TZWorks® Mozilla SQLite Parser
(msp) Users Guide

Copyright © TZWorks LLC
www.tzworks.com

Contact Info: info@tzworks.com
Document applies to v0.19 of msp
Updated: Apr 15, 2024

Abstract
msp is a standalone, command-line tool that parses SQLite

files associated with the Mozilla Firefox Browser (or other
browsers based on the Gecko browser engine, such as
SeaMonkey) that is used on desktops. The tool can target
various Firefox SQLite databases and report the results in a
CSV type format. This tool has working versions for
Windows, Linux and OS-X.

http://www.tzworks.net/
mailto:info@tzworks.net

Table of Contents

R [01 oo [¥ ot i o] TR TP PP US T PPTOUPRR 3
2 Databases Targeted by thisS t0O] ... e 4
2.1 PlACES.SIITE DAtADASE.eiieeiiiee ettt e e s e e e e e e e e et e e e e e narae e e e araeas 4
2.2 oo Te) (XY |1 =R D1 =1 o 1Y PRt 6
2.3 downloads.SQlite Databaseccuueiiiecuieii ittt e e s e e s sbae e e e s raaeeennee 6
2.4 favicons.SQIIte DAtabasecccuiiiiiciiiiiiiie e e e et e e e srraeeeenes 6
2.5 formhistory.sqlite Databasecooccuiiiieciiii et 7
2.6 Location of the SQLite databases......ccoeiiiiriiiiieieeee et 7

I = (01 YA o U -1 1 LY o T T USSP RS UP TP PR 9
3.1 Targeting Specific Database fileScc.uee i e 9
3.2 Integrated Parsing AlSOrthMSuiii i e s e e 10
3.21 Algorithms and their ProS/CONS........cccuiiiiicieeiee ettt ettt saesre e ereereesteesbeesaaesareenve s 11

3.3 Y T Yo L1 AT=Te [@R VA @ LU oYU} RSP TR 12
34 B Y =B D= 1= F=) o 13N 12
3.5 Processing Multiple Databasescoocuiiiiieiiie it etee e e et e e e 13
3.6 Merging of Data betWeen Tables.........uu i et 14
3.7 Parsing Firefox Artifacts from Memory or @ Disk IMage......cccceveveciieiiicciee et 14
3.8 Bypassing the Embedded SQLItE [IDrarycceeeieiiee it 15
3.9 Splitting the Mozilla Sessions into Separate Files........cccvcuieeiiiiiiiiciiieee e 16
3.10 Verification and Validationoc.ooeeiiiniii ettt 17

4 Use Of the SQLILE LIDIary ...ttt e et e e e et e e e e eeata e e e e breeesennaaeaean 18
5 CSV FIield Names / MEANINGcoouiiiiiieeieeeectee ettt ettt eeteeeeteeeeteeeeteeeeteeestveeeteeeeteeesteseeteeeestesenseeesareean 18
6 LIMITATIONS..ciiiiiiiiiiiii e s e s sae 19
6.1 Versions of Firefox tested With MSPcoocuiiii i e 20

A NV 11 = o] LI O o 4 o L3RRS 20
8 Authentication and the LICENSE File........cooiiiiiiiieeee e 22
O REFEIENCES ..ottt ettt e bt s bt e s a et et e et e be e bt e ehe e eat e e teebeeebeesheesaeena 22

Copyright © TZWorks, LLC Apr 15, 2024 Page 1

Copyright © TZWorks, LLC Apr 15, 2024 Page 2

TZWorks® Mozilla SQLite Parser (msp)
Users Guide

Copyright © TZWorks LLC
Webpage: http://www.tzworks.com/prototype_page.php?proto_id=49
Contact Information: info@tzworks.com

1 Introduction

As background, the Gecko engine is used in the current Mozilla architecture. Other common browser
engines include Blink and WebKit. Below is a table to showing where the Gecko engine is used, and
consequently, which browsers and the respective SQLite tables, the msp tool targets.

Chromium based that urls, visits, keyword_search_terms, visit_source, downloads, The csp tool just targets
use the Blink engine downloads_url_chains, clusters_and_visits, content_annotations, the SQLite data and the
(e.g. Edge, Chrome, context_annotations, cookies, autofill, thumbnails, top_sites, ccp tool is used to parse
Brave, Vivaldi, etc.) omni_box_shortcuts, logins, favicons, favicon_bitmaps, nel_policies, the cache
bounces

msp Mozilla based that use moz_places, moz_origins, moz_bookmarks, moz_historyvisits, The msp tool just targets
the Gecko engine (e.g. moz_inputhistory, moz_keywords, moz_annos, moz_items_annos, the SQLite data and the
Firefox, SeaMonkey, moz_anno_attributes, moz_cookies, moz_downloads, moz_icons, mcp tool is used to parse
Tor Browser, etc.) moz_icons_to_pages, moz_pages_w._icons, moz_favicons, the cache

moz_formbhistory

sap WebKit based browsers history_items, history_visits, history_items_to_tags, history_tags, The sap tool also parses
(e.g. Safari) icon_info, page_url, cache_settings, cloud_tabs, cloud_tab_devices, the cache, as well as,
cfurl_cache_blob_data, cfurl_cache_receiver_data, some plists containing
cfurl_cache_response, ItemTable useful data

This document will use the terms Mozilla and Firefox, but the tool’s capabilities will also handle the
SeaMonkey and Tor browsers. The Firefox version of the browser is usually the most kept up to date as
far as latest changes.

As shown in the second row above, the Mozilla Firefox Browser has many artifacts available that the
forensics examiner can use in identifying a user’s Internet activity. This includes Firefox’s various
databases, local storage, JSON formatted text files and its cache.

