TZWorks® FAT /exFAT Analysis
(fata) Utility Users Guide

Copyright © TZWorks LLC
www.tzworks.com

Contact Info: info@tzworks.com
Document applies to v0.12 of fata
Updated: Apr 15, 2024

Abstract
fata is a standalone, command-line tool that parses the

FAT32 and exFAT filesystems. The results are displayed in &
delimited text type or CSV format where one file or folder is
displayed per line. fata requires no installation on the
target computer and can be run directly from a removable
device. The algorithm specifically targets the raw disk
sectors and/or volume clusters to parse the filesystem.
fata has binary versions that run in Windows, Linux and
macOS.


http://www.tzworks.net/
mailto:info@tzworks.net

Table of Contents

1
2

INEFOAUCTION ettt ettt et e bt e s bt s ae e et e et e e bt e sbeesaee st e eabeenbe e beeaneesneeennean 3
[ (0N VY o I W LY o 7o RSP SRR 4
2.1 Disk/Volume file enUMEration OPLIONS.......ccveeivieeciee ettt et erre e e reeeeanes 4
211 Using Disk number that is attached to @ system .......cooocieiiiiiii i, 5
2.1.2 Using a Mounted Partition [€TEer.......uiviiiiiee e 6
2.1.3 Using an Offline Image of the disk or VOIUME..........uoiiiiiiiiee e 6
2.2 EXEraction OF Data co..eecueeeieiieeeeee ettt b e sttt e b e saeesane e 7
2.2.1 COPYING fIl@ CONTENTS ..eieieiiiee ettt et e e et e e e e bte e e e e bte e e e ebaeeeeesteeeeesraeaesnnes 7
2.2.2 (0o o1V = A (= 0 W - - [ PSPPIt 7
2.2.3 Copying UNAIOCated CIUSTEIS .....vviiiiiiiee et e s e e s sbre e e e eanee 7
224 File content header information .........coociiiiieiiiiin e e 8
2.3 [ = 1 211 o= PSP 8
2.4 MaPPING ThE MESUILS .eeiiiiiee et e et e e e e e e s ate e e e e abaeeseateee e e nbeeeeennteeeeennrenas 9
2.4.1 FAT and exFAT internals and where it they are located in the output........cccceeevevveeenneen. 10
2.4.2 Where files are COPIBA L0 ..uuiiiiiiieiiiiie e e e e e e e e e raaaeeeeas 12
2.4.3 Where system data is COPIEA 0. ..uiiiiiiiiiiiiiie e saaee e 12
2.4.4 Mapping of UNAllOCAtEd SPACE........uiiiitiie e e e e et 13
2.5 Cluster Runs and how £0 read them .........ccoiiiiiiiiiii e 14
Yot T o] V1 a¥ =4 ] o1 4 (o] o[-t 15
3.1 N or=TaTe [o T g T V=IR[P 15
3.2 SCaN AttAChEd ArIVES ..coueeiiieee e e 16
JN 1 ] o] [ @14 [ o T3PPSR 18
Internals of the FAT32 FIl@SYSTEM ....ccc ettt e e et e e e e eate e e e e abae e e eeabeeeeeeareeas 20
5.1 Volume Parameter BIOCK ........coiuiiiiiiieiieeeieesee ettt 20
5.2 File Allocation Table (FAT) DASiCS....uuiiiiiiiii ettt ettt e e e tre e e e ebe e e e eareeas 23
5.3 FAT32 VOIUME laYOUL....ceiiiiiiiie ettt e et e e e e tee e e et a e e s e eabae e e e enbreeeennreeas 24
5.4 FAT FOrmMatting OPtiONS: ....uueeeiiiiii e sssassssennes 25

Copyright © TZWorks, LLC Apr 15, 2024 Page 1



5.5 Long File Name (LFN) Directory Entry StrUCtUre.......ccocvieeieciiee et e 25

5.6 LFN SEQUENCE NUMDEIS ..eeiiiiiieeiciieeeeettte ettt e e tee e e ettt e e e e eaba e e e e eataeeeeeabaeeseeasaeeeeanseeesennsenas 26
6 Internals of the eXFAT FileSYStEM c...ui it e e st e e s sbeeeessbeeeeesanes 26
6.1 Y YT g T =T To ] A Y=ot o] S TR PPRP 27
6.2 BOOt SECLOr VOIUME FIAES ...vevieie ettt ettt e e st e e e e sabee e s s nabe e e e ennbeeas 28
6.3 AN I == 4T o N 28
6.4 (D F= Y I 2= =4 T o 1N 28
7 Authentication and the LICENSE File......c.eiiiiiiiiiieeieeeeee ettt 30
8 REFEIENCES ..ottt ettt ettt e st e s bt e e bt e e s b et e bt e e st e e e be e e s beesbe e e anbeesreeenareenn 31

