TZWorks® Jump List Parser (jmp)
Users Guide

Copyright © TZWorks LLC
www.tzworks.com

Contact Info: info@tzworks.com
Document applies to v0.63 of jmp
Updated: Apr 15, 2024

Abstract
jmp is a standalone, command-line tool used to extract

SHLLINK artifacts from Windows files that generate Jump
Lists. Jump Lists became available with Windows 7 and
provide a wealth of artifacts for the digital forensic analyst.
jmp can operate on a single file or a collection of files. All
artifacts can be outputted in one of three parsable formats
for easy inclusion with other forensics artifacts. jmp runs
on Windows, Linux and Mac OS-X.

http://www.tzworks.net/
mailto:info@tzworks.net

Table of Contents

1 INTEFOUCTION ittt ettt e b e s b e sae e sat e et e et e e bt e beesbeesaeesateenbeebeenneesane e 2
2 JUMP LISt FOrMat/INTEINAIS c..eeeteietie ettt ettt et e et e e et e e tbe e eabeeebaeesabeeeabaeessteeenreeennnas 3
2.1 Automatic Destinations Filec.ciiiiiiieiiieee e e s 3
2.2 CUStOM DeStiNation File ...c..uiiiieeiieeeiee ettt sttt sbe e e sie e e s ar e sne e e sabee e 5
2.3 Pulling out Metadata from the Segmented [teMIDS.........cooviiiiiiiiiieecree e 6
2.4 jmp tool parsing Vice the [P L00Icc.euuiii it e e e eanes 7

N = (oY VYA o © KT =3y 11 1] B RPN 8
3.1 Translating the Application Identifier to the Application Name.......ccccooveeeeiiiiecciiee e, 10
3.1.1 Going from path/Name t0 APPIDcccuiiiuiieieeieeeeeetee ettt ettt e e e e b e ebe e teesreesraesaneens 10
3.1.2 Going from AppID to Application NAMEccoivciiiiiiiie e 11

3.2 Handling Volume ShadOow COPIESciiicuiiiiieiiee ettt e e s e e e sbee e s s snbe e e s enreeas 12
33 Understanding Deleted JUMPLIST ENTrES........coiiiiiiie ittt e 13
3.4 Parsing Slack Entries (Issues and what can be done).........ccccvviieiiiii e, 15

A KNOWN ISSUBS....eeiiiiiiiiiiii ittt b bbb e s s bbb s e e s bbb e e e s bbb s e e saaaaee e 16
I NV 11 -1 o LI @] o] d o] o L3PPSRt 17
6 Authentication and the LICENSE File......c.coiiiiiiiiiieieee et 19
6.1 Limited versus Demo versus Full in the tool’s OUtpULt BaNNEr........cceeeeeciieeieciiee e ecieee e 19

T REFEIENCES ..ottt b e e b e s bt e s a e e st e et e e bt e bt e sbeesaeeeateebeenbeesaeesanena 19

Copyright © TZWorks LLC Apr 15, 2024 Page 1

TZWorks® Jump List Parser (jmp) Users
Guide

Copyright © TZWorks LLC
Webpage: http://www.tzworks.com/prototype_page.php?proto_id=20
Contact Information: info@tzworks.com

1 Introduction

jmp is a command line Windows parser that operates on files that are used to generate Jump Lists.
Jump Lists are a new feature, starting with Windows 7. They are similar to shortcuts in that they take
one directly to the files or directories that are used on a regular basis. They are different than the
normal shortcut in that they are more extensible in what information they display. For example,
Internet Explorer will use Jump Lists to display websites frequently visited; Microsoft Office products like
Excel, PowerPoint and Word, on the other hand, will show most recently opened documents. Below are
two examples: (a) one for Most Frequently Used (MFU) list and (b) one for Most Recently Used (MRU)
list.

(- Internet Explorer [Visual Studio
Jump List Jump List

B 00ge 13 regrptsin

;f’; tz_eventlog.sin

¢ tz_mscfb.cpp
f}ﬂ jmplist.sin

2§ http://www.google.com/url?sa=...
| Hire a Handyman Project Descrip...
Replacement Windows | Window...

ol
ServiceMagic - Project Guide A tz_cfbsin

e
e
2 | Handyman | Handyman Services ...
e
e

] Jump Lists | Forensic Artifacts E:“] cafaesin
2§ http://www.google.com/url?sa=...) urw_ioctlh
Windows 7 forensics jump lists-r... L] portable_types.h
Tasks -
7 negsin
€@ Start InPrivate Browsing

3 tz_unicodessin
Open new tab

20 Microsoft Visual Studio 2010

Unpin this program from taskbar o Unpin this program from taskbar

Close all windows Close window

From a user’s standpoint, Jump Lists increase one’s productivity by providing quick access to the files
and tasks associated with one’s applications. From a forensics standpoint, Jump Lists are a good
indicator of which files were recently opened or which websites were visited frequently.

The Windows operating system derives the Jump List content from two sets of Destination files: (a) the
first set is the automaticDestinations type files. These are the ones the operating system creates and
maintains (hence the prefix of ‘automatic’). They store information about data file usage. ltems are
sorted either by Most Recently Used (MRU) or by Most Frequently Used (MFU), depending on the

Copyright © TZWorks LLC Apr 15, 2024 Page 2

mailto:info@tzworks.net

application. (b) The second set is the customDestinations type file. The content contained within, and
the tasks specified by this category of file, are maintained by the specific application responsible for that
specific Destination file. Suffice to say, both formats rely on the SHLLINK structure to store much of
their information.

Automatic and custom destination files are located in the following areas on the file system,
respectively.

a. %APPDATA%\Microsoft\Windows\Recent\AutomaticDestinations\[App/D].automaticDestinations-ms
b. %APPDATA%\Microsoft\Windows\Recent\CustomDestinations\[App/D].customDestinations-ms

The variable named %$APPDATA% is used to resolve to the: C:\Users\<user account>\AppData\Roaming
location. From the path, one can see that each user account (or profile) has its own set of Destination
files.