This tool only addresses certain SQLite databases and specific tables within those databases that are
used by the desktop version of Firefox, SeaMonkey and Tor browsers that have been deemed useful by
the forensics community. Specifically, this tool currently targets the following five databases: (a)
places.sqlite, (b) cookies.sqlite, (c) downloads.sqlite, (d) favicons.sqlite, and (e) formhistory.sqlite. Each

Copyright © TZWorks, LLC Apr 15, 2024 Page 3

mailto:info@tzworks.net

of these databases will be discussed later in the document. This tool focuses on the desktop platform of
Firefox and not the versions that can be used with iOS and Android.

When looking across the various versions of the Firefox Browser over time, the schemas of the
databases have evolved. One can think of the database schema as the roadmap that defines the fields
and the type of data in each field that comprise a record in the table (where one or more tables reside in
a database). The change in schemas across different versions is something that needed to be taken into
account when designing the msp tool. The design that was used was similar to that used on past SQLite
parsers developed by TZWorks, in that, the tool can dynamically detect and adjust to varying schemas as
they are encountered during the parsing operation.

In addition to the auto-schema detection, the msp tool allows the user to parse a target database in
three ways. (1) The first way makes use of the standard SQL (Structure Query Language) to parse the
records. The SQL syntax is internal to the tool, so the user is not required to have any knowledge about
SQL or its syntax. For this option to be available, the SQLite library was statically linked into the tool,
which eliminates the need for a SQLite dynamic library to be present to run the tool. (2) The second
approach allows the user to instruct the tool to parse each record by traversing the internal SQLite
structures as they are encountered. This option does not use any part of the standard SQLite library,
but utilizes the TZWorks’ internally designed libraries. The benefit of ‘rolling your own’ library is multi-
faceted; not only does it allow the tool to extract records from a corrupted database, but one can
annotate the exact offset of the data where it was found. This enables one to easily validate it later with
a hex-editor. (3) The third, and final approach, uses a signature-based parse. While this option is more
limited in merging records from one table to another, this turns out to be a unique way in parsing a blob
of data whether it be from memory or from a fragment of a database. All three approaches are
designed into the tool for the analyst to use. More discussion on these options is discussed later.

2 Databases Targeted by this tool

2.1 places.sqlite Database

Mozilla’s places.sqlite database has a number of tables of interest to the analyst. Below is a diagram of
these tables and their relationships to each other. Keep in mind not all the tables, as well as fields in the
tables, may be present in the older Firefox browser versions. The same can be said of the fields that
comprise each of the tables. Some fields may not be present depending on your version of Firefox.

Copyright © TZWorks, LLC Apr 15, 2024 Page 4

=] moz_bookmarks
[id ®
[type 1
(@)
|=| parent []
.;\ position
|=) title
|l keyword_id o
| moz_places 'E:‘ folder_type
iy - =) dateAdded
|==) lastModified
e url \)
| title 'E.‘ guid
) rev_host |§\ syncStatus
;I visit_count | syncChangeCounter
) hidden | moz_historyvisits
=) typed 2 id
) frecency |=) from_visit
| last_visit_date @ | place_id
=) guid =) visit_date
=) foreign_count |=) visit_type
= url_hash |=) session
] description |=) source
| preview_image_url \;I triggeringPlaceld | moz_items_annos
—t-@ &) origin_id - L2 id
| site_name = m‘oz_inputhistmy ;I item_id —
=) recalc_frecency @ | placeid D anno_attribute id——
=) alt_frecency =t input ;l con(e_n(B
= recalc_alt_frecency || use_count =) flags
— | moz_keywords || expiration
_| moz_origins 2 id o+—— [=) type
® [(=) keyword =) dateAdded
=) prefix @) place_id L) lastModified |
=) host (=) post_data
| frecency
| recalc_frecency B moz_ennos
E:‘ alt_frecency 2 id
| recalc_alt_frecency ® [placeid || moz_anno_attributes
\5\ anno_attribute @——— (@ _;: id [
|2 content \;i name
|| flags
| expiration
=/ type
|| dateAdded
E‘j lastModified

The table relationships are shown by the lines connecting one table to another. These relationships will
have an effect on the number of records that will be outputted by the msp tool. For example, the tables
moz_places and moz_historyvisits have what is called a ‘one to many’ relationship. The
moz_historyvisits may have many linked records to only one entry in the moz_places table. Therefore,
after merging the data from the moz_historyvisits table to the moz_places table, one most likely will get
more records in the output of the report then the number of records in the moz_places table. This is
because each parsed line in the output has taken the ‘one to many’ relationship and converted it to a
‘one to one’ relationship; where each line in the output shows one moz_places entry and one
moz_historyvisits entry. If there was a second moz_historyvisits entry for the same moz_places entry,
that would constitute a separate output line. Outputting the data this way allows the various
timestamps recorded to be digested better by other tools.

This behavior exists across other tables as well, assuming there are multiple entries from one table
referencing a single entry in another table.

Copyright © TZWorks, LLC Apr 15, 2024 Page 5

2.2 cookies.sqlite Database

The cookies.sqlite database has one table of interest shown below.

| moz_cookies
[id
) originAttributes

|=) name

[2) value

[=) host

_) path

) expiry

[=) lastAccessed
[2) creationTime
[=) isSecure

[=) isHttpOnly
[=) inBrowserElement
|) samesite

|=) rawSamesite
|=) schemeMap

| isPartitionedAttributeSet

I Bl B

2.3 downloads.sqlite Database

The downloads.sqlite database is only seen with the older versions of Firefox. The newer versions store

the download data within the places.sqlite database. The msp tool can extract these records from

either database. Shown below is the database that exists with the older version of the Firefox browser.