Copyright © TZWorks, LLC Apr 15, 2024 Page 2



TZWorks® FAT Analysis (fata) Utility Users
Guide

Copyright © TZWorks LLC
Webpage: http://www.tzworks.com/prototype_page.php?proto_id=55
Contact Information: info@tzworks.com

1 Introduction

This tool was created to be light weight and assist in the analysis of FAT32 and exFAT filesystems while
looking at only the raw disk sectors or volume clusters. The tool’s algorithm is operating system
agnostic when parsing the files or folders, and since it has no installation requirements, it is useful in
various live collection and triaging situations. Furthermore, the tool’s architecture was designed to be
extensible so as to act as an architecture framework for future FAT filesystem work.

When considering the FAT32 is typically the default filesystem for USB flash drives, coming up with a
portable tool that can analyze the contents of the internal structures with or without mounting the
device, as well as, not leaving a tool footprint on the system is useful in many forensic use-cases. Now
that exFAT is commonly available and used for large storage devices, extending the fata architecture to
handle that as well was a logic next step.

The fata tool parses all internal FAT32 and exFAT filesystem data, and attempts to condense the
reporting results in such a way as to make the output clear, while restricting the output to one line per
record (file or folder). Header information is provided, if requested to assist in the identification of the
file content without physically opening the file. Various hashing algorithms options are provided and
can be annotated to the output, if requested. By default, both disk and volume offsets are provided
where it makes sense, like for cluster runs, volume offset and directory entry locations. In this way, the
information allows one to validate any of the results produced by this tool.

In addition to the filesystem internals, fata, allows one to copy all the files that were enumerated;
and/or all the system structures, such as the Volume Boot Record, FAT table(s), Bitmap table,
unallocated clusters, etc. When found, deleted folders and files are shown and can be extracted, if
requested.

Copyright © TZWorks, LLC Apr 15, 2024 Page 3


mailto:info@tzworks.net

2 How to Use fata

The screen shot below shows the available options for this tool.

2. Administrator: Windows PowerShell

fata - full ver: ©.10; Copyright (c) TZWorks LLC
Usage:

Disk/Volume file enumeration
-disk <#> [-offset #] [options] = process disk number
-partition <letter> [options] = process mounted volume
-image <name> [-offset #] [options] process disk/vol image

Additional file options

-copyfiles extract file content
-copy_sysdata = extract file system data
-copy_unalloc_data = extract unalloc data
-header_info = examine file header

-md5S compute MD5 hash

-shal = compute SHA1l hash
-sha256 = compute SHA256 hash

Format options
-CSV output is CSV format
-csvl2t log2timeline output
-dateformat mm/dd/yyyy yyyy-mm-dd" is the default
-timeformat hh:mm:ss = "hh:mm:ss.xxx" is the default
-no_whitespace = remove whitespace
-csv_separator "|" = change delimiter
-basel® use basel® numbers

Output option
-out <results> where to put results

Disk/Image scan utilities
-scandrives attached drives details
-scanimage <dd file> 'dd' image details

2.1 Disk/Volume file enumeration options

The basic options are the various file enumeration cases. One can enumerate the files via: (a) mounted
partition letter, (b) disk number and volume offset relative to disk start, or (c) by a single file that
contains a ‘dd’ image of another disk or volume. fata will return any file or folder it finds including
deleted ones. Included with each file/folder is a complete set of metadata that was used by the
filesystem internally to manage the file or folder. Each entry will be output on a separate line. The
formats available are: CSV or Log2Timeline formats. Both are delimited data formats so they can be
easily ported into an existing archival system.

Copyright © TZWorks, LLC Apr 15, 2024 Page 4



2.1.1 Using Disk number that is attached to a system

If one has a disk that is to be analyzed that is attached to the computer system where the fata tool is
run, then an option is available to analyze it as a raw disk. As a preparatory step, one first needs to find
the physical disk number that is to be analyzed (see the section on Scanning options). Once that is done,
one can invoke the -disk <number> command and the fata tool will enumerate the entire disk locating
all the volumes, and if the filesystem is either FAT or exFAT, will report all the files on the respective
volumes. If the disk has multiple volumes, one can target the specific volume by using the -offset
<value> sub-option. This value inputted should be the volume offset relative to the start of the disk (eg.
physical sector 0). For this last option, refer to the section of “Scanning options” to help locate the
volume offsets.

As an example, we used Mount Image Pro, to mount a disk image that contained a variety of FAT
partitions as shown below. The target image was mount point was physical disk 2.