Per reference [2], the AppID (or application identifier) is used as part of the name in the construction of
the Destination filename. This is a 16 character name in the form of an 8 byte hexadecimal number, and
is usually based on the process name, but ultimately can be specified by the application. According to
reference [2], the same process should have the same AppID across different computer systems and
depends on whether the command arguments are the same as well. Reference [3] is a list of various
application identifiers that the forensics community has compiled. It is updated as new ones are
discovered.

2 Jump List Format/Internals

This is only a brief discussion about the internals of the files that make up the Jump List. It is meant to
only guide the reader to the current, publically available sources of information, rather than to repeat
(and/or explain) the Microsoft specifications.

2.1 Automatic Destinations File

Per Microsoft (ref [2]), the automaticDestinations file consists of a Compound File Binary (CFB) structure
as the container for the individual elements. This includes a separate stream for a DestList and
individual SHLLINK streams. As background, the CFB architecture has been around for many years and
acts like a file-system within a file. This allows each SHLLINK structure to be referenced individually via
its own separate stream. Both the CFB and SHLLINK specifications are individually published by
Microsoft as part of their open specifications agreement. (ref: MS-CFB [6] and MS-SHLLINK [7],
respectively).

Copyright © TZWorks LLC Apr 15, 2024 Page 3

The DestList stream is a collection of MRU/MFU entries whose format is still being investigated, but

contains a timestamp, MRU/MFU entry, corresponding SHLLINK stream, NETBIOS name, target file

name, object/volume identifiers, and some other unknown information. Combining the DestList

information with that of the SHLLINK information, one can have a useful set of forensic artifacts when

determining activity on a computer. Some of these artifacts include:

e Relative frequency of folder or website usage or the last file used for a specific application.

e The path to the target file/directory it references along with modify/access/create timestamps

e The size of the target when it was last accessed.
e Serial number of the volume where the target was stored.
e Network volume share name (if applicable).

e Target attributes, such as whether it was 'read only', 'hidden'

, 'system’, etc.

e One of the MAC addresses associated with the host computer (available when an Object ID is

present).

Much of this data can be seen from looking at the default output (or long form) of the jmp tool (see

below).

ine: Jmp64 e:\testcase)\jmp\8cl3ec8Te80df7ec.automaticDestinations-ms

source path/f1lename: e:\testcase\| MRU/MFUindex/modify time Ltomat'icDest'inat'i ons-ms

AppID: 8cl3ec8fe80dr7ec
MRU/MFU index: 1 w
stream #: 1

MRU time: 09/03/2013 02:13:56.578 [UTC]

file accessed: 10/01/2014 14:04:32 [UTC]

Destinations file MAC time

file modified: 11/18/2013 20:35:00 [UTC) -F

file created: 10/01 /2014 14:04:32 [UTC

MFT Entry: 0x0002b5d8 H “Target MFT entry |

MFT Sequence#: 0x0003

Target flags: HasLinkTargetIDList, HasLinkInfo, IsUnicode, DisableKnownFo

Target attributes: FILE_ATTRIBUTE_ARCHIVE
Target modified: 09/03/2013 02:13:52.121 [UTC]
Target accessed: 09/03/2013 02:13:52.079 [UTC]

Target created: .

Target ObjID time: 08/30/2013 17:35:56.489 [UTC]
Parsed size:
Target file size: 0x0005eb0c [387852 bytes]
Show cmd: [SW_SHOWNORMAL]

ID List: {CLSID_UsersFiles}\{CLSID_Dow

Target item MAC time

ads }\fy08-form-10k. pdf

Embedded ID List info: AppX4x5ckgxamfsjowOswlfsahl45yaqbg22z

Volume Type: fixed
Volume serial num: 7e58-aab0

Target item OBJID create time and
volume label: Windows8_05 MAC address derived from OBJID

Local base path: C:\Users\Donald\DownToads\fy08-
NETBIOS name: bifrost

Volume ID: 6bc0ab92-f111-496f-9067-ec
Object ID: a-

al
MAC address: 24:fd:52:56:6e:de

*Certain fields only available with Full version

Copyright © TZWorks LLC Apr 15,2024

Page 4

In certain cases, especially with portable devices, some of the more common data may not be present,
such as the target’s MACB times or MFT entry and sequence number. Fortunately, there is other useful
data that can be extracted from the IDList structures. In this example, the device vendor and product
identifier can be extracted as well as the serial number of the device and the user’s security identifier.
Below is an example of what a cell phone may look like after connecting to a computer and accessing
files on the portable device.

source path/filename: e:\testcase\jmp\f01b4d95cf55d32a. automaticDestinations-ms

AppID: f01b4d95cf55d32a

MRU/MFU index: 4

stream #: 47

MRU time: 10/21/2013 20:09:15.642 [UTC]

file modified: 11/18/2013 20:22:41 [UTC]

file accessed: 10/01/2014 14:04:33 [UTC]

file created: 10/01/2014 14:04:33 [UTC]
flags: 1 DList, IsUnicode, DisableKnownFolderAlias, UnaliasOn§
attributes: specified
modified: available Sometimes the target MACB
accessed: available times are not available
created: available .
size: | X C 13 by| *gytthereis usually some other data
file size: ?gggg?gg%mgngyt ” embedded in the IDList or other structures

{CLSID MvContfite

Embedded ID List info:
1 \\?\usb#vid_0421&pid_0661&mni_00#6&6d096df&0&0000#{6ac27878-a6fa-4155-ba85-Ff98f491d4f33}

{CLSID_PortableDevices}
SID-{10001,MTP Volume - 65537,31268536320}
Generic hierarchical
Serial# : MTP Volume - 65537
FuncObjId : s10001 *Extra data only available with Full version
{89030000-0514-0000-0000-000000000000}
ObjId : ol

2.2 Custom Destination File

The customDestinations file uses a container structure that is quite different, but simpler, than that of
the automaticDestinations file. Aside from the initial header at the beginning of the file, the SHLLINK
structures do not follow the orderly grouping (using streams) like that of the Compound File Binary used
in the automaticDestinations file. Instead, the SHLLINK structures are packed sequentially.