2.4 favicons.sqlite Database

|| moz_downloads

2id

[=) name

[=) source

[2) target

[2) tempPath

[2) startTime

[2) endTime

[=) state

[=) referrer

[2) entitylD

[=) currBytes

[=) maxBytes
[=) mimeType
[=) preferredApplication
[=) preferredAction
[2) autoResume

[2) guid

Copyright © TZWorks, LLC

Apr 15, 2024

Page 6

The favicons are either stored in the places.sqlite database under the table moz_favicons or in a
separate database called favicons.sqlite. The older versions of Firefox stored the Favicons in the
places.sqlite database and the newer versions are stored in a separate database. The msp tool can
extract these records from either type.

places.sqlite favicons.sqlite

(older version)
=] moz _places | _; Jn}oziglcons
l‘:l id |=) icon_url
:E]I :::e [=) fixed_icon_url_hash
ifl rev_host ‘=:\ width
I:I visit_count J;\ root
|=) hidden l;\ color
[2) typed |=) expire_ms
—le [=) favicon_id =) data
w.] frece 2o | moz_icons_to_pages
) |-} page_id
| moz_favicons L 1@ [icon_id
® [id [=) expire_ms
(=) url | moz_pages_w_icons
(=) data 2 id
Q mime_type J=\ page_url
|=) expiration [=) page_url_hash

2.5 formhistory.sqlite Database

The formhistory.sqlite database has two tables. One table is for deleted form history records and the
other table for the form history. The msp tool only extracts records from the moz_formhistory table.

|| moz_deleted_formhistory
) id
[=) timeDeleted
=) guid

| moz_formhistory
2 id
[=) fieldname
(=) value
[=) timesUsed
(=) firstUsed
[2) lastUsed
(=) guid

2.6 Location of the SQLite databases

Mozilla Firefox SQLite database artifacts are located in the user’s directory. This varies depending on the
operating system used. Below is a table that breaks out the location by operating system.

(o} Database location
Win XP %userprofile%\Application Data\Mozilla\Firefox\Profiles\<random text>.default

Copyright © TZWorks, LLC Apr 15, 2024 Page 7

Post Win XP | %userprofile%\AppData\Roaming\Mozilla\Firefox\Profiles\<random text>.default
0SX /Users/[user acct]/Library/Application Support/Firefox/Profiles/<random text>.default
Linux /home/[user acct]/.mozilla/firefox/<random text>.default

Copyright © TZWorks, LLC Apr 15, 2024 Page 8

3 How to Use msp

The screenshot below shows the options available. The output formatting options are similar to the
rest of the TZWorks tools. The output can be rendered in one of the three formats: CSV, Log2Timeline,
or BodyFile (Sleuthkit format).

2. Administrator: Windows PowerShell

Usage

Mozilla SQLite Parser commands

msp -db <places.sqlite> [options]

dir <location Firefox db> /b /s | msp -pipe [options]

msp -enumdir <location Firefox dbs> -num_subdirs <#> [options]

Parsing options
[default opt] = use standard SQLite 'select' to pull records
-carve [-incl_slack] = *** carve optl: by walking db structures
-parse_chunk = *** carve opt2: by scanning for signatures

Basic output options
-csv output in CSV format
-csvl2t log2timeline output
-bodyfile sleuthkit output

Additional options
-username <name>
-hostname <name>
-csv_separator "|"
-dateformat mm/dd/yyyy
-timeformat hh:mm:ss
-no_whitespace
-quiet

for -csvl2t output
for -csv12t output
use a pipe char for csv separator
yyy-mm-dd" is the default
" is the default
remove whitespace around csv delimiter
no progress shown

Folder Traversing Options

-pipe pipe files to parse

-enumdir <dir> -num_subdirs <#> pull from files from folder
-split_sessions *** Split sessions into separate files

Testing options
-no_table_merge *** output without merging tables
-verify [-add_comments] generate stats on parsing [temporary]

To process SQLite database files, one can either target a folder or individual database files. The tool will
automatically determine which database type/schema version to use and adjust the parsing engine
accordingly. In fact, when parsing many subdirectories of artifacts where each subdirectory is a
different account or machine, the tool will dynamically adjust for the version of the database being
parsed at that time and keep the record content data sorted.

If processing a directory of database files (either by using the -pipe command or the -enumdir
command), the tool will look for the Mozilla directory structure starting with the “Profile” folder to
indicate when to start parsing.

3.1 Targeting Specific Database files

If one wants to target a specific database, use the -db option. Without any specific parsing
parameters, the default parser uses the Structured Query Language (SQL) in combination with the

Copyright © TZWorks, LLC Apr 15, 2024 Page 9

statically linked SQLite library to extract the records in the various tables in the database. Below is an

example of doing

this.

>mspb6

4 -db c:\dump\places.sqlite -out results.csv

The default output is rendered in pipe delimited text and has 11 fields. These fields are explained in the
section on CSV Field Names/Meaning. To allow flexibility with rendering differing data types across the
differing tables and databases in the output, some of the fields make use of a quasi-JSON like format;
this allows records with different fields across various tables to be rendered in one CSV/delimited
format. Below is a sample output.

