

Abstract
evtfx is a standalone, command-line tool that can extract

and parse EVTX type records from fragmented or corrupted

Eventlog files. The tool can report the results in a CSV type

format or SQLite database. It has compiled version for

Windows, Linux and OS-X.

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v0.15 of evtfx

Updated: Apr 15, 2024

TZWorks® EVTX Fragment
eXtension (evtfx) Parser Users
Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 15, 2024 Page 1

Table of Contents

1 Introduction .. 2

2 How to Use evtfx ... 4

2.1 Processing Multiple Event logs (or log fragments) ... 5

2.2 Scanning large datasets .. 5

3 SQLite Results .. 7

3.1 Extracting Specific Event IDs ... 9

4 EVTX Record Templates .. 10

5 CSV Field Names / Meaning .. 10

6 Limitations... 11

7 Available Options .. 12

8 Authentication and the License File .. 14

9 References .. 14

Copyright © TZWorks, LLC Apr 15, 2024 Page 2

TZWorks® EVTX Fragment eXtension (evtfx)
Parser Users Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=53

Contact Information: info@tzworks.com

1 Introduction

The Windows operating system uses binary XML notation to record various events that occur during the

normal course of system usage. In forensics, use of the data recorded in the Window's event log is

extremely useful in determining the changes occurring in a machine over time periods of interest. There

are many utilities that allow one to extract records from these same logs and package them by time or

event to highlight activities that occurred. Occasionally, however, when a parser encounters a corrupted

log file, parsing out records can be problematic at best. Therefore, the objective for evtfx was to focus

on this area; parsing event logs that were either: (a) corrupted internally either intentionally or

accidently by the system (during a crash) or (b) were partially recovered usually from a file carving

operation, but still contained gaps in the data.

In order to design a tool that can parse EVTX type records from corrupted or partial fragments of a log,

one needs to adjust the way a normal EVTX type parser works. As background, EVTX type logs, as part of

their internal design, attempt to minimize the space usage by incorporating a position dependent record

structure. Specifically, one record can rely on another record's definitions of field names or data values.

This allows a reduction of space and acts as a compression technique when storing many similar events;

many of the data labels are the same and will reference a main record containing a shared template

definition. While this is very useful under normal circumstances, unfortunately, when the records

become corrupted or deleted, this position dependence can cause undefined behavior for any parser

relying on traversing the position related pointers. Case in point is the evtwalk tool from TZWorks; it

does an excellent job at parsing uncorrupted records, however, does a best guess type parsing for those

records that are deleted (using the -inc_slack option, which means to include the slack space during the

parsing operation). Furthermore, if for whatever reason, the parser cannot find the template definition,

it won't parse records that rely on the missing definition. By extension, any records that are outside the

log file structures usually get missed as well.

The purpose of evtfx is to address the shortfalls of EVTX parsers when it comes to corrupted or partial

event logs. As part of its architecture, it is designed to be somewhat independent over the state of the

previous records. This, in turn, allows adds robustness for handling missing/corrupted records.

The downside to the evtfx tool, is it is slower in actual parsing time when compared to evtwalk. In some

cases, the evtfx tool misses some of the content of the data. In general, the accuracy of the results

mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 15, 2024 Page 3

of evtfx comes close to that evtwalk. Therefore, if the event log is normal and intact, the evtwalk tool

should be the tool of choice. If, however, one wishes to extract corrupted or deleted records from an

event log, the evtfx tool is good choice.

Taken to the extreme, the evtfx tool can be used to pull out EVTX type records from any blob of data,
assuming the data is uncompressed and unencrypted. The latter condition is very important, since
Windows may incorporate NTFS file compression for the event log in question, in which case,
the evtfx tool may fail to parse the compressed data. While evtfx makes some attempts to try to
perform NTFS file decompression, the results are much more reliable if the raw cluster data is
uncompressed.

Copyright © TZWorks, LLC Apr 15, 2024 Page 4

2 How to Use evtfx

One can display the menu options by typing in the executable’s name without parameters. Below is the

menu with the various options.

To process a file with EVTX type event log records, use the -log <file> notation. If sending the output to a

file, use the -out <results> option along with the type of desired delimited format (-csv, -csvl2t

or -bodyfile). Alternatively, one can send the data to a SQLite database; to do this, use the

notation -sqlite -db <database to store results>.