Secondly, additional custom metadata can be inserted into customDestinations types of files. The
contents of this custom data are controlled by the application logging the data. jmp, however, only
parses the SHLLINK type metadata from these types of files and does not try to parse any of the unique
metadata that may have been placed there by the application.

Copyright © TZWorks LLC Apr 15,2024 Page 5

2.3 Pulling out Metadata from the Segmented ItemIDs

Windows uses the Shell itemID to build the path of the file specified for the link. Each ItemID can

contain other information beside the segment of the path. This other information can include: (a) MAC
times, MFT entry of the segment, and MFT sequence number. To pull out this additional metadata, use

the -idltimes switch. Below is an example of doing this. The additional data outputted is highlighted

below.

source path/filename: e:\testcase\jmp\fb3b0dbfee58fac8. automaticDestinations-ms
fb3b0dbfee58facs

08/01/2013 19:21:18.540 [UTC]
11/18/2013 20:26:01 [UTC]
10/01/2014 14:04:33 [UTC]
10/01/2014 14:04:33 [UTC]
0x0000bce9
0x0009
: HasLinkTargetIDList, HasLinkInfo, IsUnicode, DisableKnownFolderA
attributes: FILE_ATTRIBUTE_ARCHIVE
modified: 08/12/2013 03:39:23.540 [UTC]
accessed: 08/08/2013 19:18:11.402 EUTC
created: 08/08/2013 19:18:11.402 [UTC

ObjID time: 10/21/2013 16:14:28.758 [UTC]
size: 0x00000422 EIOSS bytes]
file size: 0x00059625

366117 bytes]
H [SW_SHOWNORMAL]
ID List: {CLSID_UsersFiles}\Dropbox\Shared Documents\Confidential Analysi
Embedded ID List info: Word. Document.12
fixed
7e58-aab0
Windows8_0S
Network name: \\BIFROST\Users
Local base path: C:\Users\
gogald\Dropbox\Shared Documents\Confidential Analysis Data\Blue §
ifrost
6bc0ab92-f111-496f-9067-ec5c94ffasfs
dc8ffc9d-3a6b-11e3-be8a-24fd52566ede
: 24:fd:52:56:6e:de
IDList subpath breakout
segment: {CLSID_UsersFiles}
segment: Dropbox
modify [UTC]: 08/08/2013 19:17:00
access {UTC%: 08/08/2013 19:17:00
create [UTC]: 08/08/2013 19:17:00
mft entry#: 0x0000bc5¢c [48220]
mft seq#: 0x0004 [4]
segment: Shared Documents
modify [UTC]: 08/08/2013 19:18:12
access EUTC}: 08;08;2013 19:18:12
create [UTC]: 08/08/2013 19:18:12 Lo
mft entry#: 0x0000bce6 [48358) Additional metadata broken
mft seq#: 0x0004 [4] — .
segment: Confidential Analysis Data out by ItemID segment using
modify [UTC]: 08/08/2013 19:18:12 . . =
access %urc%: 08/08/2013 19:18:12 -idltimes option.
create [UTC]: 08/08/2013 19:18:12
mft entry#: O0x0000bce7 [48359]
mft seq#: 0x0004 [4]
segment: Blue Harvest Business Plan.docx
modify [UTC]: 08/08/2013 19:18:12
:ﬁ:::: Egg 82%%5%8&; ggigig *Extra data only available with Full version
mft entry#: 0x0000bce9 [48361]
mft seqg#: 0x0009 [9]

——

Copyright © TZWorks LLC Apr 15, 2024

Page 6

2.4 jmp tool parsing vice the Ip tool

When designing the jmp tool, the SHLLINK parsing engine was taken from the TZWorks LNK parsing tool
called Ip (ref [5]). The Ip engine was wrapped in a compound file stream parsing engine to extract the
appropriate streams so the SHLLINK structures could be parsed with assured accuracy.

As an aside, the Ip tool also has an option (unlike the jmp tool) to parse SHLLINK structures from raw
unstructured data. Using this capability, one can pull out SHLLINK metadata that is buried within an
image of a volume. Furthermore, Ip can also parse SHLLINK structures from within a compound file,
similar to that of an automaticDestinations file. The Ip tool, however, does not associate the
automaticDestinations file’s MRU/MFU data for each SHLLINK structure parsed, and hence, the reason
that the jmp tool was created. More information about what the Ip tool can do, please refer to the
TZWorks website [5].

Copyright © TZWorks LLC Apr 15, 2024 Page 7

3 How to Use jmp

While the jmp tool doesn't require one to run with administrator privileges, without doing so will restrict
one to only looking at files available to the current logged in account or those common to the operating
system. Thus, to access either other accounts, you should run this tool with administrator privileges.

One can display the menu options by typing in the executable name without parameters. A screen shot
of the menu is shown below.