L Mount Image Pro v7.1.2(1909) - Activated

File Options Help
Filename Capacity  Mounted As Partition  Mount Point
B gpt_mix.vhd 400.0 MB  Disk (PNP) W\PHYSICALDRIVE2
B exfat_voll (G:) 101.0 MB 1 G:
& FAT32_VOL (H:) 101.9 MB 2 H
& FAT16_VOL (1) 549 MB 3 I
B exfat_vol2 (J:) 133.2 MB 4 J

Using the disk# parsing approach one can use fata to analyze all the FAT32 and exFAT volumes on the
mounted disk, using the following command.

e+, Administrator: Command Prompt

The default output is pipe-delimited; a portion of the data is shown below.

type vol_type modified_timestamp access_timestamp created_timestamp utc_diff name path size_valid
subdir exfat 2022-12-0119:05:26.220 2022-12-01 19:05:26.000 2022-12-0119:05:26.220 utc-5.00 System Volume Information [VBR_100000] 0x1000
lsubdir exfat 2022-12-0119:07:51.730 2022-12-01 19: 2022-12-0119:07:51.730 utc-5.00 SRECYCLE.BIN [VBR_100000] 0x1000
lsubdir;deleted  exfat 2022-12-0119:36:08.870 2022-12-01 19: 2022-12-0119:36:08.870 utc-5.00 tools [VBR_100000] 0x1000

lsubdir;deleted  exfat 2022-03-25 02:33:16.000 2022-12-01 19: 2022-12-0119:36:26.610 utc-5.00 logos [VBR_100000] 0x1000
lsubdir exfat 2022-03-2502:33:16.000 2022-12-01 19: 2022-12-0119:40:18.810 utc-5.00 logos [VBR_100000] 0x1000
subdir exfat 2022-12-0119:38:18.000 2022-12-01 19: 2022-12-0119:40:18.830 utc-5.00 tools [VBR_100000] 0x1000
ffile exfat 2022-12-01 19:05:28.000 2022-12-01 19:/ 2022-12-0119:05:26.220 utc-5.00 WPSettings.dat [VBR_100000]\System Volume Information 0x0c
ffile exfat 2022-12-01 19:05:28.000 2022-12-01 19: 2022-12-01 19:05:26.570 utc-5.00 IndexerVolumeGuid [VBR_100000]\System Volume Information Ox4c
lsubdir;deleted  exfat 2022-12-01 19:07:39.580 2022-12-01 19: 2022-12-01 19:07:39.580 utc-5.00 ClientRecoveryPasswordRotation [VBR_100000]\System Volume Information 0x1000
subdir;deleted  exfat 2022-12-01 19:07:39.580 2022-12-01 19 2022-12-0119:07:39.580 utc-5.00 AadRecoveryPasswordDelete [VBR_100000]\System Volume Information 0x1000
lsubdir;deleted  exfat 2022-12-03 02:34:57.920 2022-12-03 02: 2022-12-03 02:34:57.920 utc-5.00 ClientRecoveryPasswordRotation [VBR_100000]\System Volume Information 0x1000
lsubdir;deleted  exfat 2022-12-03 02:34:57.920  2022-12-03 02:. 2022-12-03 02:34:57.920 utc-5.00 AadRecoveryPasswordDelete [VBR_100000]\System Volume Information 0x1000
ffile exfat 2022-12-01 19:07:52.000 2022-12-01 19: 2022-12-0119:07:51.730 utc-5.00 desktop.ini [VBR_100000]\SRECYCLE.BIN 0x81
ffile exfat 2017-06-08 14:04:50.000 2022-12-01 19:

2022-12-0119:40:18.810 utc-5.00 Image-0.jpg [VBR_100000]\logos 0x836d
X utc-5.00  Igage-1jog [VBR_100000]\logos 0x11539

w& 2022,03-25 02:32:48.000 2022-12-01 19:40:18.000
it 20

Copyright © TZWorks, LLC Apr 15, 2024 Page 5



2.1.2 Using a Mounted Partition letter

If one wanted to target a mounted volume, one can use the -partition <letter>. This option is used for
Windows.

Using the same example as above, the partition letters G, H, or J would be something fata could parse.