The other options shown above (under Additional options) are the standard ones used in many of the

TZWorks tools and contain the same behavior as the other tools. Details about these options are

contained in the section on “Available Options”.

The delimited output formats (with the exception of -csvl2t) generate one record per log entry. The

delimiter for all the output file formats can be specified by the user. Some of the more common ones

include either a comma character, pipe character or a tab character. If one tells evtfx to send the results

to a SQLite database, then the tool will either create a new database if none exists, or, if one exists with

the same name, the results will be appended to the existing one. Later on, one can query the database

and extract desired records either by using another tool, such as the “DB Browser for SQLite” or using

Copyright © TZWorks, LLC Apr 15, 2024 Page 5

standard SQL commands. There is a rudimentary query option built into evtfx to extract specific event

identifiers using the -eventid <#1, #2, …> option which is discussed in more detail in the section of

Extracting Specific Event IDs.

2.1 Processing Multiple Event logs (or log fragments)

If desiring to process many log files in one pass, one can put the artifact logs/fragments into separate a

subdirectory and use the -pipe option like so:

Alternatively, if not wishing to use the piping option, one can use the -enumdir option along with the

sub options -num_subdirs and -filter. This allows one to target a certain level of subdirectories and

only files with the desired extension.

The above command will process all the logs and/or fragments contained in the c:\dump\logfrags folder

and subfolders down to two subdirectories with the filename extension “.bin”. The output will be

stored in the result.csv file.

2.2 Scanning large datasets

Internally, evtfx will try to scan log files by looking for common EVTX log magic signatures. These magic

signatures can either be the start of a log file (ElfFile) or a chunk at one of the internal sections (ElfChnk).

This approach allows the evtfx to scan the data more quickly than the alternative of looking for a record

signature from unrelated data areas. The tool will automatically shift to record signature scans for each

internal ElfChnk signature found, or if the fragment being analyzed is less than the size of the ElfChnk.

The tool has had some limited testing against partitions and memory dumps. These options are

considered experimental, but can be invoked via the -partition <letter>, or just -image <memory dump>. In

cases where the data analyzed is not compressed or encrypted, evtfx does a relatively good job at

extracting complete event log records. In some cases, when the evtfx cannot recognize the template

used in the record, it will try to translate the fields either using the slot/index notation or pattern-match

the sequence into another template with the same pattern. While the translation is usually correct,

occasionally, the template names chosen for the fields are incorrect. This happens infrequently; as

more testing is done the algorithm can be improved to try to eliminate the false-positives. For those

cases, where evtfx cannot determine the template translation at all, it will resort to using field names

Copyright © TZWorks, LLC Apr 15, 2024 Page 6

like “slot_00, slot_01, …, slot_xx” and leave it up to the analyst to determine the translation of the data

fields.

The other point to make is that evtfx, when parsing data from raw clusters from a partition or memory

dump, does not try to reconstruct the cluster run for the event log file. Instead, it just traverses one

cluster, sequentially, when it looks for EVTX records. It is an enhancement that can be added later, if

required. The primary intent of these two options (-partition and -image) was a way to stress the tool so

it could encounter differing levels of corruption in the records during the parsing operation. The idea

was to force evtfx to encounter as many boundary conditions as possible so they could be addressed

during testing prior to release. These options were left in so the analyst could play with them as well

(and hence the reason they are labelled experimental).

Finally, when processing large datasets, whether it be from many event log files in one session or

targeting an entire volume that is large, the results produced can potentially create a very large results

file (or database, if using the SQLite option). Keep this in mind with processing many files at once, since

handling a very large CSV may not be something that is desirable. For this reason, the SQLite option

was added, to make it more extensible for the user to query the final results relatively quickly.

Copyright © TZWorks, LLC Apr 15, 2024 Page 7

3 SQLite Results

If one chooses to output the parsed data into a SQLite database, the two tables of interest are the

_genesis and the _evtfx_data tables. The first table (_genesis) stores the command line parameters

used when running evtfx along with some other metadata about the system when generating the

results in the _evfx_data table. The second table (_evfx_data) contains a record for each event that was

parsed. The fields for each of these tables are shown below:

For each event record that is parsed, there are some fixed value fields and there are some variable

fields. The fixed value fields are ones that are common across many events (eg. record, event_id,

create_time, etc.), while the variable ones are unique to the specific event identifier/type. Unique data

occurs in the slot values of the record, where each value can have a context specific name and is

dictated by the template definition referenced by the event. Since JSON is just a set of key/value pairs,

it offers the flexibility to capture all the event log data independent to place into these variable fields.