E:\testcase'
E:\testcase'
E:\testcase
E:\testcase'
E:\testcase'

|type rowid createtime lastaccess| expires url or name params params translation extra fields data re¢ file
|url 1 10/16/2019: 10/16/2019 https://www.mozilla.org/privacy/firefox/ {"data":"none"} {"visit_type":"link"} {historyvisit=["id":"1";"

{url 2 10/16/2019: 10/16/2019 https://www.mozilla.org/en-US/privacy/firefox/ {"title":"Firefox {"visit_type":"permanenti {historyvisit=["i

|url 3 05/14/2020: 05/14/2020 https://www.mozilla.org/en-US/firefox/76.0.1/w {"oldversion™:": {"visit_type":"link"} {historyvisit:

url 4 05/14/2020: 05/14/2020 https://www.mozilla.org/firefox/76.0.1/whatsne {"oldversion":": {"visit_type":"temporaryr {historyvisit

url 5 05/14/2020: 05/14/2020 https://www.moziIIa.org/errgS/firefox/76.0.1/w {"title":"Whata¢ {"visit_type":"permanent {historyvisit

Lt geeeae 0020 Seiealaed0m i

The tool will try to show all the associated fields for each record. Those that are not normally looked at,
are shown in the ‘extra fields’ column, where each field is annotated by a ‘name of field/value of data’
pair. Many of the items of interest such as timestamps and URL have their own dedicated columns.

If running the tool with either the -carve or the -parse_chunk options, the ‘data record sources’ field
will be populated with the offset of the record. For example, running the same command above but
specifying carve as the parse algorithm, yields the same data above, but with the data record sources
field populated.

msp64 -db c:\dump\places.sqlite -out results.

data record source(s)
{moz_historyvisits=["src":"carve main"; "record offset":"0x0005ffee"];moz_places=["src":"carve main"; "record offset":"0x0001fccf"]}
{moz_historyvisits=["src":"carve main"; "record offset":"0x0005ffdb"];moz_places=["src":"carve main"; "record offset":"0x0001fbfa"]}

"o "en

{moz_historyvisits=["src":"carve main"; "record offset":"0x0005ffc9"];moz_places=["src":"carve main"; "record offset":"0x0001fb72"]}

{moz_historyvisits=["src":"carve main"; "record offset":"0x0005ffb5"];moz_places=["src":"carve main"; "record offset":"0x0001faec"]}
{moz_historyvisits=["src":"carve main"; "record offset":"0x0005ffal"];moz_places=["src":"carve main"; "record offset":"0x0001f9f2"]}

This gives one the location information necessary to analyze the data in a hex editor to verify the results,
if desired.

3.2 Integrated Parsing Algorithms

The msp tool offers three possible parsing algorithms to choose from; these are outlined below:

Copyright © TZWorks, LLC Apr 15, 2024 Page 10

et e ’-""Id/'“'vr\t’"ift"ﬁ"r“”“*‘nh‘ Jﬂ T T Yy E:\testggse!

1. Default option. This option uses the internal SQLite library that is statically linked into the tool
to perform a SQL-Select statement on the database under analysis. It is sensitive to corrupt
databases.

2. Carve option. (-carve). This option uses a TZWorks based set of algorithms to traverse the
SQLite data structures to parse the records in the database. It relies on the database’s schema
and internal tree-based structures to find the data. This option appears to work fine even if the
database cannot be opened via the standard SQLite library. When corruption is present, this
option will skip bad records and will attempt to go to the next one. It also looks at unused space
for any records that may be present using the -incl_slack option.

3. Signature-base option. (-parse_chunk). This option does not make use of the SQLite schema or
tree-based structures in the database to locate records. Instead, it looks for pre-defined
signatures in order to locate records and parse them. Empirical testing has shown this approach
works from either a fully intact database, a corrupted database or a partial blob of a database.
While this option can pull valid records, it truncates the data when a record spans multiple
SQLite-pages. For any records that are truncated, the output will be annotated with a flag
identifying it as such.

3.2.1 Algorithms and their Pros/Cons

The benefit of the default option is its usefulness for verification and validation purposes. Given that the
tool can produce the same output for any of the three available parsing options, one can use the default
option as the base option to compare other parsing algorithm results. In this way, one can easily verify
whether the carve option and/or signature-based option works, simply by comparing the results to that
of the default SQL-Select option.

In most cases, the carve option (-carve) is a better choice over the default option, simply because is
returns the same, if not more, results. If invoking the sub-option -incl_slack, the tool has the ability to
detect unused space and switches to a signature-based scan for those areas.

Surprisingly, the signature-base option (-parse_chunk) competes very well with the other two options.
Keep in mind, this option relies strictly on unique signatures being accurate for its success. While the
other two options can dynamically adjust their parsing engine based on the schema identified in the
database, the signature-based option cannot. Depending on the number of recoverable records in the
database, it is possible for signature-based option to extract more records than the other options,
however, the user is cautioned, that more records do not necessarily mean accurate data. For example,
if one passes in a file that contains the contents of a disk volume, with the intent of extracting all the
Firefox artifacts from that image, then the user may get multiple false positives on certain table records.
The msp tool does a good job of statistically pulling out table entries that have many fields versus those
tables that only have a few fields. Therefore, certain table entries will have less false positives than
others.

The other issue to consider with the signature-base option is the merging operation from data in one
table to another table (based on some relationship between the tables) may or may not make sense.

Copyright © TZWorks, LLC Apr 15, 2024 Page 11

For example, if a timestamp from one table is merged with data from another table, and the data is not
in sync (from a chronological point of view), then the resulting merged record will mislead the
investigator of an event’s occurrence time-wise. The other pitfall with the signature-based scans, which
was mentioned earlier, is that approach will truncate the data if a record overflows into multiple
databases pages; the signature-based scan will only report on data found in the initial page.

