name Description

0x24 1 BIOS drive
number

Supports MS-DOS bootstrap and is set to the interrupt 13 drive
number of the media. 0x00 for floppy disks; 0x80 for hard disks.
This field is OS specific

0x25 1 Reserved Should be set to 0

0x26 1 Extended boot
signature

If set to (0x29), then the next 3 fields are present

0x27 4 Volume Serial
Number

32-bit value usually generated from the date/time. Used for
tracking removable media. This value can often be found in the
LNK files (in Windows).

0x2B 11 Volume label 11-byte volume label recorded in the Root directory. If no
volume label is provided, then "NO NAME" is the default value.

0x36 8 File System
Type

Although this field generally represents the file system
formatted on the volume, it is an informational field only and is
not used by FAT drivers to determine the FAT system type.

This shows the remaining byte structure for a FAT32 VBR

Offset Size Name Description

0x24 4 Sectors per
FAT

Number of sectors occupied by one File Allocation Table (for
FAT32 only)

0x28 2 Extended
Flags

Bits 0-3 zero-based number of active FATs. Only valid if mirroring
is disabled. Bits 4-6 are reserved. Bit 7 - value of 0 means the FAT
is mirrored; value of 1 means only 1 FAT is active and is
referenced. In the first 3 bytes, bits 8-15 are reserved

0x2A 2 FAT Version The high byte is the major revision number and the low bit is the
minor revision number.

0x2C 4 Root
Directory
Cluster

Points to the starting cluster for the Root Directory. This is usually
cluster 2, but is not required to be cluster 2.

0x30 2 File system
info sector

The sector number of the FSINFO structure in the reserved area of
the FAT32 volume. Usually set to 1.

Copyright © TZWorks, LLC Apr 15, 2024 Page 23

0x32 2 Backup boot
sector

If not 0, the value represents the sector number of the copy of the
boot sector in the reserved area. Generally, set to 6

0x34 12 Reserved Should be zero

0x40 1 BIOS drive
number

Supports MS-DOS bootstrap and is set to the interrupt 13 drive
number of the media. 0x00 = floppy disks; 0x80 = 0 hard disks.

0x41 1 Reserved /
Error

Reserved for the Volume Error flag

0x42 1 Extended
boot
signature

If value = 0x29, then the Extended boot signature indicates the
following 3 fields are present

0x43 4 Volume
Serial
number

32-bit value usually generated from the date/time. Used for
tracking removable media. This value can often be found in the
LNK files (in Windows).

0x47 11 Volume label 11-byte volume label recorded in the Root directory. If no volume
label is provided, then "NO NAME" is the default value.

0x52 8 File System
Type

Although this field generally represents the file system formatted
on the volume, it is an informational field only and is not used by
FAT drivers to determine the FAT system type.

5.2 File Allocation Table (FAT) basics
The size of each entry within the FAT is determined by the FAT version. The number after the FAT is
actually the number of bits used by the File Allocation Table for each entry. FAT16 = 16 bits for each
entry; FAT32 = 32 bits for each entry. More bits per entry equates to more addressable clusters.

Media Descriptors
The first entry in the FAT table is the "Media Descriptor". It gives an indication as to the type of media
on which the FAT File System is located as well as the type of FAT being used.

• 0xF0 = 3.5" single-sized floppy disk
• 0xF9 = 3.5" double-sized floppy disk
• 0xF8 = Hard disk drive

The next remaining bits of the "Media Descriptor" is the "FAT Type Descriptor" which gives an indication
as to the type of the FAT file system itself (FAT12/16/32).

• FAT12 - 4bits after the Media Descriptor are 1 (eg. 0x0F)
• FAT16 - 8 bits after the Media Descriptor are 1 (eg. 0xFF)
• FAT32 - 20 bits after the Media Descriptor are 1 (eg. 0x0F 0xFF)

The bits after the "Media Descriptor" and "FAT Type Descriptor" are reserved. Cluster 1 is padded with
either 0xFF or the "End of Cluster Chain" marker, depending on the OS used to format the volume.
Cluster mapping values start after these 2 FAT entries with the Cluster 2 entry.