The slot_data, slot_extra, and notes are the variable type fields and have key/value pairing of data.

Below is an example of parsing a System.evtx log and how the records get translated into the SQLite

database schema. To start the example, a normal view of the data in XML format is shown for reference

purposes. Then, a screenshot of how this same data is translated into the _evtfx_data table as a record.

Copyright © TZWorks, LLC Apr 15, 2024 Page 8

 The slot_data field contains the normal (non-binary XML) slot data found in the record. The slot_extra

field contains the binary XML stream that may or may not be embedded into one of the normal slots,

and it contains its own set of slot data (along with its own template reference). These are broken out as

two separate fields primarily for debugging purposes. The last variable field is for general notes, which is

used to assist in validation of the parsed record. It contains the offset the record found along with the

template identifiers for the normal slot data and the binary XML slot data (if it exists).

 The other table that is of use is the _genesis table. It describes the metadata associated with the

specific running of the evtfx tool. Below is an example of the output.

Copyright © TZWorks, LLC Apr 15, 2024 Page 9

If one runs evtfx multiple times, sending the output to the same SQLite database, the tool will append

new records to the _genesis and _evtfx_data tables. The _genesis table will record each time the tool

ran, and the _evtfx_data will store each parsed event log record. The timestamp field in _genesis uses

the Windows filetime epoch. Likewise, the metaref field in _evtfx_data also uses the Windows filetime

epoch with some additional ticks to avoid collisions between entries (since sending the output to the

database is done in bulk and results in each entry being submitted faster than the resolution of the

timestamp). Using these two fields from their respective tables, one can synchronize on time, to

separate which records were parsed for each instance that was run by the tool, if that was of interest.

3.1 Extracting Specific Event IDs

If a SQLite database was created to store evtfx results, then one can go back and either query the

database using a SQL statement or using the build-in -eventid command. A typical SQL statement to

extract a specific event identifier could be:

The example above assumes one is in a SQL shell and loaded the database that was generated by evtfx.

The following entries in the above command mean:

• _evtfx_data = table name

• event_id = field name within the table to filter on

• 4614, 4723, 4724, 4738 = event id’s that relate to records where the password changes in the
security log. These are the ones we would like to extract.

Alternatively, one could use the -eventid command built into evtfx, and accomplish a similar result:

The advantage of this last option is one does not need a SQL shell, but can run the extraction directly

using the evtfx tool and output the results into an output file with CSV formatting.

To see other categories of event ID combinations associated with system changes, see the section on

“Event Category Reports” in the evtwalk user’s guide.

Copyright © TZWorks, LLC Apr 15, 2024 Page 10

4 EVTX Record Templates

Many EVTX records, with some exceptions, make common use of template definitions to specify how to

interpret the field labels associated with the value data. During the parsing process a normal EVTX

parser would look for the template definitions within each ElfChnk data section. This works fine if all the

data is in order and the position of the records relative to the start of the template definition are

preserved. This type of parsing relies on position dependent translation of the data field. However,

when considering the case where the data may not be contiguous, or if the template definition is

corrupted, then the problem becomes more difficult and the position dependent parsing fails.

The parsing engine in evtfx uses a couple of techniques to get around the position dependent parsing.

Since each record contains a pattern that is associated with a template definition, in combination with a

template identifier that is embedded into each record, the tool then can simply do a lookup on these

parameters to derive which field names are associated with the values when doing the translation.

However, this requires one to store the template definitions within the tool. Unfortunately, there are

literally thousands of template definitions, therefore, storing them all is not an acceptable option.

Alternatively, what evtfx does is store some of the more common template definitions to handle the

general cases. To handle all the rest of the template definitions, evtfx dynamically builds a template

database on the fly when it encounters any record that contains a template definition. It stores this in

an internal, dynamically built database that resides in memory, and accesses it during the

parsing/translation process. While testing is still being done, empirical testing suggests, that just by

using this approach, one can achieve very accurate results.