To handle the data accuracy issue, refer to the section on “Merging of Data between Tables”. In
conclusion, despite the negatives for the signature-based parse, it is the only choice if analyzing partial
chunks of database fragments, whether from memory or disk images.

3.3 Modified CSV Output

When parsing various databases, where a database type can have differing tables and each table
translates to differing schemas or fields, one of the challenges in report generation is how can one get
all the varying data fields into a common CSV format. The simple answer is to invoke the Log2Timeline
option (-csvl2t), or the Sleuthkit BodyFile option (-bodyfile). These are excellent options to achieve this,
since these formats have custom pre-defined fields. They are defined in such a way, so that the format
allows for dissimilar datasets by assuming all record will have at least a timestamp and description of the
event that occurred. These formats also contain fields for generic data for notes and comments.

The above formats, because of their nature, can take one record and create multiple CSV entries if an
entry contains multiple differing timestamps. Therefore, if one desires to output a single CSV line per
record, then some of the fields need to be designated as variable in nature. Leveraging off of the
concept of the -csvI2t format, one can accomplish this by creating some static fields as well as some
general-purpose fields. For the default or the -csv option, the msp tool does just that. Specifically,
there are a few static fields where the types are set, but there are others where a quasi-JSON format is
used. In this way, many of the fields of a record can be outputted in a way where like-fields, such as
Type of record, RowID, Timestamp, and URL are static, but the other general-purpose fields can contain
differing types of data. For general-purpose data, the quasi-/SON format used by the msp tool consists
of outputting the data in a name/value pairing relationship.

3.4 Type Designations

The output will render two types of designations. The first is as result of merging records from tables in
the accordance with the schema of the database. For this case, the following designations are used:

Record Type Table(s) where the data resides Database where the table(s) reside
Download moz_annos or moz_downloads places.sqlite or downloads.sqlite

moz_icons or moz_favicons favicons.sqlite or places.sqlite

moz_keywords places.sqlite

Copyright © TZWorks, LLC Apr 15, 2024 Page 12

moz_bookmarks places.sqlite
moz_places, moz_historyvisits places.sqlite

moz_origins places.sqlite

moz_cookies cookies.sqlite

moz_formhistory formhistory.sqlite

Alternatively, if merging of records from tables is turned off (via -no_table_merge), then the type

designations may specify be the actual table name where the data came from. These table names are
shown in section on “Databases targeted by this tool”.

In addition to the record types shown above, there are some cases were the type is supplemented with
an extra word, such as Trunc, which means the data was truncated. This only occurs with using the
signature-based scan (-parse_chunk). This is because the data in the record spans multiple database
pages and for signature-based scans, only the data in the initial page is parsed.

3.5 Processing Multiple Databases

If desiring to process many database files in one pass, one can put the artifact databases in separate
subdirectories that share a common parent folder (or just enumerate them on a live system) and use
the -pipe option like so:

>dir c:\dump\firefox_dbs /b /s | msp64 -pipe -out results.csv

To be more discriminating one can use the -enumdir option along with the sub options -num_subdirs
and -filter like so. This allows one to target a certain level of subdirectories and only files with the
extension sqlite.

>msp64 -enumdir c:\dump\firefox_dbs -num_subdirs 10 -filter "*.sqlite" -out results.csv

The above command will process all the databases contained in the c:\dump\firefox_dbs folder and
subfolders. The results of parsing all the databases found will be put into the file result.csv. To help
distinguish which lines corresponds to which database file, an extra field is appended to each record
identifying the source database.

Copyright © TZWorks, LLC Apr 15, 2024 Page 13

3.6 Merging of Data between Tables

Certain tables contain relationships between them, where data from one table is meant to be combined
with another table in order to populate all the fields for a record. The relationships between the Firefox
database tables are shown in the section on “Databases Targeted by this Tool.” The msp tool will, by
default, try to use these relationships and merge the data between the tables appropriately. Each
merged dataset will be treated as a separate record to be outputted into the report. For example, if the
records from three tables make two records after the data is merged, only the two merged records will
be outputted by this tool in the report.

On the flip side, if one has two tables to be merged and they have a ‘one to many’ or ‘many to one’
relationship, then the tool will try to create a ‘one-to-one’ relationship in the results that are outputted.
A good example is the places.sglite database, where a ‘one to many’ relationship exists with the
moz_places table and the moz_historyvisits table. One moz_places record can have one or more
moz_historyvisits records. Since the moz_historyvisits record has its own timestamp when the visit
occurred, to create a proper timeline of events, one needs to duplicate the moz_places record data to
account for all the visits record data. This action of duplication of data from the moz_places record
creates the ‘one-to-one’ relationship in the output. Unfortunately, this gives the perception that there
are a large number of duplicate records. Whether it be with the moz_places to moz_historyvisits
relationship or some other table to table relationship, inevitability, there will be duplicates where some
of the records outputted will match each other, especially when considering parsing deleted records out
of unallocated space. This tool does not make the determination whether the records it parses are
duplicated or not; it just outputs all the data.

In some cases, one may not want this merging to take place, and may want to see all the un-merged
data from each table separately outputted as a separate record. This behavior can be done by invoking
the -no_table_merge switch. This option only works with the default or -csv output modes (and does
not work with -csvI2t or -bodyfile). This is because not all table records that are parsed by this tool
have a timestamp associated with them, which the -csvI2t and -bodyfile formats rely on.

