

Abstract
evtwalk is a standalone, command-line tool used to extract

records from Event logs from. evtwalk can be easily

incorporated into any analysts’ processing flow via any

scripting language. All artifacts can be outputted in one of

three parsable formats for easy inclusion with other

forensics artifacts. evtwalk runs on Windows, Linux and

Mac OS-X.

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v0.64 of evtwalk

Updated: Apr 15, 2024

TZWorks® Event Log Parser
(evtwalk) Users Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 15, 2024 Page 1

Table of Contents

1 Introduction .. 3

2 Event Logs and some Differences between Operating Systems ... 3

3 How to Use evtwalk .. 4

3.1 Specifying Multiple Individual Event Logs ... 5

3.2 Examining all the Event Logs on the Currently Running Machine .. 6

3.3 Processing Volume Shadow Copies .. 6

3.4 Processing all Event Logs in a Specified Partition ... 7

3.5 Examining Multiple Event Logs in a Directory or Subdirectories .. 7

3.6 Extracting Deleted Records from Slack Space .. 8

4 Event Category Reports .. 8

4.1 Password changes ... 9

4.2 System clock changes .. 9

4.3 Logons ... 10

4.4 Machine start and stop ... 10

4.5 Credential changes .. 10

4.6 USB Plug-n-play events ... 11

5 Pulling Statistics .. 11

5.1 Detailed Statistics for a Specific Event .. 12

6 User Defined Templates .. 13

6.1 EVT type logs (vice EVTX) when using templates ... 15

6.1.1 Finding the Definitions of the Parameters for each Event ID. .. 15

6.2 Using Statistics within Templates ... 17

7 Converting Segmented CSV formats into Database Friendly Formats ... 17

8 Creating a Subset EVTX log from a very large EVTX Log ... 17

9 Forwarding EVTX log Records to a Collector ... 18

10 Known Issues ... 18

11 Available Options .. 19

11.1 Event Category Report Options .. 19

11.2 Filtering Options .. 19

Copyright © TZWorks LLC Apr 15, 2024 Page 2

11.3 Miscellaneous Options .. 19

12 Authentication and the License File .. 22

12.1 Limited versus Demo versus Full in the tool’s Output Banner .. 22

13 References .. 22

Copyright © TZWorks LLC Apr 15, 2024 Page 3

TZWorks EventLog Parser (evtwalk) Users
Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=25

Contact Information: info@tzworks.com

1 Introduction

evtwalk is a command line tool that can parse Windows event logs from all versions of Windows starting

with Windows XP. This includes Vista, Windows 7, Windows 8 and the server counterparts.

The output is presented with one event record per line and includes a couple of formatting options.

Under the hood, evtwalk uses the same event log parsing engine as evtx_view [1] (a GUI tool to analyze

event logs). As a command line tool, evtwalk can easily be incorporated into any analysts' processing

work-flow by automating execution of evtwalk via any scripting language.

evtwalk allows one to generate reports of specific event log artifacts, such as USB plug-n-play events,

credential changes, password changes, logon/logoff events, etc. If one of the available report options

does not address an analyst’s needs, there is an option for the user to generate his/her own custom

report to be used and processed.

2 Event Logs and some Differences between Operating Systems

Windows event logs reside in different locations depending on whether one is on a Windows XP box, or

later version, such as Windows 7 or 8. In addition to the location differences, there are also (a) naming

differences in the event log file itself, and (b) significantly more event logs present starting with Vista

and the later operating systems. For example, Windows 7 can have over 70 unique event logs versus

the three present in Windows XP. Below are the locations for the event logs with the various Windows

operating systems.

Window XP and earlier

 %windir%\system32\config\[AppEvent.Evt | SecEvent.Evt | SysEvent.Evt]

Windows Vista and later (Windows 7 and Windows 8, …)

 %windir%\system32\winevt\logs\[Application.evtx | Security.evtx | System.evtx | ...]

mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 15, 2024 Page 4

3 How to Use evtwalk

While the evtwalk tool doesn't require one to run with administrator privileges, without doing so may

restrict one to only looking at separately extracted event logs, depending on the version of Windows

and how the permissions are setup. Therefore, it is recommended to run evtwalk with administrator

privileges, if desiring to look at the event logs on a live host machine.

One can display the menu options by typing in the executable’s name without parameters. A screen

shot of the menu is shown below.