2. Administrator: Windows PowerShell

Usage

jmp <filename> [-csv]

jmp -vss <index> = *** parse Users dir in Volume Shadow
dir C:\Users*ions-ms /b /s | jmp -pipe [-csv]

jmp -enumdir <location jmp files> -num_subdirs <#> [-csv]

Basic options
-csv

-csvlat
-bodyfile

output in comma separated value format
log2timeline output
sleuthkit output

Additional options
-username <name> output will contain this username
-hostname <name> output will contain this hostname
-basel® use basel® for file size instead of std::hex
-pipe = pipe files into app for processing
-dateformat mm/dd/yyyy yyyy-mm-dd" is the default
-timeformat hh:mm:ss = "hh:mm:ss.xxx" is the default
-pair_datetime = *** combine date/time into 1 field for csv
-no_whitespace remove whitespace between csv delimiter
-quiet = don't display status during run
-csv_separator "|" = use a pipe char for separator
-show_offset include file offset of the entry
-filter <*partial*|=*.ext> *** filters stdin data from -pipe option
-translate_appid = *** yses default AppID translation

Experimental options

-slack parse slack [automaticDestinations only]
-appid <pathfile> = compute AppID for given path/file
-appid_ref <file> -appid_separator "|" = ** ref for AppID translation
-idltimes = incl the IDList times (only [default|-csv])

To parse an individual Destinations file, use the following notation:

jmp [Destinations filename] > results.txt

Without specifying one of the format options, the output is rendered in a default, unstructured output.
The snapshot in the section (2.1) above is an example of what this output looks like. The information is
useful if one is not trying to parse any artifacts into a database. Notice that the example above, the
output is redirected to a text file called ‘results.txt’. Since the output that is generated is usually very
long (and wide, if using the CSV option), it is recommended that one redirect the output of the
command into a file as show above.

Copyright © TZWorks LLC Apr 15, 2024 Page 8

The -csv (comma separated value) option will render the output so that all the metadata is rendered
with one SHLLINK record per line, where each field is delimited by a comma. The other two output
formats are the: (a) -csvI2t and (b) -bodyfile. Each will attempt to conform to either the log2timeline
format or the SleuthKit’s body-file format, as appropriate.

While parsing one Destinations file is useful, one will usually want to parse all the Destinations files that
are on a system or in a set of directories. One way to do this is to pipe in all the paths/filenames of the
Destinations type files one wishes to parse into jmp. To allow jmp to receive data from an input pipe,
one needs to invoke the -pipe switch. This will allow jmp to receive a separate path/filename per line as
input. To provide this input, one can use the Windows built-in dir command along with some of its own
switches to get the desired result. For those not familiar with syntax that uses a pipe or the dir
command and options, the figure below provides annotations to what each portion in the command is
doing.

/

Greater than symbol = says
to take output from the
expression on the left side of
the symbol and redirect it to
the file named on the right
side of the symbol

the pipe ‘L

dir c:\users*ions-ms /b /s | jmp—pipe—csv > results.csv

l] |\ J
1 I

Starting in the c:\users directory, recursive scan [/s
option] each subdirectory for files containing the
pattern [*ions-ms]. Since the Destinations files have
the extension Destinations-ms, the [*ions-ms] filter
should find all these files. The [/b] option along with
the [/s] option will ensure the output is in the

\ path/filename format without any extra information. /

Pipe symbol = says to take
Plplng files intojmp output from the expression on
the left side of the pipe symbol
and make it as input to the
expression on the right side of

Switch -pipe says to jmp
tool to expect input to be
from STDIN and the —csv
switch says to format all
data in CSV format

The above syntax will process all the Destinations-ms files that are located anywhere in the c:\users
directory or subdirectories. This assumes, of course, that one is running with administrator privileges.

If one cannot use the -pipe option, one can use the experimental -enumdir option, which has similar
functionality with more control. The -enumdir option takes as its parameter the folder to start with. It
also allows one to specify the number of subdirectories to evaluate using the -num_subdirs <#> sub-
option.

When analyzing the CSV output the automaticDestinations metadata will include MRU/MFU index,
stream and timestamp. The annotated snapshot below has been trimmed to show this information.

Copyright © TZWorks LLC Apr 15, 2024 Page 9

appid MRU/MFU stream# MRU date MRU-UTC inode seq# filesize target name
12dclea8e34b5a6 1 11 5/28/2013 03:13:27, gena.gif
12dclea8e34b5a6 2 10 _5/28/2013 03:13:16:8 305372 41

12dclea8e34b5ab ApplID for MSPaint
12dcleaBe34b5a6 T P 313597

12dcleaSe34b5ab . B 18334
12dc1eage34bsab MFT Entry (inode)

12dc1ea8e34b5a6 and sequence number

123981 941 gn16x1 Latest entries for each

12dclea8e34b5a6 :26: 1055 {CLSID respective application
12dcleale34b5a6 . T png

12dclea8e34b5a6 Some automaticDestinations files

_MyComputer}\C:\dump\gena.bmp
12dcleale34b5a6 contain hundreds of streams

ID_MyComputer}\F:\workarea\class_v
-

1b4dd67f29cb1962 8/25/2013 00:32:06. 143571 4 12288 {CLSID_MyComputer}\F:\workarea\class_{

1b4dd67f29cb1962 8/25/2013 00:10:1 63706 14 4096 {CLSID_MyComputer}\F:\workarea\class_v

1b4dd67f29cb1962 AppID for Windows Explorer Pinned and Recent o \iuCamautas palel:
1b4dd67f29cb1962 3 T T T O S . Certain fields only available with Full version

On the left of the output, one can see the application identifier. Matching this identifier to a known
application can be done by visiting the http://www.forensicswiki.org/wiki (see ref. [3]), where there are
tables of application IDs matched to their respective application.

The MRU/MFU index is a chronological list of entries, where #1 is the latest. Each application ID has
each own sequential list. Following the index value is the stream number (or directory name) that holds
the data in the compound file. It is not uncommon to find hundreds of streams, where each stream
(with a couple exceptions) contains a SHLLINK data structure. The MRU/MFU entry has a unique
timestamp that shows when that entry was updated. Finally, some of the entries contain the target
MFT entry (or inode) and sequence number. Combining the MRU/MFU data with that of the SHLLINK
metadata and the MFT entry provides a wealth of forensic information to the investigator.