Copyright © TZWorks, LLC Apr 15, 2024 Page 24

The first entry for a Hard disk with a FAT32 filesystem would be: 0x0FFFFFF8
The second entry for FAT32 would be: 0xFFFFFFFF

FAT table have 4 different types of entries:

1. Unallocated cluster: value of 0x00
2. Allocated cluster: value is the hex value of the next cluster in the cluster run
3. Allocated cluster: End of File (EOF), normally represented by 0xFB, 0xFF, 0x0F, depending on the

OS writing to the FAT. For FAT32 this is normally 0x0FFFFFFF
4. Bad cluster: normally 0xF7

Symbolic
value

FAT12
(hex)

FAT16
(hex)

FAT32
(hex)

Description

Unallocated 0 00 00 00 00 00 00
00

Unused cluster that is available for storage

Next cluster 0 02 - F
EF

00 02 -
FF FE

00 00 00
02 -
FF FF FF
EF

Cluster is in use and indicates the next cluster in the run

End of File F FB FF FB -
FF FF

FF FF FF
FB -
FF FF FF
0F

Indicates the last cluster in the run (or that the run only
contains one cluster of data

Bad Cluster F F7 FF F7 FF FF FF
F7

Cluster is bad and will not be used by the OS. Each
sector is verified to ensure it is able to hold 0x200 bytes
of info. If the sector is unable to hold 0x200 bytes of
data, the sector is marked as BAD. A cluster marked as
bad survives a quick format. (data of evidentiary value
can be hidden in clusters marked as BAD in the FAT;
also a user can mark a cluster as bad to hide data from
average users; thus all clusters should be examined in
detail when possible).

5.3 FAT32 Volume layout

Offset Description

Start of Partition Volume boot sector

Start of Partition + # of Reserved Sectors FAT tables

Start of Partition + # of Reserved Sectors + (# of sectors/FAT * 2) Data area

Copyright © TZWorks, LLC Apr 15, 2024 Page 25

5.4 FAT Formatting options:

Command
line

Type of forma What actually happens

FORMAT
A: /Q

"quick" format 1. The VBR will be verified and update with at least
a new OEM ID, volume serial number, and
volume label.

2. The FAT entries that contain a cluster number or
EOF marker will all be changed to a 0x00.
Clusters marked as BAD will not be changed.

3. The Root Directory entries will all be overwritten
with 0x00. For FAT32, only the first cluster of
the Root Directory is overwritten with 0x00

FORMAT
A:

"normal" format 1. Each sector that is not marked as BAD in the FAT
is checked for read errors.

2. Any newly discovered BAD sectors are updated
in the FAT as BAD.

FORMAT
A: /U

"unconditional"
format (only available
via command line)

1. Every sector on the media is verified as GOOD or
BAD.

2. The FAT is updated to reflect the current status
of that cluster.

3. Sectors previously marked as BAD in the FAT are
rechecked and updated.

4. On removeable media only, every byte in the
Data Area is overwritten with a value such as
0xE6, 0xF6, or 0x00, since the command will
perform both a read and write test for each
sector.

5.5 Long File Name (LFN) Directory Entry Structure

Offset Length Byte Usage

0x00 1 Bits 0-5 = LFN sequence number, bit 6 (0x40) is set if this is the last entry for the
file.

0x01 10 1st 5 letters of the LFN entry

0x0B 1 0x0f (first nibble of attributes byte is set)

0x0C 1 Reserved; set to 0

0x0D 1 Checksum generate from SFN (Short Filename)

0x0E 12 Next 6 letters of the LFN entry

0x1A 2 Always 0

Copyright © TZWorks, LLC Apr 15, 2024 Page 26

0x1C 4 Last 2 letters of the LFN entry

5.6 LFN Sequence Numbers

Directory Entry Hex values of the Sequence Byte

1 0x41

2 0x01 0x42

3 0x01 0x02 0x43

4 0x01 0x02 0x03 0x44

5 0x01 0x02 0x03 0x04 0x45

6 0x01 0x02 0x03 0x04 0x05 0x46

7 0x01 0x02 0x03 0x04 0x05 0x06 0x47

8 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x48

9 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x49

10 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x4A

11 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x4B

12 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x4C

13 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x4D

14 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x4E

15 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x4F

16 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
0x50

6 Internals of the exFAT Filesystem

he Main Boot and the Backup Boot Region has the same sub-regions and data structures.

The Boot regions are created when the volume is formatted and can be further broken down into 5
separate data structures called sub-regions. These are:

1. Boot Sector
2. Extended Boot Sectors
3. OEM Parameters
4. Reserved
5. Boot Checksum

Copyright © TZWorks, LLC Apr 15, 2024 Page 27

6.1 Main Boot Sector

Offset Length Name Description

0x00 0x03 Jump Boot Jump Instruction to boot code field

0x03 0x08 File system
name

ASCII - exFAT

0x0B 0x35 Must be
zero

Replaces the FAT BIOS parameter block

0x40 0x08 Partition
offset

Sectors from the start of the media

0x48 0x08 Volume
length

Total sectors in the volume

0x50 0x04 FAT offset Logical start sector of FAT

0x54 0x04 FAT length Length of the FAT table in sectors

0x58 0x04 Cluster
heap offset

Logical start sector of the cluster heap

0x5C 0x04 Cluster
count

Number of clusters in cluster heap

0x60 0x04 Volume
serial
number

0x68 0x02 File system
version

Major/minor

0x6A 0x02 Volume
flags

(see below)