For basic usage and to parse an individual event log file, use the following notation:

Copyright © TZWorks LLC Apr 15, 2024 Page 5

 evtwalk -log <event log file> > results.txt

Without specifying one of the format options, the output is rendered with a custom CSV format that

uses the pipe character (‘|’) as a delimiter versus a comma. The snapshot below is an example of what

this output looks like. Notice that all similar event IDs are grouped together. This allows each grouping

to have their specific unique headers (if applicable), since different events have different metadata.

In the command used above, the output is redirected to a text file called ‘results.txt’. Like all artifacts

that have many records, and where each record has multiple fields, the output that is generated is

usually very long and wide. Thus, it is recommended that one redirect the output of the command to a

file.

Besides the default CSV output, one can render the output in two other formats. Switches for these

other options are: (a) -csvl2t and (b) -bodyfile. Each respective format option will attempt to conform

to either the log2timeline format, or the SleuthKit’s body-file format, as appropriate.

While parsing one event log file is useful, one will usually want to parse multiple event logs in one

session. There are three ways to do this: (a) specifying individual event logs via the -log option where

each log filename is delimited by a pipe character, (b) using the -livesys option, or (c) using the -pipe

option.

3.1 Specifying Multiple Individual Event Logs

To use the -log <event log file> option to specify multiple event logs, use the pipe delimiter between

each event log name, as shown below.

evtwalk -log “<event log1> | <event log2 > | …” > results.txt

Copyright © TZWorks LLC Apr 15, 2024 Page 6

This is useful when pulling a similar category of artifacts from multiple event logs. A good example of

this is pulling USB events. The two logs needed for USB plug-n-play events are the System event log and

DriverFrameworks-UserMode event log. If one extracts these two logs, one can invoke the following,

rather lengthy, command to process all USB events from the two logs:

evtwalk -usb -log “system.evtx |

Microsoft-Windows-DriverFrameworks-UserMode%4Operational.evtx" > results.txt

The results.txt file will contain a sorted set of groups of all ‘like USB’ event IDs and will provide

appropriate header fields that match the record metadata for each class of event.

3.2 Examining all the Event Logs on the Currently Running Machine

For a live system, one can use the -livesys switch to examine all the event logs on a host machine. In

this mode, evtwalk will determine the Windows version of the host machine, and then will scan the

appropriate event log directory for that version of Windows. Below are some examples:

evtwalk -livesys > results.txt

evtwalk -livesys -string “tzworks” > results.txt

The first example will traverse all event log files found in the Windows event log directory and parse

each record for each event log encountered. The second example adds the -string filter option. It will

also examine all the same event logs in the first example, but will only output records that contain the

string “tzworks” in the one of the record fields. More information about the various filter options are

discussed in a later section.

3.3 Processing Volume Shadow Copies

For starters, to access Volume Shadow copies, one needs to be running with administrator privileges.

Also, Volume Shadow copies, as is discussed here, only applies to Windows Vista, Win7, Win8 and

beyond. It does not apply to Windows XP.

To make it easier with the syntax, we’ve built in some shortcut syntax to access a specified Volume

Shadow copy, via the %vss% keyword. This internally gets expanded into

\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy. Thus, to access index 1 of the volume shadow

copy, one would prepend the keyword and index, like so, %vss%1 to the normal path of the hive. For

example, to access a user hive located in the testuser account from the HarddiskVolumeShadowCopy1,

the following syntax can be used:

 evtwalk -log %vss%1\Windows\System32\winevt\logs\System.evtx > results.txt

Copyright © TZWorks LLC Apr 15, 2024 Page 7

In addition, one can process all the user related hives using the command -vss <index of volume

shadow>. This option will traverse the specified volume shadow copy and look for all the event logs that

are available and process them.

To determine which indexes are available from the various Volume Shadows, one can use the Windows

built-in utility vssadmin, as follows:

 vssadmin list shadows

To filter some of the extraneous detail, type

 vssadmin list shadows | find /i "volume"

While the amount of data can be voluminous, the keywords one needs to look for are names that look

like this:

 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1

 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy2

 ...

From the above, notice the number after the word HarddiskvolumeShadowCopy. It is this number that

is passed as an argument to the previous options.

3.4 Processing all Event Logs in a Specified Partition

One can process all the event logs on a specified volume using the -partition <drive letter> option. This

command will look in the normal event log directory to find which logs are available and then proceed

to process those logs. It is useful if mounting a collected image of a system volume as another drive

letter.