The main use-case for the -no_table_merge, is when one processes chunk of data (i.e. consider a partial
memory dump, volume dump or a partial database file) which contains some Firefox artifacts. In this
case, any records extracted from partial tables may relate to one computer’s account Firefox data, but
not to another account. Alternatively, using the same example, assume there is only one user account
on the computer; what could happen is that a parsed timestamp from one table may be out of
sequence, from a chronological perspective, from data in another related table. Therefore, any merge
operation in the above cases is dubious at best, since there is really no good way to tell if the merge
operation will yield accurate results.

3.7 Parsing Firefox Artifacts from Memory or a Disk Image

Copyright © TZWorks, LLC Apr 15, 2024 Page 14

If one wishes to parse artifacts from a file-based archive that contains a memory or a disk image, then
one would use the -parse_chunk option. During the parsing operation, the tool uses a signature-based
scan looking for records. Below is an example of performing this operation on a VMWare memory
image. Notice we incorporated the -no_table_merge option as well, since we do not want to merge
table data together. This is done as a precaution in case there were multiple instances of Firefox
artifacts at one time or another; each instance, in this case, would represent a different user account on
the system. Merging table data from one user to another user would yield incorrect and misleading
results.

>msp64 -db c:‘\dump\test_image.bin -parse_chunk -no_table_merge -out results.csv

Notice in the command shown, that we still use the -db <file> syntax even though the file we are parsing
is not a database, but is an image of physical memory stored as a file.

The same type of scan can be done on any image that is not encrypted. The only restriction here is that
the image (memory, volume, disk or chunk of data) has to be identical to the system it came from. The
key here is the SQLite records being scanned/parsed need to be preserved in their original form.

The last point to mention is if the msp tool detects a very large file is being processed for analysis, it will
complain if you are not using the option -parse_chunk. Also, msp will complain if either the -csvi2t

or -bodyfile output options are used for large file analysis, since only the -csv (or the default) output
option is allowed for this situation. This limitation is hardcoded into the tool. Furthermore, it will
automatically switch into the mode -no_table_merge for very large files. The term ‘very large’ in this
context are sizes not normal for individual Firefox databases, so an arbitrary size above 130 MB is used
for this threshold.

3.8 Bypassing the Embedded SQLite library

The msp tool has the SQLite library embedded into the binary. More information about this is discussed
in the section Use of the SQLite Library. The msp tool makes use of this library in the default mode
when parsing.

Sometimes, however, one may not wish to use the SQLite library for analyzing tables and extracting
records, so an option was added to bypass the SQLite library and use the TZWorks internal SQLite
algorithms to parse the database. This functionality can be invoked in one of two ways: (a) with

the -carve option or (b) the -parse_chunk option. Out of the two options, one should opt for the first,
the -carve option. This option will try to traverse the internal SQLite data structures in the database
(even corrupted ones), and should extract all the same information as if using the normal SQLite. The

Copyright © TZWorks, LLC Apr 15, 2024 Page 15

difference here is the -carve option is more immune to database corruption or database lockdown than
the default option.

The purpose for the second option -parse_chunk, is to go a step further and operate on only a subset of
the database. More specifically, if at least a page of the database is available, this option will try to
make sense of any records it finds. The limitations of this option include: (a) it will not be able to handle
overflow records between SQLite pages, and (b) it may not be able to provide joins between tables that
have a relational aspect. The -carve option discussed earlier, however, will handle the overflow of data
between pages and perform the necessary joins between tables that have dependencies between them.
The benefit of the -parse_chunk option is that it can handle pulling out records from a journal file
independently of the main database file, whereas the other two options cannot.

3.9 Splitting the Mozilla Sessions into Separate Files

One of the use-cases requested was to run a parsing tool against a system with multiple accounts and
breakout the parsing results by account into separate files. Initially added with the companion mcp tool
(for processing Mozilla Cache files), this capability was extended to this tool. The option

is -split_sessions and it can be used with the directory enumeration options (-enumdir or -pipe). This
option tells the msp tool to take whatever was specified as the output file to be appended with a session
number along with the random string used by the Mozilla folder name. This assumes that the starting
folder includes the user’s account folder/subfolders. Below is an example using this syntax.

msp64 -enumdir c:\users -num_subdirs 15 -filter "*.sqlite" -split_sessions -out results.csv

When the processing is done, one will have a number of files (one per Mozilla session). The output
notation will be something like what is shown below. The output name specified (in this case “results”)
will be the part of the name with an incremented number along with the folder name used by Mozilla
for that session.

Copyright © TZWorks, LLC Apr 15, 2024 Page 16

3.10 Verification and Validation

All tools need to tested with some form of verification to ensure their results are accurate. Part of that
testing is to validate the tool’s functionality across different artifact versions. If the tool developer can
automate this testing, then it allows the developer to test the tool across many datasets quickly. This in
turn quickly identifies inconsistencies and problems so that a wide range of bugs can be diagnosed and
fixed.

Normally, the developer tries to do as much of this testing before sending a tool out to clients. In the
case of Firefox, however, since it has a history of changing the schemas across versions so that they are
not backwards compatible, we decided to temporarily add an option for clients to run this type of
verification on their own, if they so choose. To this end, the msp tool incorporates the -verify option to
aid in this purpose.

The -verify option internally invokes all three parsing engines in sequence to parse the same database
so it can compare the results of all three. Simplistically, if all the results match, then the confidence is
very high the tool is working as designed. If the results do not match, it will be because a version of
Firefox is being analyzed where the tool may work with one of parsing engines, but not the others. The
first parsing engine most likely to have problems will be the signature-based parsing, since it more
sensitive to schema changes. In contrast, the default SQL-Select type parsing engine should be the most
robust if there are schema changes, because it will key off of specific field names, which typically are
more consistent across versioning. Either way, the purpose of the -verify option is to provide an
internal test to alert a user if any issues are found.