L Mount Image Pro v7.1.2(1909) - Activated

File Options Help
Filename Capacity Mounted As Partition Mount Point
B4 gpt_mix.vhd 400.0 MB  Disk (PNP) W\PHYSICALDRIVE2
B exfat_voll (G:) 101.0 MB 1 G:
& FAT32_VOL (H:) 101.9 MB 2 H:
B FAT16_VOL () 54.9 MB 3 I
a exfat_vol2 (J:) 133.2MB 4 J

5] Administrator: Command Prompt

The output is the same as the previous disk # parse, however, the root folder is annotated to show the

volume starting at a zero offset versus the disk offset of 0x100000.

type

subdir

subdir
subdir;deleted
subdir;deleted
subdir

subdir

file

file
subdir;deleted
subdir;deleted
subdir;deleted
subdir;deleted
file

file

vol_type modified_ti

exfat
exfat
exfat
exfat
exfat
exfat
exfat
exfat
exfat
exfat
exfat
exfat
exfat
exfat
exfat

2022-12-01 19:05:26.220
2022-12-0119:

2022-12-03 02:34:57.920
2022-12-03 02:34:57.920
2022-12-01 19:07:52.000
2017-06-08 14: 000
2022-02-25 02:

access_til P

2022-12-01 19:05:26.000
2022-12-01 19:07:50.000
2022-12-01 19:36:08.000
2022-12-01 19:36:26.000
2022-12-01 19:40:18.000
2022-12-01 19:40:18.000
2022-12-01 19:05:28.000
2022-12-01 19:05:28.000
2022-12-01 19:07:38.000
2022-12-01 19:07:38.000
2022-12-03 02:34:56.000
2022-12-03 02:34:56.000
2022-12-01 19:07:52.000
2022-12-01 19:40:18.000
2022-12-01 19:40:18.000

created_timestamp

2022-12-01 19:05:26.220
2022-12-01 19:07:51.730
2022-12-01 19:36:08.870
2022-12-01 19:36:26.610
2022-12-01 19:40:18.810
2022-12-01 19:40:18.830
2022-12-01 19:05:26.220
2022-12-01 19:05:26.570
2022-12-01 19:07:39.580
2022-12-01 19:07:39.580
2022-12-03 02:34:57.920
2022-12-03 02:34:57.920
2022-12-01 19:07:51.730
2022-12-01 19:40:18.810
2022-12-01 19:40:18.810

utc_diff
utc-5.00
utc-5.00
utc-5.00
utc-5.00
utc-5.00
utc-5.00
utc-5.00
utc-5.00
utc-5.00
utc-5.00
utc-5.00
utc-5.00
utc-5.00
utc-5.00
utc-5.00

name
System Volume Information
SRECYCLE.BIN

tools

logos

logos

tools

WpPSettings.dat
IndexerVolumeGuid
ClientRecoveryPasswordRotation
AadRecoveryPasswordDelete
ClientRecoveryPasswordRotation
AadRecoveryPasswordDelete
desktop.ini

Image-0.jpg

I ook |

2.1.3 Using an Offline Image of the disk or volume

path

[VBR_000000]
[VBR_000000]
[VBR_000000]
[VBR_000000]
[VBR_000000]
[VBR_000000]
[VBR_000000])
[VBR_000000]\
[VBR_000000]}
[VBR_000000])
[VBR_000000])
[VBR_000000])
[VBR_000000])
[VBR_000000])
[VBR_000000))

System Volume Information
System Volume Information
System Volume Information
System Volume Information
System Volume Information
System Volume Information
SRECYCLE.BIN

size_valid n,

0x1000
0x1000
0x1000
0x1000
0x1000
0x1000
0x0c

Ox4c

0x1000
0x1000
0x1000
0x1000
0x81

0x836d

0x11539

The last option, can be used for Windows, Linux or macOS and will target a disk or volume in the form of

a file (eg. image). This option assumes the image is not compressed or encrypted; the image file needs

to be a ‘dd’ copy of a file. To process this image, one can use the -image <file> option. If the image file

has multiple volumes, one can target the specific volume by using the -offset <value> sub-option. This
value inputted should be the volume offset relative to the start of the image file. For this last option,
refer to the section of “Scanning options” to help locate the volume offsets.

Copyright © TZWorks, LLC Apr 15,2024

Page 6

{

St

0
I
I
0
e
It
0
0
e
r
0
It
0
{



Administrator: Command Prompt

The results are the same as shown in the section “Using Disk number that is attached to a system”.

2.2 Extraction of Data

The fata tool has a few options to extract more than just file path and its metadata. One can also copy
the file contents, system filesystem structures that mange the filesystem and unallocated clusters. One
can select these options independently or in any combination thereof.

2.2.1 Copying file contents

If the option -copyfiles is invoked, the tool will try to copy any file will an extracted cluster run. This
includes both valid and deleted files. They are archived in the export/[VBR_<offset>] subfolder. See
section on “Where files are copied to” for an example on using this option.

2.2.2 Copying system data

If the option -copy_sysdata is invoked, the tool will try to copy system structures and store the data in
separate files. System structures include: Volume Boot Record (VBR), File Access Tables, Reserved
sectors, Bitmap table (for exFAT), etc. All the files created are binary data in that they reflect the actual
bytes from the data structures, with the exception of the offset_map.txt file. See section on “Where
system data is copied to” for an example on using this option.