3.5 Examining Multiple Event Logs in a Directory or Subdirectories

If looking at a collection of event logs that are not part of the running operating system, but gathered as

part of an investigation, one can invoke the -pipe switch to analyze all the desired event logs in one

session. The -pipe switch tells evtwalk to receive a separate path/filename per line as input and

process each entry separately. By redirecting the output of the processed records to a file, one can

generate a single report for all the event logs piped in.

Depending on whether one is running on Windows or Linux during the piping operation, the syntax is

different. For Windows, one can use the built-in dir command along with some of its companion

Copyright © TZWorks LLC Apr 15, 2024 Page 8

switches to get the desired result. For Linux or Mac, one can use either the built-in ls or find commands

to get the desired result. Below are examples of using the pipe option:

 dir c:\testcases*.evtx /b /s | evtwalk -pipe > results.txt

 ls -1 ~/testcases/*.evtx | ./evtwalk -pipe > results.txt

The above syntax will process all the event log files with the extension .evtx that are located anywhere in

the c:\testcases directory and subdirectories.

For those not familiar with syntax that uses a pipe or the dir command line options, the figure below

provides annotations to what each portion in the command is doing.

If one cannot use the -pipe option, one can use the experimental -enumdir option, which has similar

functionality with more control. The -enumdir option takes as its parameter the folder to start with. It

also allows one to specify the number of subdirectories to evaluate using the -num_subdirs <#> sub-

option.

3.6 Extracting Deleted Records from Slack Space

For the EVTX type log files version 0.51 adds the experimental option to examine slack space in the log

sections. The option for this is -incl_slack. Since this option is experimental, it has not been fully

exercised against all types of corrupted records. The output will be annotated with a couple of new

fields, identifying which records were found in slack space and the offset the record was found at. The

offset will allow the analyst to verify the record manually if desired.

4 Event Category Reports

Copyright © TZWorks LLC Apr 15, 2024 Page 9

Instead of outputting all the records contained in an event log, one may only be interested in a certain

class of event data. Depending on how the host machine was configured, for event records to be

present, one may need to enable the event logging for a desired class of events.

Below are the report categories currently available for this tool:

• Password changes

• Clock changes or updates

• User logon/logoff events

• System start/stop times

• User credential or permission changes

• USB events

If there are other reports an analyst wants to use that are not in the above list, or if one wishes to make

modifications to the reports above, one can define one’s own report via the -cmdfile <path\file> option.

The argument passed in is a user generated text file that identifies which events to pull and which fields

in the event record to output. These command files are called User Defined Templates and are

discussed in a later section.

4.1 Password changes
The following Event IDs are examined for this category:

Event Description WinXP event ID Win7/8 event ID Log type

A notification was loaded, a user
changed his/her password

518 4614 Security log

Change Password Attempt 627 4723 Security log

User Account Password Reset 628 4724 Security log

A user account was changed 642 4738 Security log

4.2 System clock changes
The following Event IDs are examined for this category:

Event Description WinXP event ID Win7/8 event ID Log type

The System Time was Changed 520 4616 Security log

Service attempted to change Time 577 4673 Security log

Service changed Time 578 4674 Security log

Copyright © TZWorks LLC Apr 15, 2024 Page 10

4.3 Logons
This report pulls events identifying which accounts have been used for attempted logons. Information

such as date, time, username, hostname and success or failure can be extracted. The event IDs that are

extracted are:

Event Description Win XP Event ID Win 7/8 Event ID Log type

Successful logon and type logon 528, 539, 540 4624 Security log

Failed logon 529-537 4625 Security log

Logoff 538 4634 Security log

Logon/RunAs 552 4648 Security log

4.4 Machine start and stop
This report includes items such as when the computer started up, went to sleep, resumed, rebooted or