The nice thing about the way this option was implemented, is not only does it check the internal parsers
against themselves, but it also outputs critical diagnostic data that can be used by TZWorks to help
improve the tool. To ensure no personal information is outputted, the -verify option sanitizes the
results so that it does not contains private/confidential information from the raw artifact. The output
primarily contains metadata from the SQLite internal structures. This causes the data generated to be
cryptic and only useful for machine type learning/statistics. An additional sub-option was added (-add
comments) to annotate some additional commentary to the results; this provides some extra
information for the user if a test passed or failed and why.

>mspb4 -db places.sqlite -verify -add_comments -out verify_results.txt

As mentioned earlier, the data produced is mostly cryptic since it contains statistical information about
the database and records being parsed. This statistical information, if sent back to TZWorks, will help us
improve our parsing engines for future releases.

Below is a screenshot of one of the entries in the results after running this test. For each database
processed, there will be information about the various table schemas of interest. From this we can see
if the schema has been updated from one version to another. In addition, the output shows the
number of records parsed by each engine, the signatures found, and so on.

Copyright © TZWorks, LLC Apr 15, 2024 Page 17

One final comment on the -verify option. This is not a do-everything type built-in test. While it is very

capable and provides a wealth of information, the biggest limitation of this test is that it only compares
un-merged tables records. Therefore, if there is an error during a merge operation between some table-
to-table relationship, it is not included in the battery of tests used by the -verify option. The other
testing shortfall is the last (phase 3) test only compare the first two parsing engines resulting values and
doesn’t consider the third parsing engine (signature-type scan). These shortfalls may be something
added in the future, but for now the purpose of this automated testing is to: (a) capture differences in
various Firefox formats, (b) identify issues with the various parsing engines in the tool so they can be
fixed quickly, and (c) get more empirical results as it pertains to signature-type scanning, since this
engine at its core relies on statistical data.

4 Use of the SQLite Library

The databases that are targeted by the msp tool are SQLite databases. For the purposes of the msp
tool we statically link in the SQLite library to ensure the tool has minimal dependencies. The source
code for the SQLite library is an amalgamation of the SQLite ‘C’ source files, version 3.32.3. More
information about SQLite, the documentation and the source code can be seen at the official SQLite
website [http://www.sqlite.org/].

Normally when we build a tool to parse a raw artifact, we prefer not to use outside libraries, however, in
this case, the SQLite library has an option to open a SQLite database in ‘read-only’ mode. From the
testing done and from the documentation, it appears that this is acceptable for this release.

5 CSV Field Names / Meaning

Copyright © TZWorks, LLC Apr 15, 2024 Page 18

http://www.sqlite.org/

Below is a refence of all the CSV fields used and their meanings.

CSV Field Definition

field Cache version number

type Type of data based on the table the record comes from. Example of types
include: url, cookie, bookmark, favicon, download, etc

rowid Internal parameter to the SQLite table record identifier

create time [UTC] Date/Time the URL or item was created

last access [UTC] Date/Time the URL or item was last visited or accessed

expires [UTC] Date/Time the URL or item expires

url or name URL or name of the item

params Any HTTP parameters passed in with the URL (or can be used for other items
if not a URL)

params translation Translation of any parameter passed in (or can be used for other items if not
some that require translation)

extra fields Any fields not covered by the previous fields that are part of the record

data record source(s) | The source table and record offset within the database where this record
was parsed (only applies to -carve and -parse_chunk parsing options)

file Database file that was parsed

6 Limitations

This version of the tool has a number of limitations. They are listed below.

e The tool is still prototype in nature being that this is the first version released. It still needs to
be tested against various types of files, corrupted files, etc. to ensure the tool can perform
consistently.

e The earliest version of the Mozilla Firefox this tool has been tested on is v3.0.1. Therefore, prior
versions should not work.

e The -split_session folder enumeration option relies on the Mozilla directory structure as well as
the naming convention used by Mozilla. Therefore, if either of these things are changed by
Mozilla or if changed by a user, the parsing engine will have unpredictable results or no results
atall.

Copyright © TZWorks, LLC Apr 15, 2024 Page 19

6.1 Versions of Firefox tested with msp

As the version of the browser changes, inevitably so do the tables and their fields change. While not

strictly an issue, in that the msp tool will still try to parse the data as the schema in the changes, any

new field(s) added in future versions of the database will not be reported on until the msp tool is

updated for newer schema changes. Below are the versions of the database tested.

Firefox Versions

Tested these tables (if applicable) with each Firefox Version

3.0.1,4.0,5.0, 11.0, 24.0, 31.0, moz_places, moz_historyvisits, moz_origins, moz_bookmarks,
45.0, 47.0, 52.0, 60.0, 69.0, 72.0, moz_inputhistory, moz_keywords, moz_annos,
76.0, 77.0, 78.0, 79.0, 80,0, 95.0, moz_items_anno, moz_anno_attributes, moz_cookies,

100.0, 102.0, 105.0, 119.0, 120.0, moz_downloads (for older versions), moz_formhistory,

121.0, 123.0, 124.0

moz_favicons (for older versions),[moz_icons,
moz_icons_to_pages, moz_pages_w_icons] (for new versions).

7 Available Options

Option

-db

-CSv

-csvI2t

-bodyfile

-username

-hostname

-pipe

-enumdir

Description

Specifies which database file to act on. The format is:
-db <database or file to parse>

Outputs the data fields delimited by commas. Since filenames can have
commas, to ensure the fields are uniquely separated, any commas in the
filenames get converted to spaces.

Outputs the data fields in accordance with the log2timeline format.