0x6C 0x01 Bytes per
sector shift

2^N, where N = value for bytes per sector shift

0x6D 0x01 Sectors per
cluster shift

2^N, where N = value for sectors per cluster shift

0x6E 0x01 Number of
FATs

0x01 = 1 FAT and 1 Bitmap (current exFAT version)
0x02 = 2 FATs and 2 Bitmaps (TexFAT only)

0x70 0x01 Percent in
use

Percentage of allocated clusters in the cluster heap. 0x00 - 0x64,
0xFF are not available

0x71 0x07 Reserved

Copyright © TZWorks, LLC Apr 15, 2024 Page 28

0x78 0x186 Boot code Boot strapping instructions

0x1FE 0x02 Boot
Signature

0x55AA [this signature will always be at this offset, regardless of
the sector size. For example, if the sector size was 0x400, the
signature would not be relocated to the end of the sector 0]. Thus,
it is important to read the bytes per sector field located at offset
0x6C of the Boot Sector in an exFAT volume.

0x200 Excess
space

If sector size > 0x200 bytes.

6.2 Boot Sector Volume Flags

Bit Name Description

0 Active FAT Which FAT and Bitmap are in use.
0 = first FAT and first Bitmap
1 = second FAT and second Bitmap

1 Volume dirty 0 = Volume consistent
1 = Volume potential inconsistent

2 Media failure 0 = Any known failures marked as "bad" clusters
1 = Media reported failures

3 Clear to zero No significant meaning (revision 1.00)

4 Reserved Bits4-15 = Reserved

6.3 FAT Region

Sector 24 of an exFAT volume marks the beginning of the FAT region. The exFAT file system does not
operate the FAT in the same way as the FAT32 file system. There are 2 major changes.

a. exFAT does not utilize the FAT for cluster allocation status; this is now done by a Bitmap file
b. exFAT uses the FAT for fragmented files only; if a file is in contiguous clusters (not fragmented)

the FAT is unused for that file. This is annotated in the flags in the directory entry for that file;
which will indicate if the file is contiguous or fragmented. For system files only, exFAT makes
entries in both the FAT and the Bitmap sections.

Although sector 24 is the start of the FAT region, the 1st FAT will not necessarily be located at the
beginning of the FAT region. While the current version of exFAT only contains 1 FAT sub-region, the
spec has a definition for the 2nd FAT to be used for the Transaction-Safe exFAT (TexFAT) version.

6.4 Data Region

There are 10 different types of Directory Entries. There is no support for DOS compliant file names. No
dot and double-dot directory entries. The additional of 2 system files (Bitmap and UpCase).

Copyright © TZWorks, LLC Apr 15, 2024 Page 29

Below are the Directory Entry Types. The first three are used for "system files" and the Volume Label.
The Volume GUID, TexFAT, Vendor Allocation, and Vendor Extension types are not currently in use.

Copyright © TZWorks, LLC Apr 15, 2024 Page 30

7 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

Copyright © TZWorks, LLC Apr 15, 2024 Page 31

8 References
1. Microsoft FAT32 Specification. Various sources including

https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system
2. Microsoft exFAT Specification [https://learn.microsoft.com/en-us/windows/win32/fileio/exfat-

specification].
3. International Association of Computer Investigative Services (IACIS) Basic Computer Forensic Examiner

(BCFE) class notes

	1 Introduction
	2 How to Use fata
	2.1 Disk/Volume file enumeration options
	2.1.1 Using Disk number that is attached to a system
	2.1.2 Using a Mounted Partition letter
	2.1.3 Using an Offline Image of the disk or volume

	2.2 Extraction of Data
	2.2.1 Copying file contents
	2.2.2 Copying system data
	2.2.3 Copying unallocated clusters
	2.2.4 File content header information

	2.3 Hashing
	2.4 Mapping the results
	2.4.1 FAT and exFAT internals and where it they are located in the output
	2.4.1.1 Notes Field
	2.4.1.2 Extra_info Field

	2.4.2 Where files are copied to
	2.4.3 Where system data is copied to
	2.4.4 Mapping of unallocated space

	2.5 Cluster Runs and how to read them

	3 Scanning options
	3.1 Scan ‘dd’ image file
	3.2 Scan attached drives

	4 Available Options
	5 Internals of the FAT32 Filesystem
	5.1 Volume Parameter Block
	5.2 File Allocation Table (FAT) basics
	5.3 FAT32 Volume layout
	5.4 FAT Formatting options:
	5.5 Long File Name (LFN) Directory Entry Structure
	5.6 LFN Sequence Numbers

	6 Internals of the exFAT Filesystem
	6.1 Main Boot Sector
	6.2 Boot Sector Volume Flags
	6.3 FAT Region
	6.4 Data Region

	7 Authentication and the License File
	8 References