shutdown

Event Description Win XP Event ID Win 7/8 Event ID Log type

Reboot 528 4624 System log

Startup 12 12 System log

Shutdown 13 13 System log

Sleep 42 42 System log

Resume 1 1 System log

4.5 Credential changes
The following Event IDs are examined for this category:

Event Description Win XP Event ID Win 7/8 Event ID Log type

Special Privileges assigned to
new logon

576

4672

Security log

User Right was assigned 608 4704 Security log

User Right was removed 609 4705 Security log

System Security Access was
granted to an account

621

4717 Security log

System Security Access was
removed from an account

622 4718 Security log

User Account was created 624 4720 Security log

User Account was enabled 626 4722 Security log

User Account was disabled 629 4725 Security log

User Account was deleted 630 4726 Security log

User Account was changed 642 4738 Security log

User Account was locked out 644 4740 Security log

Computer Account was created 645 4741 Security log

Computer Account was changed 646 4742 Security log

Computer Account was deleted 647 4743 Security log

Copyright © TZWorks LLC Apr 15, 2024 Page 11

User Account was unlocked 671 4767 Security log

Domain Controller attempted to
validate the credentials for an
account

 4776

Security log

Domain Controller failed to
validate the credentials for an
account

675 4777

Security log

Name of an Account was changed 685 4781 Security log

4.6 USB Plug-n-play events
For USB events, one needs to examine the following logs: System, DriverFrameworks-Usermode, Kernel

PnP and Partition Diagnostics. The following Event IDs are examined for this category:

Event Description Win 7+ Event ID Log type

Driver installed 20001 System log

Driver removed 20002 System log

Service added 20003 System log

Service removed 20004 System log

Device removed 20007 System log

Query to load Drivers 2003

DriverFrameworks-
Usermode log

Loading Drivers for new Device 2004, 2005

DriverFrameworks-
Usermode log

Successfully Loaded Driver 2006, 2010 DriverFrameworks-
Usermode log

Pnp or Power Operation for a
USB Device

2100, 2101, 2102,
2105, 2106

DriverFrameworks-
Usermode log

Error: for Pnp or Power
operation for device

2103 DriverFrameworks-
Usermode log

USB Power Events 2104, 2107, 2108,
2109

DriverFrameworks-
Usermode log

Device started 410 Kernel PnP log

Device deleted 420 Kernel PnP log

Inserted/Removed 1006 Partition Diags log

5 Pulling Statistics

One can pull statistics in the form of a histogram for an event log. This can be done in parallel during

the normal parse and pulling each event’s data. The option to invoke this is -stats <results.txt>. The

results.txt is will contain only the statistics and the normal parsed event data still outputs via the

standard output which can be redirected to its own file..

Copyright © TZWorks LLC Apr 15, 2024 Page 12

The statistics report breaks out each event ID as far as, the number of occurrences, the minimum

timestamp and the maximum timestamp. This resulting histogram is displayed in descending order

based on the number of occurrences. Below is an example of the output.

5.1 Detailed Statistics for a Specific Event

While the -stats option gives overall statistics for the entire event log, perhaps one may desire to pull

statistics on a specific event ID. This second option still relies on the -stats keyword to identify where

to put the output, but the user also identifies which fields, or combination thereof, one would like to

histogram. This is done with the -hist <fields to extract> option. For example, if one was interested in

the looking at the logon activity associated with Event ID 4624, one could histogram the following fields

(LogonType, TargetDomainName, TargetUserName, etc). Just for example purposes, one could see the

various combinations and frequency of occurrences for the 3 fields, by prepending the following to the

normal evtwalk command:

-eventid 4624 -stats “summary.txt” -hist “LogonType|TargetDomainName|TargetUserName”

In addition to the normal eventlog overall statistics, invoked by the -stats option, the -hist option will

also look for unique combinations of the 3 fields specified as applied to event ID 4624. See the sample

output below:

Copyright © TZWorks LLC Apr 15, 2024 Page 13

These types of statistics can be applied across event ID’s assuming the fields to examine are present in

each of the event ID’s. For example, one can extend this example across the event ID’s 4624, 4634,

4648, by eliminating the LogonType from the -hist fields (since LogonType is not present in the Event ID

4648).

6 User Defined Templates

For those cases, where one would like to extract a certain group of event ID’s, templates can be useful.

Once a template is defined, it can be used to ensure repeatable parsing of the same event ID’s for each

session run.

The templates are just text files, so they can be generated with any text editor. Care must be taken to

ensure that extra control characters are not inserted into the template files. Having extra control

characters will negatively affect the template parsing engine. For this reason, it is recommended that a

simple text editor be used when editing a template file.

The parsing rules for these templates are as follows:

1. General Rules

a. Each line is parsed separately.

b. A line that starts with a double forward slash (eg. //) is ignored and used for comments

Copyright © TZWorks LLC Apr 15, 2024 Page 14

c. A blank line is ignored

d. Any line not satisfying rule (1b) and (1c) above is assumed to be a command

e. All command lines are in CSV format, where the separator is a comma.