3.1 Translating the Application Identifier to the Application Name

An application identifier (AppID) can be set by the application itself or it can be generated by the
operating system using a set of rules. The jmp tool has two options to assist in this area.

3.1.1 Going from path/name to AppID

The first option is to go from path/filename to AppID, using the -appid <pathfile> option. The
algorithm first converts the path to uppercase Unicode and then substitutes any known Windows
folders with the associated GUID identifier. Based on the string final string generate, the CRC is
computed and result is a possible AppID. Since the ApplD is very sensitive to the inputted path, one
needs to keep this in mind when trying to compute App/D’s from an executables path and name. A
good example of this is trying to compute the AppID for the notepad application. If one opens a
command prompt and issues the command: where notepad, one may see two possible paths as | do on

Copyright © TZWorks LLC Apr 15,2024 Page 10

my default Win7 box. One exists at the path C:\windows\System32\. Since this is the first one shown, it
is considered the default one. But there is one also at the path c:\windows\. To complicate matters, the
Win7 box happens to be a 64 bit 0S, so there happens to be a 3™ path at the c:\windows\SysWOW64\
directory. Out of these 3 possible paths for notepad, the AppID could be using the GUID version of the
path instead of the ones listed before. The Windows OS likes to use GUID identifiers for common
folders. Given this, we now have 6 possible App/D’s for notepad. The AppID’s in the output below are
called hashes.

> where notepad

C:\Windows\System32\notepad.exe
C:\Windows\notepad.exe

> jmp64 -appid c:\windows\notepad.exe

hash: 47592b67dd%7

all9 : {F38BF404-1D43-42F2-9305-67DEOB28FC23}\NOTEPAD.EXE
hash: 33bl1533ff9c7e8af

: C:\WINDOWS\NOTEPAD.EXE
> jmp64 -appid c:\windows\system32\notepad.exe

hash: 9b9cdcé9clc24e2b : {1AC14E77-02E7-4ESD-B744-2EB1AES198B7}\NCTEPAD.EXE
hash: aa9870e8e6c0d630 : C:\WINDOWS\SYSTEM32\NOTEPAD.EXE

> jmp64 -appid c:\windows\SysWOWé64\notepad.exe

hash: 918e0ecb43dl7e23 : {D65231B0-B2F1-4857-A4CE-ABE7C6EA7D27}\NOTEPAD.EXE
hash: c3e94993¢c9780ce0 : C:\WINDOWS\SYSWOW64\NOTEPAD.EXE

One should note that the computation of the App/D did not care whether the application was 32 bit or
64 bit, but just the path it came from. This means that for a 32 bit OS, the AppID for
C:\Windows\System32\notepad.exe would be identical to the App/D for a 64 bit OS with the same path.
So while some references show the mapping between the 32 and 64 bit in the appid.txt file, it could be
misleading.

3.1.2 Going from AppID to Application Name

The second option takes a file as its argument that already has the mapping of AppID’s to application
names in a file. This option uses the -appid_ref <file> to tell jmp to use these associations to output the
mapped application name in the output.

Included in the distribution of jmp is a pre-generated file (named appids.txt) that contain the mappings
included from the online forensics-wiki website (see reference 3 at the end of this document). One is
cautioned and should verify the accuracy of the data in this file, since we just took the output from the
website and formatted it in a way that the jmp tool could easily parse it and use the mappings.

If one desires to add new entries to this file, then use the following rules:

e Blank lines are ignored
e Lines starting with a forward double slash are ignored and used for comments

Copyright © TZWorks LLC Apr 15, 2024 Page 11

e An AppID mapping to an application name is separated by a pipe character. If we took the
ApplDs computed for notepad above, one could generate a few entries this way:

[/ appid's for notepad

ob9cdch9clc24e?b | notepad.exe (system32)
918edech43d17e23 | notepad.exe (SyskOWs4)
47592bb7dd97a119 | notepad.exe (windows)

3.2 Handling Volume Shadow Copies

For starters, to access Volume Shadow copies, one needs to be running with administrator privileges.
Also, Volume Shadow copies, as is discussed here, only apply to Vista, Win7, Win8 and beyond. It does
not apply to Windows XP.

To tell jmp to look at a Volume Shadow, one needs to use the -vss <index of volume shadow> option.
This then points jmp at the appropriate Volume Shadow and it starts processing the various user
automatic and custom destination files.

In addition to the -vss <index of volume shadow>, we've built in a shortcut syntax to access a specific
file in a specified Volume Shadow copy, via the %vss% keyword. This internally gets expanded into
\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy. Thus, to access index 1 of the volume shadow
copy, one would prepend the keyword and index, like so, %vss%1 to the normal path of the file. For
example, to access a file located in the testuser account from the HarddiskVolumeShadowCopyl, the
following syntax can be used:

jmp %vss%l\Users\testuser\AppData\Roaming\Microsoft\Windows\Recent\
AutomaticDestinations\1b4dd67f29cb1962.automaticDestinations-ms > out.txt

To determine which indexes are available from the various Volume Shadows, one can use the Windows
built-in utility vssadmin, as follows:

vssadmin list shadows

To filter some of the extraneous detail, type

vssadmin list shadows | find /i "volume"

While the amount of data can be voluminous from that above command, the keywords one needs to
look for are names that look like this:

Shadow Copy Volume: \2\GLOBALROOT\Device\HarddiskVolumeShadowCopy1l
Shadow Copy Volume: \2\GLOBALROOT\Device\HarddiskVolumeShadowCopy?2

Copyright © TZWorks LLC Apr 15, 2024 Page 12

From the above, notice the number after the word HarddiskvolumeShadowCopy. It is this number that is
passed as an argument to the -vss option.