2.2.3 Copying unallocated clusters

If the option -copy_unalloc_data is invoked, the tool will try to copy all the unallocated clusters and
store the data into one file. The reason why this is not included in the -copy_sysdata option, is the
resulting file that is generated can be very large depending on the size of the disk (or disk/volume
image) and the number of unallocated clusters it has. With multi-terabyte drives as typical and exFAT
able to make use of all the available space, one needs to plan accordingly when

using -copy_unalloc_data option, since depending on how much space is unallocated, this option
would create a very large file. For this reason, this functionality is split off from the -copy_sysdata
option. See section on “Mapping of unallocated space system” for an example on using this option.

Copyright © TZWorks, LLC Apr 15, 2024 Page 7



2.2.4 File content header information

During the parsing of the files, fata can take a look at the first sector of the raw file data to give the
analyst a view of the data. If a signature is present, then the type should match the extension of the file.
Conversely, if the type is generic (like a text document), then a portion of the string is displayed.

One uses the -header_info option to invoke this behavior. The output is rendered in a quasi-JSON
format in the ‘header_info’ column of the CSV output file. Below is an example of using this option and
how the output is rendered.

Administrator: Command Prompt

The output uses prefixes with each of the outputs If magic file signatures are found, they are prefixed
with “sig”. If no signatures are found, fata then looks for any printable text; these are prefixed with
“txt”. Finally, if no signature or text is found, then the first 10 bytes of the file header are displayed;
these are prefixed with “bytes”. One should note, the tool does not make an attempt to categorize all
magic file signatures, just some of the more common ones.

" |[name ¥ |path ¥ size_va v header_info
WPSettings.dat [VBR_100000]\System Volume Information 0x0c "0c 00000030 7e94d31719"}
IndexervVolumeGuid [VBR_100000]\System Volume Information 0Ox4c "{CC5927B7-A864-46D4-ADBS-467D?_18F58FB
desktop.ini [VBR_100000]\SRECYCLE.BIN 0x81 {"txt":"ShellClassInfo";"offset":"2"}
Image-0.jpg [VBR_100000]\logos 0x836d "jpg"}
Image-1.jpg Categories for header_info field: g’
Image-2.jpg a.  Blank- for folders g"}
7za.dll b.  “sig” — signature found z"}
7za.exe c.  “ixt” —text data found "}
7zxa.dll d.  “bytes” — neither signature or text found (displays first 10 bytes) 7
history.txt [VBR_100000]\tools\7z 0x2019  {"txt":"Zip Extra history";"offset":"2"} X,
License.txt [VBR_100000]\tools\7z 0x476 {"txt™:"  7";"offset":"2"}
readme.txt [VBR_100000]\tools\7z 0x1118  {"txt":"Zip Extra 21";"offset":"2"}
change.log [VBR_100000]\tools\Notepad++ 0x8fo {"txt":"Notepad"}
config.xml [VBR_100000]\tools\Notepad++ Oxlad9 {"txt":"xml version";"offset":"2"}
contextMenu.xml  [VBR_100000]\tools\Notepad++ 0x12eb  {"txt":"xml version";"offset":"2"}

T Y T e T NI SN Y e W N

2.3 Hashing

There are three hashing options available to the user. One can select one or more hashing functions,
from MD5 (-md5), SHA1 (-shal) or SHA256 (-sha256). The hashing only considers valid file data and

Copyright © TZWorks, LLC Apr 15, 2024 Page 8



ignores slack data. The results of the requested hashes are displayed in the ‘extra_info’ column of the

CSV output file.

¥ name
WPSettings.dat

desktop.ini
Image-0.jpg
Image-1.jpg
Image-2.jpg
7za.dll
7za.exe
7zxa.dll
history.txt
License.txt
readme.txt
change.log
config.xml

langs.model.xml

v | path

[VBR_100000]\SRECYCLE.BIN
[VBR_100000]\logos
[VBR_100000]\logos
[VBR_100000]\logos
[VBR_100000]\tools\7z
[VBR_100000]\tools\7z
[VBR_100000]\tools\7z
[VBR_100000]\tools\7z
[VBR_100000]\tools\7z
[VBR_100000]\tools\7z
[VBR_100000]\tools\Notepad++
[VBR_100000]\tools\Notepad++

contextMenu.xml [VBR_100000]\tools\Notepad++

[VBR_100000]\tools\Notepad++

¥ |extra_info 3
[VBR_100000]\System Volume Information

IndexerVolumeGui [VBR_100000]\System Volume Information {"attributes":"arch

PN

0x7d67"
£982a";|
{"attributes":"hidden, .i_comp
{"attributes":"archivé "0xe6c3";
{"at‘tributes":"archivf *"0x080b"