In conclusion, evtfx has a use-case that allows it to fit in to the EVTX set of parsing tools. With that in

mind, the tool is still doing something non-standard, as far as the parsing process. This means it can

result in errors in the translation process and the results produced by the tool should be considered

experimental. For those wanting a more reliable event log parser than what evtfx offers, then one

should consider using evtwalk tool, and limit usage of the evtfx tool for those cases where the log file

cannot be parsed by other log parsing tools.

5 CSV Field Names / Meaning

Below is a refence of all the CSV fields used and their meanings.

CSV Field SQLite Field Definition

 metaref Timestamp (using filetime epoch) with tick to ensure
no aliasing of time

Record# record Record number in the event log

EventID event_id Event ID for the record

- create_time_raw Filetime (in epoch format) of the event

Create Time [UTC] create_time Date/Time in UTC format of the event

Level level Severity level of the event

Computer computer Computer name where the event occurred

Copyright © TZWorks, LLC Apr 15, 2024 Page 11

ProviderName provider Event type provider

 channel

SlotData slot_data Pairs of key/value name data associated with the
event

SlotExtraData slot_extra Translation addition binary XML data embedded as a
slot as pairs of key/value name data.

Notes notes Addition metadata, offset of the record and template
identifiers

Filename filename Filename of the event log or fragment of logged
parsed

6 Limitations

This version of the tool has a number of limitations. They are listed below.

• It is still prototype in nature being that this is the first version released. It still needs to be

tested against various types of files, corrupted files, etc. to ensure the tool can perform

consistently.

• Only parses records in event logs that are not compressed or encrypted

• Only works on EVTX type logs. Does not currently support the older WinXP logs.

• In order to translate an event log record, the template definition associated with that record

needs to be located. If the template cannot be found, it needs to be derived. Sometimes this

can cause errors in the translation of the output. For those cases, where evtfx cannot come up

with anything, it will resort to using labels like (slot_00, slot_01, …, slot_xx).

• When parsing fragment files with corrupted records sometimes the parsing engine will

encounter a boundary condition in the code logic and come to an abrupt stop. As evtfx

matures, these boundary conditions are eliminated one by one.

Copyright © TZWorks, LLC Apr 15, 2024 Page 12

7 Available Options

Option Description

-log
Identify which event log(s) to operate on. The syntax is: -log <eventlog to

analyze>. To operate on more than one event log at a time, use: -log

"<eventlog1> | <eventlog2> | ..."

-db

Specifies which SQLite database to create or to act on. The format is:

 -db <name>. During creation, one uses the -sqlite command in conjunction

with the -db <name>. During query, one uses the -eventid <ids> in

conjunction with the -db <name>

-csv

Outputs the data fields delimited by commas. Since filenames can have
commas, to ensure the fields are uniquely separated, any commas in the

filenames get converted to spaces.

-csvl2t Outputs the data fields in accordance with the log2timeline format.

-bodyfile

Outputs the data fields in accordance with the 'body-file' version3 specified in
the SleuthKit. The date/timestamp outputted to the body-file is in terms of
UTC. If using the body-file in conjunction with the mactime.pl utility, one
needs to set the environment variable TZ=UTC.

-sqlite
Outputs the results into a SQLite database. Requires the -db <name>

specifier. The format is: -sqlite -db <name>

-username
Option is used to populate the output records with a specified username. This

only applies to the -csvl2t option. The format is:
-username <name to use>.

-hostname
Option is used to populate the output records with a specified hostname. This
only applies to the -csvl2t option. The format is:
-hostname <name to use>.

-pipe
Used to pipe files into the tool via STDIN (standard input). Each file passed in

is parsed in sequence.

-enumdir
Experimental. Used to process files within a folder and/or subfolders. Each
file is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs <#>.

-filter

Filters data passed in via STDIN via the -pipe option. The syntax is -filter
<"*.ext | *partialname* | ...">. The wildcard character '*' is restricted to
either before the name or after the name.