3.3 Understanding Deleted JumpList Entries

As discussed earlier, the automaticDestinations structure is like a FAT file system within a file.
Therefore, it stands to reason that deleted entries will be persistent until the Jump file shrinks or the
delete space is reused.

Below is a series of annotated screenshots of a Jump List from Windows Explorer. The images show
what happens when an entry is deleted from the list and how it affects the metadata in the Compound
File Binary (CFB) data structure used to encapsulate automaticDestinations files. For this example, the
“Documents” entry is deleted. From the bottom left image, Stream #3 is highlighted to show what the
data looks like prior to the deletion. On the bottom right image, one can see that Stream #3 is now
absent from the stream list. Also highlighted is the additional number of mini-sector chunks that are
now available for use by the CFB container. The tool being used for this analysis is a CFBViewer that we
wrote for internal use at TZWorks to help analyze the internals of CFB files.

Copyright © TZWorks LLC Apr 15, 2024 Page 13

Recent

1. dump

. tzworks
B Videos

(=) Pictures

Open

Copy

Pin to this list

Remove from this list

Properties

Before removing the
“Documents” entry

Recent
.. dump
. tzworks

B Videos
=) Pictures

After removing the
“Documents” entry

@' Music

4 Windows Explorer
o Unpin this program from taskbar

Close window

=@ s

® 6

=@ 7

(0 destlist
root entry

LNK data associated with the
“Documents” entry. In this
case is equated to Stream #3

@ccé: ©e eo o oo ee ee
Bcd@: 1F 42 25 48 le @3
@ce@: 8d d5 74 ee @@ ee
@cfe: 7d bl ed 7b d2 9c
adee: ee 2a
edle: ea
ed2e: ee ee
ed3e: 19 ef
ad4e: d3 46
edse: @8 as
2 a3

20 Unused Sectors
=3 Unused MiniSector runs
(20 offset 0:020c0

TR8SUEES

SE838F

After removing the “Documents”
entry, Stream #3 is gone and
space associated with deleted
entry is returned

Bar— i
=] Streams
BE
Z-r'::l
=E
=E
] 5]
.'+':|
destlist
=3 root entry
(2 Unused Sectors

>

(1 offset 0:x01080
0 offset 001480
0 offset (01740
1 offset (01240
0 offset 0:02040

ows\Libraries\Do
cuments.library-

SPSU(L.y.9K....-

El='] Unused MiniSector runs

When looking at the results from jmp, one will see the following data before and after the deletion of
the entry. The snapshot below collapses many of the fields to show both the stream# and entry name

for clarity.

Copyright © TZWorks LLC Apr 15, 2024

Page 14

cmdline: jmp64 1b4dd67f29cb1962.automaticDestinations-ms_before -csv

source p MRU/MFU stream# MRU date MRU-UTC ObjiD cdate ctimd “Documents” entry is deleted
1b4add67 1 1 3/27/2014 13:51:16.487 10/23/2010 13:14:20.125 {CLSID_MyComputer}\C:\dump
1b4add67 2 3/27/2014 13:49:16.361 3/27/2014 12:02:25.765 {CLSID_MyComputer}\C:\Users\tzworks
1b4dd67 3/27/2014 13:48:45.541 6/5/2010 11:56:29.078 {CLSID_Libraries}\{CLSID_Videos}
1b4dd67 3/27/2014 13:48:25.507 6/5/2010 11:56:29.078 {CLSID_Libraries}\{CLSID_Pictures}
1b4dd67 3/27/2014 13:48:07.787 6/5/2010 11:56:2_9.078 {CLSID Libraries}\{CLSID Music}
1b4dd67 3/27/2014 13:47:50.589 6/5/2010 11:56:29.078 {CLSID Libraries}\{CLSID Documents} I
1b4dd67 3/27/2014 13:42:14.115 6/5/2010 11:56:29.078 {CLSID_MyComputer}

cmdline: jmp64 1b4dd67f29c¢b1962.automaticDestinations-ms_after -csv

Stream# 3 not present where deleted entry was

source pMRU/MFU stream# MRUdate MRU-UTC
1b4dd67 1 1 3/27/2014 13:51:16.487 10/23/2010 13:14:20.125 {CLSID_MyComputer}\C:\dump
1b4dd67 3/27/2014 13:49:16.361 3/27/2014 12:02:25.765 {CLSID_MyComputer}\C:\Users\tzworks
1b4dd67 3/27/2014 13:48:45.541 6/5/2010 11:56:29.078 {CLSID_Libraries}\{CLSID_Videos}
1b4dd67 3/27/2014 13:48:25.507 6/5/2010 11:56:29.078 {CLSID_Libraries}\{CLSID_Pictures}
1b4dd67 3/27/2014 13:48:07.787 6/5/2010 11:56:29.078 {CLSID_Libraries}\{CLSID_Music}
1b4dd67 3/27/2014 13:42:14.115 6/5/2010 11:56:29.078 {CLSID_MyComputer}

3.4 Parsing Slack Entries (Issues and what can be done)

Now that one has a basic understanding on how deleted entries may persist in the CFB Container, one
can then target these unused mini-sectors to carve out any deleted LNK files. First of all, the bad news
is that there is no way to tell how these newly free mini-sectors were aligned in a run when representing
the data in a LNK file. This means if the CFB file was severely fragmented, one will not be able to
reconstruct many of the deleted entries. The second point we have observed from empirical data is
when a run of mini-sectors frees up, and it happens that these same mini-sectors comprise an entire
sector (many mini-sectors make up 1 sector), then the CFB file is shrunk down in size and the sector is no
longer backed by file data. These two issues make reconstructing a deleted LNK file a hit and miss type
problem.