{"attributes":"archi

£e425"

"md5":"81bf6aad5fabb25394
'md5":"f6fcf8f0a67eb69f986e8
uted":"0x44a4";"md5":"a526b9%e7;
'md5":"908079e35b64bbafdect
"md5":"3972fe6fbff951e35c0b
'md5":"e45cc3dd6ff2c24486de0
"md5":"f450842341da312cd4d1

{"attributes":"archiy; <7677";
{"attributes":"arc

MD hash invoked with -md5

{"attributes":"archi .X8683
{"attributes":"archive '0xf0ad™;
{"attributes":"archi Ixd78b"

{"attributes":"archiv "0x608a";
{“attributes":"archi\g «d967"
{"attributes":"archive Jx45cf";"|
{"attributes":"archi x8e02"
{"attributes":"arch'( -'0xe6ab"
{"attributes":"archiy Oxd9sf";

langs.xml [VBR 100000]\tog§motepad++

2.4 Mapping the results

("attribates":“archi 5 x8d59"

"md5":"af3774426d6afe012107a
'md5":"6edb7432a748f183311c83,
"md5":"610afe7169b12b3bf0970
mds":"34b535c¢56d25f4f9948020a2
"md5":"aecd5ec1256d245c00cfafi
"md5":"a27cbd2fc47815ef8dac
md5":"b8c300325af1clcb34cdd
"md5":"b8c300325af1clcb34cd

The results will be sent to whatever is specified in the -out <results> option. For example, if the option
is specified as: -out 2022-11-30/results.csv, the tool will create a relative folder [2022-11-30], if it
doesn’t exist, and the results of the file enumeration will be stored in results.csv.

Any other data that is requested either via (-copyfiles, -copy_systemdata,
or -copy_unalloc_data) a secondary export subfolder will be created (eg. 2022-11-30/export) and
depending on the options selected one or more tertiary folder(s) will be created.

Copyright © TZWorks, LLC

Apr 15, 2024

Page 9



2.4.1 FAT and exFAT internals and where it they are located in the output

For the default parsing, where only the files and folders are enumerated, a CSV type file is created. The
CSV will have some fixed data fields and some variable data fields. The CSV fields and where they map
to are shown below:

Field Field name Data type

Type type Type of entry, whether it be a: file, subdir, deleted,
or volume label

vol_type fat32, or exFAT

modified_timestamp Default date/time format is: yyyy-mm-dd
hh:mm:ss.xxx. Could be either local or UTC

w access_timestamp Default date/time format is: yyyy-mm-dd
hh:mm:ss.xxx. Could be either local or UTC

created_timestamp Default date/time format is: yyyy-mm-dd
hh:mm:ss.xxx. Could be either local or UTC

utc_diff Local (fat32), UTC+<offset value> (exFAT)

name Name of the file or folder without the path

Path of file or folder [Wefoid] Path of the file or folder without the name

Size of file without size_valid Size of the file that is used
slack

HESEGENEN EH B header_info Only populated if the -header_info option is

on starting bytes selected. Looks at the bytes in the first sector of
the file. If it can be recognized, the type will be
displayed, if not, the first text found will be
displayed. This option is experimental in that it can
only recognize basic file formats.

Notes in a quasi- notes Data such as sector size, cluster size, volume

JSON format offset/size and volume serial number will be
displayed

Internals of the extra_info Cluster run, attributes, DOS3.8 name (if applicable),

file/folder in a quasi- and data allocated will be displayed. If hashes are

JSON format requested, via -md5, -shal, or -sha256, they will

also be shown here.

2.4.1.1 Notes Field

This field is a quasi-JSON paring of the {“name1”:”valuel”; “name2”:”value2”; etc}. The data is defined
as follows.

Name Meaning Other info

Size of the sector in bytes
Size of the cluster in bytes

vol_offset Volume offset relative to the If using a partition type parse,
start of the disk in terms of this value will be 0.
bytes

Copyright © TZWorks, LLC Apr 15, 2024 Page 10




vol_size Volume size in terms of bytes

vol_serial_number Volume serial number.

2.4.1.2 Extra_info Field

For those volumes with a serial
number of 8 bytes, only the
least significant 4 bytes are
shown

This field is a quasi-JSON paring of the {“name1”:”valuel”; “name2”:”value2”; etc}. The data is defined

as follows.

Name Meaning

attributes Attributes flag in the Directory
Entry

checksum_embeded Checksum contained in the
exFAT File Directory Entry

checksum_computed

Checksum recomputed based
on the Directory Entry data

cluster_run All clusters used to store the
file/folder content

data_size_alloc Size of the allocated clusters,
translated to number of bytes
dir_entry_vol_offset Location of the start of the

Directory Entry collection for
this record.