Outputs the data fields in accordance with the 'body-file' version3 specified in
the SleuthKit. The date/timestamp outputted to the body-file is in terms of
UTC. So if using the body-file in conjunction with the mactime.pl utility, one
needs to set the environment variable TZ=UTC.

Option is used to populate the output records with a specified username. This

only applies to the -csvi2t option. The format is:
-username <name to use>.

Option is used to populate the output records with a specified hostname. This
only applies to the -csvI2t option. The format is:
-hostname <name to use>.

Used to pipe files into the tool via STDIN (standard input). Each file passed in
is parsed in sequence.

Experimental. Used to process files within a folder and/or subfolders. Each
file is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs <#>.

Copyright © TZWorks, LLC Apr 15, 2024 Page 20

Filters data passed in via STDIN via the -pipe option. The syntax is -filter
-filter <"*.ext | *partialname* | ...">. The wildcard character '*'is restricted to
either before the name or after the name.

Output the date using the specified format. Default behavior is -dateformat
"mmy/dd/yyyy". This allows more flexibility for a desired format. For example,
one can use this to show year first, via "yyyy/mm/dd" or day first, via
"dd/mm/yyyy", or only show 2 digit years, via the "mm/dd/yy". The restriction
with this option is the forward slash (/) symbol needs to separate month, day
and year and the month is in digit (1-12) form versus abbreviated name form.

-no_whitespace

Only applies to -csv and -csvi2t options. Used in conjunction with the -csv

option to change the CSV separator from the default comma to something

_csv_separator else. Syntax is -csv_separator "[" to change the CSV separator to the pipe
character. To use the tab as a separator, one can use the -csv_separator "tab"

OR -csv_separator "\t" options.

Output the date using the specified format. Default behavior is -dateformat

"yyyy-mm-dd". Using this option allows one to adjust the format to
_dateformat mm/dd/yy, dd/mm/yy, etc. The restriction with this option is the forward
slash (/) or dash (-) symbol needs to separate month, day and year and the

month is in digit (1-12) form versus abbreviated name form.

Output the time using the specified format. Default behavior is -timeformat

"hh:mm:ss.xxx". One can adjust the format to microseconds, via

"hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no
_timeformat fractional seconds, via "hh:mm:ss". The restrictions with this option is a colon
(:) symbol needs to separate hours, minutes and seconds, a period (.) symbol
needs to separate the seconds and fractional seconds, and the repeating

symbol 'x' is used to represent number of fractional seconds.

Experimental option. Bypass the SQLite embedded library and parse using
-carve TZWorks internal algorithms. This is useful when the database to be parsed is
corrupted and the SQLite library has trouble parsing it.

Experimental option to look at unused space to see if any records are present.
-incl_slack Not required with the -parse_chunk option. Use this in conjunction
with -carve or default option to look for discarded records.

Experimental option. Given a portion (chunk) of the database, this option will
examine the data to see if any records exist and parse out the contents. This

is a signature-based parse so it can parse out records from chunks of memory
or slack space (in the form of a file).

-parse_chunk

This option is for pulling records from an image. It is also used for testing and
-no_table_merge |debugging purposes. If you want to see all the tables that were parsed
without merging any relationships, use this option.

Copyright © TZWorks, LLC Apr 15, 2024 Page 21

This option is for testing and debugging purposes only. This option runs all 3
parsing engines in the tool (SQL Select parse, Carve parse and Signature-based

-verify parse) and reports whether the parsers work at least up to the level of the
SQL Select parse. Metadata is generated that can be used to help develop
more robust parsing algorithms.

-quiet Show no progress during the parsing operation.

-split_sessions Split the Mozilla sessions into separate files.

All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8 byte

-utf8_bom) , .
- order mark to the CSV output using this option.

8 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital
X509 code signing certificate embedded into the binary (Windows and macQOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools
(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The
license needs to be in the same directory of the tool for it to authenticate. Furthermore, any
modification to the license, either to its name or contents, will invalidate the license.

9 References

1. Mozilla-central Places Databases [https://developer.mozilla.org/en-

US/docs/Mozilla/Tech/Places/Database]

Mozilla Desktop Data Stores [https://github.com/mozilla/firefox-data-store-docs]

3. SQLite library statically linked into tool [Amalgamation of many separate C source files from
SQL.ite version 3.32.3].

4. SQLite documentation [http://www.sglite.org].

DB Browser for SQL.ite [http://sqlitebrowser.org/]

N

o

Copyright © TZWorks, LLC Apr 15, 2024 Page 22

http://sqlitebrowser.org/

	1 Introduction
	2 Databases Targeted by this tool
	2.1 places.sqlite Database
	2.2 cookies.sqlite Database
	2.3 downloads.sqlite Database
	2.4 favicons.sqlite Database
	2.5 formhistory.sqlite Database
	2.6 Location of the SQLite databases

	3 How to Use msp
	3.1 Targeting Specific Database files
	3.2 Integrated Parsing Algorithms
	3.2.1 Algorithms and their Pros/Cons

	3.3 Modified CSV Output
	3.4 Type Designations
	3.5 Processing Multiple Databases
	3.6 Merging of Data between Tables
	3.7 Parsing Firefox Artifacts from Memory or a Disk Image
	3.8 Bypassing the Embedded SQLite library
	3.9 Splitting the Mozilla Sessions into Separate Files
	3.10 Verification and Validation

	4 Use of the SQLite Library
	5 CSV Field Names / Meaning
	6 Limitations
	6.1 Versions of Firefox tested with msp

	7 Available Options
	8 Authentication and the License File
	9 References