What we can do is look at the freed up mini-sectors and reconstruct a larger dataset by ordering them
from lowest offset to highest offset. From this ordered set of data, we can then scan for LNK
signatures, and if found, we can parse the data starting with the signature. With that as the initial
conditions, there are two tools that can do this within our toolset. The first is to use a tool such as Ip
(ref: https://tzworks.com/prototype_page.php?proto_id=11), which understands how to reconstruct
CFB files into a contiguous run of data and then scan the resulting data for LNK signatures. While this
works fine for allocated chunks of data, it has the same issues with freed up chunks of data discussed
before. The second option is to use the jmp -slack option to scan these unallocated chunks of data for
LNK signatures, and if found, parses them.

Since any results returned from slack are not registered with the DestList stream in the CFB container,
the MRU/MFU and other metadata associated with the DestList will not present with these retrieved

Copyright © TZWorks LLC Apr 15, 2024 Page 15

entries. Furthermore, unallocated chunks of data may or may not be aligned in contiguous blocks, and
therefore the results returned that are labeled as ‘slack’ may be corrupted or have errors in the data.

Below is an example of running jmp on a Jump List with a number of deleted entries, but only one was
able to be parsed. The output was trimmed to show just the entries that are changed during a
reconstruction of the deleted entry. If using slack results for analysis, one is encouraged to use

the -show_offset option as well. This option will output the actual offset in the automaticDestinations
file where the entry was parsed from (keep in mind, while the starting offset is valid, the rest of the data
may not be contiguous and could be fragmented). But for the slack data, it will allow one to later go and
verify the results manually with any hex editor.

cmdline: jmp64 1b4dd67f29cb1962.automaticDestinations-ms_some_delete -slack -csv -show_offset

source palsource type MRU/MFU stream# MRUdate MRU-UTC LNK offset target name

1badd67f: IMPLIST (automatic) 1 6 3/27/2014 13:48:45.541 0x1800 {CLSID_Libraries}\{CLSID_Videos}
1b4dd67fZ IMPLIST (automatic) 2 5 3/27/2014 13:48:25.507 0x1500 {CLSID_Libraries\{CLSID_Pictures}
1badd67f.PMPLIST (automatic)-slack na na na 0x11c0 {CLSID_Librariesp\{CLSID_Music}

4 Known Issues

jmp doesn't parse some of the fields in the SHLLINK structures documented by the Microsoft
specification. As time permits, future versions will incorporate incremental capabilities to handle these
additional fields.

For CSV (comma separated values) output, there are restrictions in the characters that are outputted.
Since commas are used as a separator, any data containing commas are replaced with a space. For the
default (non-CSV) output no changes are made to the data. To address this issue, an option was added
to change the CSV default separator character from the comma (,) to whatever is desired. The pipe (|)
character is a good choice, since it doesn't overlap with characters in filenames. (This option is discussed
below, reference -csv_separator).

For Linux and Mac builds, ‘file create’ date is not shown, but the ‘system changed’ time is instead.

(Windows only). When processing filenames containing characters that are not ASCIl one option is to
change the code page of the command window from the default code page to UTF-8. This can be done
via the command:

chcp 65001

Copyright © TZWorks LLC Apr 15, 2024 Page 16

5 Available Options

Option
-CSV

-csvl2t

-bodyfile

-CSV_separator

-base10
-username

-hostname

-pipe

-enumdir

-filter

-VSS

-idltimes

Description

Outputs the data fields delimited by commas. Since filenames can have
commas, to ensure the fields are uniquely separated, any commas in the
filenames get converted to spaces.

Outputs the data fields in accordance with the log2timeline format.

Outputs the data fields in accordance with the 'body-file' version3 specified in
the SleuthKit. The date/timestamp outputted to the body-file is in terms of
UTC. So if using the body-file in conjunction with the mactime.pl utility, one
needs to set the environment variable TZ=UTC.

Used in conjunction with the -csv option to change the CSV separator
from the default comma to something else. Syntax is -csv_separator "["
to change the CSV separator to the pipe character. To use the tab as a
separator, one can use the -csv_separator "tab" OR -csv_separator "\t"
options.

Ensure all size/address output is displayed in base-10 format vice
hexadecimal format. Default is hexadecimal format

Option is used to populate the output records with a specified
username. The syntax is -username <name to use>.

Option is used to populate the output records with a specified
hostname. The syntax is -hostname <name to use>.

Used to pipe files into the tool via STDIN (standard input). Each file
passed in is parsed in sequence.

Experimental. Used to process files within a folder and/or subfolders. Each
file is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs
<t#>.

Filters data passed in via STDIN via the -pipe option. The syntax is -filter
<"*.ext | *partialname* [...">. The wildcard character '*' is restricted to
either before the name or after the name.

Experimental. Extract Jump List data from Volume Shadow. The syntax
is -vss <index number of shadow copy>. Only applies to Windows Vista,
Win7, Win8 and beyond. Does not apply to Windows XP.

Experimental. Shell item identifiers are grouped together to form a path.
Each Item ID can have embedded in it an associated MAC timestamps as well
as MFT entry number for the segment of the path that creates the final path.
Using this option will display any additional metadata associated with each
segment (or Item ID) in the list

Copyright © TZWorks LLC Apr 15, 2024 Page 17

-no_whitespace

-slack

-appid

-appid_ref

-dateformat

-timeformat

-pair_datetime

-quiet

Used in conjunction with -csv option to remove any whitespace
between the field value and the CSV separator.

Experimental: automaticDestinations files retain some of their deleted
entries in slack space. The -slack option traverses this slack space to extract
any additional LNK entries. These entries that are retrieved do not have any
MRU/MFU data associated with them.

Experimental: Points to a path/file combination and computes the AppID.
The syntax is —appid <file>.