MD5 hash of the data content
SHA1 hash of the data content
sha256 SHA256 hash of the data
content

header_info Information about the initial
data in the file

Other info

Read Only, Hidden, System,
Volume label, Folder, archive,
etc

Only applies to exFAT

Only applies to exFAT and is
used to verify the directory
entry collection is valid

For folders, this is the cluster
run for all the children directory
entries. For files, this is the
cluster run for data content.
Cluster run notation is: <disk
offset of starting cluster>-<LCN
of starting cluster>:<number of
clusters>. This is done for each
fragment.

Location is relative to the start
of the volume.

Only applies to files and not
folders and only include valid
data (no slack data).

Only applies to files and not
folders and only include valid
data (no slack data).

Only applies to files and not
folders and only include valid
data (no slack data).

Only applies to -csvi2t format,
since this already is a separate
csv field is in -csv. Only applies

Copyright © TZWorks, LLC Apr 15, 2024

Page 11



to files with data. Requires the
-header_info command line
option.

2.4.2 Where files are copied to

If the option -copyfiles in invoked, the tool will try to copy any file with a valid cluster run; this includes
both valid and deleted files. Extracted files are archived in the export/[VBR_<offset>] subfolder. Below
is an example of running fata targeting all the volumes in a disk image using just the -copyfiles option
and which folders are generated.

Administrator: Command Prompt

In this case, we will use the relative subdirectory [2022-11-30] to store the results. By including the
subdirectory in the -out parameter, the tool will create the subdirectory and the appropriate
subdirectories that are needed. From the example, the tool creates the export sub folder as well as sub
folders for each volume found that is either FAT32 or exFAT. These sub folders are annotated with the
image offset of the respective volumes. Inside these sub folders, the files/folders are copied.

v 2022-11-30 A [ Name
W export export
[VBR_3e00000] 8% mbr_mix.csv
[VBR_100000]
[VBR_23200000]

2.4.3 Where system data is copied to

If the option -copy_sysdata in invoked, the tool will try to copy system structures and store the data
in separate files. System structures include: Volume Boot Record (VBR), File Access Tables, Reserved
sectors, Bitmap table (for exFAT), etc. All the files created are binary data in that they reflect the actual
bytes from the data structures, with the exception of the offset_map.txt file. The offset_map.txt file
identifies the actual disk offsets and where the binary data comes from. It also shows how it is mapped
to the file offset of the archived data. These collections of files are created for each volume parsed.

Administrator: Command Prompt

Copyright © TZWorks, LLC Apr 15, 2024 Page 12



For this example by adding the -copy_sysdata from the previous example, the tool generates the
extra [VBR_<offset>] sysdata folder(s) for each volume parsed. The screenshot below shows the types
of system files generated depending on whether the filesystem is FAT32 or exFAT.

v 2022-11-30 Cn Name| FAT32 volume
O me o 5022-11-30 A [ Name exFAT volume
v o export fat1data.bin

' v export backup_boot_region.bin

[VBR_3¢00000]_sysdata fat2data.bin p-00LIES

[VBR_3e00000]_sysdata bitmap_data.bin

[VBR_100000]_sysdata offset_map.txt .
. [VER_100000]_sysdata fat_data.bin
[VBR_23200000]_sysdata reserved_sectors.bin i .
VER data.bin [VBR_23200000]_sysdata gap_before_fat_region.bin

main_boot_region.bin
offset_map.txt

upcase_data.bin

The contents of the offset_map.txt file are shown for the FAT32 filesystem starting at offset 0x3e00000.

volume stats
volume (by : 0x3e00000
volume leng es : 0x1f400000
sector size (by : 0x000200
cluster size (by : 0x001000
offset) : 0x307c00
: 0x383e00
: 0x07c200
ap (byte offset) : 0x3fe000
cluster count : 0x01f002
root dir (byte offset) : 0x000006

volume serial# : 0x82348628

files extracted (system offsets)

disk offset |volume offset |file offset byte comment name

0x3e00000 0x00 0x00 |
0x4107c00 0x307c00 0x00
0x4183e00 0x383e00 0x00 |
0x7c00000 0x3e00000 0x00

-1\export\[VBR_3e00000]_sysdata\VBR_data.bin
-1\export\[VBR_3e00000] data\fatidata.bin
-1\export\[VBR_3e00000] data\fat2data.bin
-1\export\[VBR_3e00000]_sysdata\reserved_sectors.bin

wwww
[=N-N-N-1

2.4.4 Mapping of unallocated space

If the option -copy_unalloc_data is invoked, the tool will try to copy all the unallocated clusters and
store the data into one file. The reason why this is not included in the -copy_sysdata option, is the
resulting file that is generated can be very large depending on the size of the disk (or disk/volume
image) and the number of unallocated clusters it has. With multi-terabyte drives as typical and exFAT
able to make use of all the available space, one needs to plan accordingly when

using -copy_unalloc_data option, since depending on how much space is unallocated, this option
would create a very large file. For this reason, this functionality is split off from the -copy_sysdata
option.