2. Command Lines

Must start with the sequence: !cmd, and the entire command must be on one line.

a. The command sequence can contain the following options, using comma delimiters (in

any order):

-enum_evtxlog or -enum_evtlog

-id, <event id to extract>

-name, <event name to use for output>

-conditions, <parameter name | value name> [note: parameter name is ‘string’ for old EVT logs]

-pull, <parameter data to extract> [note: syntax for EVTX type logs]

-all_data

-type [system, security, application, …]

 One uses either the -enum_evtxlog or -enum_evtlog, but not both. The former specifies the

target log is a Vista or Win7 (or later) log, while the latter specifies the target log is Window XP. Below

are two examples (note: each command needs to be on one line, as opposed to broken into multiple

lines as shown below):

 !cmd, –enum_evtxlog, -type, security, –id, 4624, –name, logon, –pull,

 TargetUserSid, –pull, TargetUserName, –pull, LogonProcessName

 !cmd, –enum_evtlog, -type, system, –id, 528, –name, reboot or shutdown,

 –conditions, string|winlogon.exe –all_data

The first example targets a Vista or Win7 log and looks for event ID 4624. The annotation of –name,

logon, specifies to label this event as a logon event. The -pull, TargetUserSid, …, -pull,

LogonProcessName, tells the tool to only extract those fields from records with the event ID 4624 in

the output.

Copyright © TZWorks LLC Apr 15, 2024 Page 15

The second example targets a Windows XP log and looks for event ID 528. The label annotated to this

event is “reboot or shutdown”. The condition option says to only look at the Data field and if it has the

value of “winlogon.exe” to count it as a hit. The -all_data option says to extract all the fields of this

record in the output.

When using templates to parse event logs, one needs to be careful to use the appropriate template for

type of log file. In other words, searching for a specific event ID in a system log file means one thing,

and searching for the same event ID in the security log file is something different. Therefore, one

should not blindly specify event ID’s in a template without specifying the type of log file. For example, if

targeting the event ID# 4625, for the Security log, this would translate to a logon/failed event. However,

if looking at the Application log, event ID# 4625 is the suppression of duplicate log entries. To help avoid

this issue, the option -type [system, security, application, etc] option guides evtwalk to match the

proper log file with the event ID specified.

The built in reports category, fortunately, have the necessary logic to avoid the above issue. Therefore,

they can be safely thrown at many disparate log files (that may contain duplicate event ID numbers with

differing meanings) and the results should be accurate.

6.1 EVT type logs (vice EVTX) when using templates

When targeting Window XP or Win2003 server type event logs (eg. EVT type logs), the parameter fields

are not tagged per se, but are indicated by their position and are separated by null terminated strings.

The only context one has is the position of the string relative to the start of the string array. This

position is used as a parameter placement for templates stored in the resource section of certain system

DLLs.

When parsing these types of logs, the output shows the headings param_01, param_02, etc. These

heading are just dummy names to indicate which values go to which position. Therefore, when using

the -pull keyword in the context of EVT logs, one can indicate the position of the field as well as the

desired name to use as the header in the following syntax: -pull, <position index> | <name to use>.

Furthermore, when using the -conditions keyword, one uses it conjunction with the keyword string, in

the following manner: -conditions, string | <partial name that needs to be present>. This tells the

parser to look for the partial name in any of the positions that are populated, and if found, to extract

that event as part of the results.

6.1.1 Finding the Definitions of the Parameters for each Event ID.

There are a number of online sources to find what each parameter is for a specific event ID. Some

sources are better than others. The purpose of this section is to show you how to derive it yourself if

you have access to the system directory of where the event log came from. If one examines the system

registry hive, specifically in the root path: SYSTEM\CurrentControlSet\Services\Eventlog, it identifies

various event logs. Within each event log path, there are values that are identified as EventMessageFile,

CategoryMessageFile, ParameterMessageFile, etc. that point to system DLLs that have the appropriate

Copyright © TZWorks LLC Apr 15, 2024 Page 16

resource section. For this example, I picked a more common one for the security log, which is

MsAuditE.dll. When looking at the resource section of this DLL, one would see the following:

Highlighted is the MESSAGETABLE in the resource section. Listed on the right are the various event ID’s

and their associated meaning along with the mapping of where the event string position goes to. For

event ID 528 above, %1 = string at position 1, %2 = string at position 2, etc. Further, one can see what

each field should be called, %1 is for “User Name”, %2 is for “Domain”, etc.