-no_whitespace

Output the date using the specified format. Default behavior is -dateformat
"mm/dd/yyyy". This allows more flexibility for a desired format. For example,
one can use this to show year first, via "yyyy/mm/dd" or day first, via
"dd/mm/yyyy", or only show 2 digit years, via the "mm/dd/yy". The restriction
with this option is the forward slash (/) symbol needs to separate month, day
and year and the month is in digit (1-12) form versus abbreviated name form.

-csv_separator
Only applies to -csv and -csvl2t options. Used in conjunction with the -csv

option to change the CSV separator from the default comma to something

Copyright © TZWorks, LLC Apr 15, 2024 Page 13

else. Syntax is -csv_separator "|" to change the CSV separator to the pipe

character. To use the tab as a separator, one can use the -csv_separator "tab"

OR -csv_separator "\t" options.

-dateformat

Output the date using the specified format. Default behavior is -dateformat

"yyyy-mm-dd". Using this option allows one to adjust the format to

mm/dd/yy, dd/mm/yy, etc. The restriction with this option is the forward

slash (/) or dash (-) symbol needs to separate month, day and year and the

month is in digit (1-12) form versus abbreviated name form.

-timeformat

Output the time using the specified format. Default behavior is -timeformat

"hh:mm:ss.xxx". One can adjust the format to microseconds, via

"hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no

fractional seconds, via "hh:mm:ss". The restriction with this option is the

colon (:) symbol needs to separate hours, minutes and seconds, a period (.)

symbol needs to separate the seconds and fractional seconds; the repeating

symbol 'x' is used to represent number of fractional seconds.

-quiet Show no progress during the parsing operation.

-eventid
Extract the specified event IDs from the SQLite database (use -db <name>).
If more than one ID is specified, one needs to delimit each ID with a comma.

The syntax is -eventid "id1, id2, ...".

-partition Experimental. Extract EVTX records from the specified volume. The format is:
-partition <volume letter>.

-image

Experimental. Extract EVTX records from the specified file image. This could
be a ‘dd’ image of a volume or a memory dump. As long as the EVTX logs are
stored without any compression or encryption, the tool should be able to pull
out and parse EVTX records. The format is: -image <file>. If the file is a ‘dd’
image of a disk one can add the offset/size within the image of the volume to
analyze, using the sub options: -offset <#> -size <#>.

-vmdk
Experimental. Extract EVTX records from the specified VMDK disk image. The
format is: -vmdk <disk image>. One can add the offset/size within the image
of the volume to analyze, using the sub options: -offset <#> -size <#>.

-offset
Used to specify a starting offset to look at EVTX records. The format
is: -offset <#>

-size
Used to specify a size to look at EVTX records. The size is relative to the
starting offset. The format is: -size <#>.

-base10
Ensure number for sizes and addresses are displayed as base-10 format
versus hexadecimal format. Default is hexadecimal format.

-utf8_bom
All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8 byte
order mark to the CSV output using this option.

Copyright © TZWorks, LLC Apr 15, 2024 Page 14

8 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

9 References

1. Introducing the Microsoft Vista event log format, by Andreas Schuster, 2007
2. Wikipedia, the free encyclopedia. Event Viewer topic
3. TechNet, New Tools for Event Management in Windows Vista
4. Randy Franklin Smith's online encyclopedia.
5. Windows Event Log Viewer, evtx_view, https://tzworks.com/prototype_page.php?proto_id=4
6. SleuthKit Body-file format, http://wki.sleuthkit.org/
7. Log2timeline CSV format, http://log2timeline.net/
8. SQLite library statically linked into tool [Amalgamation of many separate C source files from

SQLite version 3.32.3].
9. SQLite documentation [http://www.sqlite.org].
10. DB Browser for SQLite [http://sqlitebrowser.org/]

http://en.wikipedia.org/wiki/Event_Viewer
http://technet.microsoft.com/en-us/magazine/2006.11.eventmanagement.aspx?pr=blog
http://www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx
http://log2timeline.net/
http://sqlitebrowser.org/

	1 Introduction
	2 How to Use evtfx
	2.1 Processing Multiple Event logs (or log fragments)
	2.2 Scanning large datasets

	3 SQLite Results
	3.1 Extracting Specific Event IDs

	4 EVTX Record Templates
	5 CSV Field Names / Meaning
	6 Limitations
	7 Available Options
	8 Authentication and the License File
	9 References