Experimental: Points to a text file to translate application identifiers to
application names. The syntax is —appid_ref <file>. Distribution contains a
sample file called appids.txt and the data is taken from the forensic wiki (ref:
http://www.forensicswiki.org/wiki/List of Jump List IDs). The file uses a
pipe delimiter between the application ID and the application name. If a
different delimiter is used, one can use the option -appid_separator “,” to
tell jmp to use a different delimiter (in this case a comma) to parse the
ApplD file.

Output the date using the specified format. Default behavior is -dateformat
"yyyy-mm-dd". Using this option allows one to adjust the format to
mm/dd/yy, dd/mm/yy, etc. The restriction with this option is the forward
slash (/) or dash (-) symbol needs to separate month, day and year and the
month is in digit (1-12) form versus abbreviated name form.

Output the time using the specified format. Default behavior is

-timeformat ""hh:mm:ss.xxx"* One can adjust the format to microseconds, via
"hh:mm:ss.xxxxxx"" or nanoseconds, via ""hh:mm:ss.XXXxXxXxxxx"", or no
fractional seconds, via ""hh:mm:ss". The restrictions with this option is a
colon (:) symbol needs to separate hours, minutes and seconds, a period (.)
symbol needs to separate the seconds and fractional seconds, and the
repeating symbol X' is used to represent number of fractional seconds. (Note:
the fractional seconds applies only to those time formats that have the
appropriate precision available. The Windows internal filetime has, for
example, 100 nsec unit precision available. The DOS time format and the
UNIX 'time_t' format, however, have no fractional seconds). Some of the
times represented by this tool may use a time format without fractional
seconds, and therefore, will not show a greater precision beyond seconds
when using this option.

Output the date/time as 1 field vice 2 for csv option

Used in conjunction with -pipe option. This option suppresses status
output as each file is processed.

Copyright © TZWorks LLC Apr 15, 2024 Page 18

http://www.forensicswiki.org/wiki/List_of_Jump_List_IDs

Displays starting offset of the file where the parsed artifact starts. This
is used primarily for verification purposes when used in conjunction
with a hex-editor during the analysis. (Note: the automaticDestinations
jumpfile does not necessarily have contiguous sectors of data for a

-show_offset parsed artifact. Therefore, if using this option, be aware that the
reconstruction of the data depends on following the allocated chain of
sectors and not just looking at the starting offset in a hex-editor and
assuming the rest of the data follows after the first sector or mini-
sector).

All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8

-utf8_bom byte order mark to the output using this option.

6 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital
X509 code signing certificate embedded into the binary (Windows and macQOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools
(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The
license needs to be in the same directory of the tool for it to authenticate. Furthermore, any
modification to the license, either to its name or contents, will invalidate the license.

6.1 Limited versus Demo versus Full in the tool’s Output Banner

The tools from TZWorks will output header information about the tool's version and whether it is
running in limited, demo or full mode. This is directly related to what version of a license the tool
authenticates with. The limited and demo keywords indicates some functionality of the tool is not
available, and the full keyword indicates all the functionality is available. The lacking functionality in the
limited or demo versions may mean one or all of the following: (a) certain options may not be available,
(b) certain data may not be outputted in the parsed results, and (c) the license has a finite lifetime
before expiring.

7 References

1. Windows 7 Taskbar — Part 1, The Basics. http://blogs.msdn.com/b/yochay/archive/2009/01/06/windows-
7-taskbar-part-1-the-basics.aspx, by Yochay Kiriaty, dated 01/05/2009.

2. Windows 7 Jump Lists, windows7forensics-jumplists-rv3-public-110606164708-phpapp01.pptx, Troy
Larson PowerPoint charts.

Copyright © TZWorks LLC Apr 15, 2024 Page 19

http://blogs.msdn.com/b/yochay/archive/2009/01/06/windows-7-taskbar-part-1-the-basics.aspx
http://blogs.msdn.com/b/yochay/archive/2009/01/06/windows-7-taskbar-part-1-the-basics.aspx

w

Application Identifiers used in Jump Lists, http://www.forensicswiki.org/wiki/List of Jump List IDs.

Discussion of the Jump List structure, http://www.forensicswiki.org/wiki/Jump_Lists

5. http://tzworks.com/prototype page.php?proto _id=11, Ip tool, Windows LNK Parsing Utility, TZWorks,
LLC.

6. [MS-CFB]: Compound File Binary Format, 06/10/2011, sourced from Microsoft Corporation.

7. [MS-SHLLINK]: Shell Link (.LNK) Binary File Format, 11/12/2010, sourced from Microsoft Corporation.

8. Jesse Hager "The Windows Shortcut File Format", Available at
http://www.i2slab.com/Papers/The_Windows_Shortcut_File_Format.pdf.

9. SleuthKit Body-file format, http://wki.sleuthkit.org

10. Log2timeline CSV format, http://log2timeline.net/

&

Copyright © TZWorks LLC Apr 15, 2024 Page 20

http://www.forensicswiki.org/wiki/List_of_Jump_List_IDs
http://tzworks.net/prototype_page.php?proto_id=11
http://wiki.sleuthkit.org/index.php?title=Body_file
http://log2timeline.net/

	1 Introduction
	2 Jump List Format/Internals
	2.1 Automatic Destinations File
	2.2 Custom Destination File
	2.3 Pulling out Metadata from the Segmented ItemIDs
	2.4 jmp tool parsing vice the lp tool

	3 How to Use jmp
	3.1 Translating the Application Identifier to the Application Name
	3.1.1 Going from path/name to AppID
	3.1.2 Going from AppID to Application Name

	3.2 Handling Volume Shadow Copies
	3.3 Understanding Deleted JumpList Entries
	3.4 Parsing Slack Entries (Issues and what can be done)

	4 Known Issues
	5 Available Options
	6 Authentication and the License File
	6.1 Limited versus Demo versus Full in the tool’s Output Banner

	7 References