Looking at a raw parse of event ID 508 from evtx_view, one can see its structure below:

Finally, to use the syntax -pull for this log and substitute the positional parameter with a header, one

could do the following to extract only the Username, Domain, LogonID and LogonType, assuming the

Winlogon.exe was used:

Copyright © TZWorks LLC Apr 15, 2024 Page 17

!cmd, –enum_evtlog, -type, system, –id, 528, –name, reboot or shutdown,

 –conditions, string|winlogon.exe –pull, 1|Username,

 -pull, 2|Domain, -pull, 3|LogonID, -pull, 4|LogonType

6.2 Using Statistics within Templates

A template can have many filters to pull various combinations of data into one report. To supplement

your report, one can also pull statistics per event by using the -hist keyword. The usage is similar to the

command line syntax in that after the -hist keyword, one specifies the field or combination of fields one

wishes to histogram. If using more than one field, then one delimits each of the fields with a pipe

character, just like when using it via the command line. The nuance for templates, however, is one also

needs to -pull the parameter that is used as part of the -hist sequence. Alternatively, one can forgo

using the -pull option and just use the -all_data, keyword, which is shorthand to pull all the fields for

that record. Finally, one needs to specify the -stats < filename> option as part of the command line

that invokes the template via the -cmdfile <template file>. This is required to set up evtwalk into the

statistics gathering mode and identify the results file to put the data in.

7 Converting Segmented CSV formats into Database Friendly Formats

When running evtwalk to pull differing events from an event log into one results file, the CSV output will

vary depending on the event ID that is processed. While the -bodyfile and -csvl2t formats will preserve

the CSV structure, the default CSV output will show the results as segmented CSV sections. Each CSV

section will represent a different event ID. This can create problems when trying to import the evtwalk

results into other databases for analysis.

To solve this problem, one can use the csvdx tool to take the segmented CSV results (or any CSV results)

and convert the artifact output it into either JSON or SQLite. See the csvdx webpage

(https://tzworks.com/prototype_page.php?proto_id=34) and/or user guide

(https://tzworks.com/prototypes/csvdx/csvdx.users.guide.pdf).

8 Creating a Subset EVTX log from a very large EVTX Log

The option -createlog was initially added to the Windows binaries to assist in the analysis of problem

records within a large log. There are two basic themes with this option: (a) one can either target specific

event identifiers (-eventid “id1, id2 ...”), or (b) target specific records numbers (-rec_id “rec1, rec2 ...”)

or (-rec_start <rec1> -rec_stop <recN>). In either case, evtwalk will examine the source EVTX log and

extract those records specified and create a separate EVTX log with the results. The resulting EVTX log

should be compatible with any EVTX viewer or parser.

Below is a simple example of creating an EVTX log with just the event ID of 4624, which identifies some

account was logged into. All the events with ID 4624 were copied from the originating log

https://tzworks.net/prototype_page.php?proto_id=34
https://tzworks.net/prototypes/csvdx/csvdx.users.guide.pdf

Copyright © TZWorks LLC Apr 15, 2024 Page 18

[win10.Security.evtx] , and the a new log was created called evt4624.evtx. The original log was not

modified.

9 Forwarding EVTX log Records to a Collector

Normally when a binary XML event log record is created and stored in the log, the use of templates are

used to help save on log space. From all the local logs created on a computer, the data suggests this is

the normal behavior. These templates identify the mapping of which data in the binary XML is used for

variables for message table data, amongst other things. So when a record doesn’t make use of a

template, and also consists of variables embedded into the record, it can be problematic recreating the

event log message.

For those records that are created on a client computer and then forwarded to another computer acting

as a collector, there appears to be a shift in the above behavior. For these cases, empirical data suggests

that the binary XML records created in these logs do not use templates. This presents some interesting

problems, as stated earlier. For these forwarded records, we modified the evtwalk parsing engine to

use some heuristics to identify these types of records and the proper mapping of variables to

messagetable entries. In addition, a couple of new fields needed to be added to allow for two sets of

timestamps and record numbers: (a) the first set was for the timestamp that the client created the

event, and the timestamp the collector logged the record, and (b) the second set was for the record

number for the client created for the event, and a record number the collector used to log the event.

10 Known Issues

For CSV (comma separated values) output, there are restrictions in the characters that are outputted.

Since commas are used as a separator for –csvl2t, any data containing commas are replaced with a

space. For the default output no changes are made to the data, since a pipe (|) character is used to

delimit the fields of a record.

When using user defined templates, one needs to make sure that all text in the template does not have

any special characters. The most common issue we hear about is the use of dashes preceding the

keywords. If one uses notepad or some other text editor that does not insert special characters, then it

should work fine. However, if using Microsoft Word to create a template file, the dashes inserted are

not ASCII 0x2D encoded dashes, but some other character that looks like a dash.

Copyright © TZWorks LLC Apr 15, 2024 Page 19

11 Available Options

11.1 Event Category Report Options

Option Description

–pw Option to extract the appropriate event ID's for password changes.

–time Option to extract the appropriate event ID's for clock changes or updates.

–logon Option to extract the appropriate event ID's for user logon/logoff changes.

–startstop Option to extract the appropriate event ID's for system start/stop times.

–creds
Option to extract the appropriate event ID's for user credential or permission

changes.

–usb Option to extract the appropriate event ID's for USB insertions and removals.

–cmdfile

Experimental. Option that allows the user to customize which event ID's to

extract as well as which fields within an event record to output. The syntax is

-cmdfile <filename>.

11.2 Filtering Options

Option Description

-eventid
Filter out the specified event ID. If more than one ID is specified, one needs

to delimit each ID with a comma. The syntax is -eventid "id1, id2, ...".

-string
Filter on the specified string. The string comparison engine is case

insensitive. The syntax is -string "substring to target".

-start_time

Filter events occurring at the specified time or later. The syntax

is -start_time "time in UTC". The time is specified in the following format

MM/DD/YYYY or “MM/DD/YYYY HH:MM:SS”.

-stop_time

Filter events occurring at the specified time or before. The syntax

is -stop_time "time in UTC". The time is specified in the following format

MM/DD/YYYY or “MM/DD/YYYY HH:MM:SS”.

11.3 Miscellaneous Options

Option Description

–log Identify which event log(s) to operate on. The syntax is: -log <eventlog to

Copyright © TZWorks LLC Apr 15, 2024 Page 20

analyze>. To operate more than one at a time, use: -log "<eventlog1> |

<eventlog2> | ..."

–livesys
Option to examine all event logs from the running operating system.

-partition

Option to examine all event logs from an external drive (or ‘dd’ image) that

were mounted on an analysis workstation. Syntax is -partition <drive

letter>

-vss

Experimental. Option to analyze all events logs from a Volume Shadow.

Syntax is -vss <index of volume shadow>. Only applies to Windows Vista,

Win7, Win8 and beyond. Does not apply to Windows XP.

-stats

Experimental. Extract statistics from the event log, including time range of

the records in the log as well as a histogram of the event IDs in the log. The

syntax is -stats <file to store stats>.

-hist

Experimental. Extract statistics from certain events based on a set of

specified fields. This option requires the use of the -stats option. The

syntax is -stats <file to store stats> -hist <field1 | field2 |..> .

-csv

Outputs the data fields delimited by commas. Since filenames can have

commas, to ensure the fields are uniquely separated, any commas in the

filenames get converted to spaces.

-csvl2t
Outputs the data fields in accordance with the log2timeline format.

-bodyfile

Outputs the data fields in accordance with the 'body-file' version3 specified

in the SleuthKit. The date/timestamp outputted to the body-file is in terms

of UTC. So if using the body-file in conjunction with the mactime.pl utility,

one needs to set the environment variable TZ=UTC. The –allparams option

can be used in conjunction with the -bodyfile and tells evtwalk to output all

the fields in each record.

-pipe

Used to pipe files into the tool via STDIN (standard input). Each file passed in

is parsed in sequence.

-enumdir

Experimental. Used to process files within a folder and/or subfolders. Each
file is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs
<#>.

-filter
Filters data passed in via STDIN via the -pipe or -enumdir options. The

syntax is -filter <"*.ext | *partialname* | ...">. The wildcard character '*'

Copyright © TZWorks LLC Apr 15, 2024 Page 21

is restricted to either before the name or after the name.

-no_whitespace

Used in conjunction with -csv option to remove any whitespace between the

field value and the CSV separator.

-csv_separator

Used in conjunction with the -csv option to change the CSV separator from

the default comma to something else. Syntax is -csv_separator "|" to

change the CSV separator to the pipe character. To use the tab as a

separator, one can use the -csv_separator "tab" OR -csv_separator "\t"

options.

-dateformat

Output the date using the specified format. Default behavior is -dateformat

"yyyy-mm-dd". Using this option allows one to adjust the format to

mm/dd/yy, dd/mm/yy, etc. The restriction with this option is the forward

slash (/) or dash (-) symbol needs to separate month, day and year and the

month is in digit (1-12) form versus abbreviated name form.

-timeformat

Output the time using the specified format. Default behavior is

-timeformat "hh:mm:ss.xxx" One can adjust the format to microseconds, via

"hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no

fractional seconds, via "hh:mm:ss". The restrictions with this option are: a

colon (:) symbol needs to separate hours, minutes and seconds, a period (.)

symbol needs to separate the seconds and fractional seconds, and the

repeating symbol 'x' is used to represent number of fractional seconds.

(Note: the fractional seconds applies only to those time formats that have

the appropriate precision available. The Windows internal filetime has, for

example, 100 nsec unit precision available. The DOS time format and the

UNIX 'time_t' format, however, have no fractional seconds). Some of the

times represented by this tool may use a time format without fractional

seconds, and therefore, will not show a greater precision beyond seconds

when using this option.

-pair_datetime
Output the date/time as 1 field vice 2 for csv option

-quiet
This option suppresses any intermediate progress during a session run

-utf8_bom

All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8

byte order mark to the CSV output using this option.

Copyright © TZWorks LLC Apr 15, 2024 Page 22

12 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

12.1 Limited versus Demo versus Full in the tool’s Output Banner

The tools from TZWorks will output header information about the tool's version and whether it is

running in limited, demo or full mode. This is directly related to what version of a license the tool

authenticates with. The limited and demo keywords indicates some functionality of the tool is not

available, and the full keyword indicates all the functionality is available. The lacking functionality in the

limited or demo versions may mean one or all of the following: (a) certain options may not be available,

(b) certain data may not be outputted in the parsed results, and (c) the license has a finite lifetime

before expiring.

13 References

1. Introducing the Microsoft Vista event log format, by Andreas Schuster, 2007
2. Wikipedia, the free encyclopedia. Event Viewer topic
3. TechNet, New Tools for Event Management in Windows Vista
4. Randy Franklin Smith's online encyclopedia.
5. Windows Event Log Viewer, evtx_view, http://tzworks.com/prototype_page.php?proto_id=4
6. SleuthKit Body-file format, http://wki.sleuthkit.org
7. Log2timeline CSV format, http://log2timeline.net/

http://en.wikipedia.org/wiki/Event_Viewer
http://en.wikipedia.org/wiki/Event_Viewer
http://technet.microsoft.com/en-us/magazine/2006.11.eventmanagement.aspx?pr=blog
http://www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx
http://wiki.sleuthkit.org/index.php?title=Body_file
http://log2timeline.net/

	1 Introduction
	2 Event Logs and some Differences between Operating Systems
	3 How to Use evtwalk
	3.1 Specifying Multiple Individual Event Logs
	3.2 Examining all the Event Logs on the Currently Running Machine
	3.3 Processing Volume Shadow Copies
	3.4 Processing all Event Logs in a Specified Partition
	3.5 Examining Multiple Event Logs in a Directory or Subdirectories
	3.6 Extracting Deleted Records from Slack Space

	4 Event Category Reports
	4.1 Password changes
	4.2 System clock changes
	4.3 Logons
	4.4 Machine start and stop
	4.5 Credential changes
	4.6 USB Plug-n-play events

	5 Pulling Statistics
	5.1 Detailed Statistics for a Specific Event

	6 User Defined Templates
	6.1 EVT type logs (vice EVTX) when using templates
	6.1.1 Finding the Definitions of the Parameters for each Event ID.

	6.2 Using Statistics within Templates

	7 Converting Segmented CSV formats into Database Friendly Formats
	8 Creating a Subset EVTX log from a very large EVTX Log
	9 Forwarding EVTX log Records to a Collector
	10 Known Issues
	11 Available Options
	11.1 Event Category Report Options
	11.2 Filtering Options
	11.3 Miscellaneous Options

	12 Authentication and the License File
	12.1 Limited versus Demo versus Full in the tool’s Output Banner

	13 References