When this option is invoked, it will create a cluster run of all the unallocated clusters, which will then be
placed in the offset_map.txt file. In this way, one can later examine any unallocated cluster from the
extracted data and map it back into the actual disk (or image) physical location.

Copyright © TZWorks, LLC Apr 15, 2024 Page 13



To see how this is represented, below is an example running fata with the same image that was done in
the previous section. The option used, however, will be to only extract unallocated clusters.

Administrator: Command Prompt

Based on the above command the following folders and files were created

v 2022-11-30 ~ O Hamel FAT32volume | | ¥ ~ 2022-11-30 A [0 Name| exFAT volume
h export offset_map.txt e export offset_map.txt
[VBR_3e00000]_sysdata unalloc_clusters.bin [VBR_3e00000]_sysdata unalloc_clusters.bin
[VBR_100000])_sysdata [VBR_100000])_sysdata
[VBR_23200000]_sysdata [VBR_23200000]_sysdata

The offset_map.txt output is shown below and only the unallocated clusters are shown. The highlighted
red section shows the absolute disk (or image file) offset along with the relative volume offset for this
entry. The yellow section shows where this entry maps to relative to the binary file
(unalloc_clusters.bin) that was created. In this way, one can examine the binary file and go back to the
original image and located any cluster fragments, or just verify the results.

3e00000

unall

unall

unal

unall e -

unall C ers -11-30-2 rt\[VBR

unalloc clu B 2 -11- rt\[vB 0000]_

2.5 Cluster Runs and how to read them

fata will output the cluster runs of the data that it parses. For folder type data, fata will identify the
cluster run of the Directory Entries for its first level children that includes both files and folders. For file
type data, the cluster run reported represents the actual content of the file data.

Copyright © TZWorks, LLC Apr 15, 2024 Page 14



For this example, the application Notepad++ subfolder contains 23 sets of directory entry collections for
its children. It happens that this requires 2 clusters to store all the directory entry collections and they
are not contiguous, which means each cluster represents a fragment. This is how fata displays the
cluster run.

"dos83_name":"NOTEPA™1";"attributes":"su bdir";"cluster_run":"DxadOZSOO-Ux1100c/0x01;0xb435800—0x12cd8/0x01";"data_si%

A

Cluster contains 2 fragments
Fragment 1: Oxad02800-0x110c/0x01 means LCN 0x1100c for 1 cluster (disk offset of LCN is Oxad02800)
Fragment 2: Oxb435800-0x12cd8/0x1 means LCN 0x12cd8 for 1 cluster (disk offset of LCN is 0xb435800)

Each fragment is broken up into 3 fields. The disk offset of the starting cluster (or the logical cluster
number — LCN), the LCN and the extent (the number of clusters that are contiguous). The disk offset is
provided so one can go to the starting cluster number quickly to examine the raw data.

3 Scanning options

If targeting a disk that is mounted or if processing a ‘dd’ image, one can find where the volumes are
located as well as the filesystem of each volume by using one of the two commands: -scandrives
or -scanimage. These scanning options are designed to assist the user locate filesystems and their
respective offsets, so as to target a specific volume instead of processing the entire disk/image.

The first command, -scandrives is only for mounted disks on the same system that the fata tool will
be running on. The second command, -scanimage is only for an unmount disk or volume image. The
fata tool only works with images that are not compressed or encrypted. Examples of both options are
shown below along with their respective outputs.

3.1 Scan ‘dd’ image file

To scan the volumes in an ‘dd’ type image, one uses the -scanimage. This is only works with images
that not compressed or encrypted. As an example, the sample image is called ‘mbr_mix.dd’. The image
file is a copy of a disk that has a MBR (master boot record), two FAT32 partitions, an exFAT partition,
and an NTFS BitLocker partition.

Administrator: Command Prompt

>tatabd -scanimage D:\images\mbr_mix.dd -out image_ stats.csv

After enumeration of the volumes in the image, the following is outputted. Highlighted are the offset of
the volumes relative the start of the file and their respective filesystems.

Copyright © TZWorks, LLC Apr 15, 2024 Page 15



drive_typ disk_sig type start_offset end_offset num_bytes volsig  format  description

image e0ae-5a54 MBR 0x00 0x01ff 0x0200 0x00 mbr; sector_size: 0x0200; cluster_size: 0xf800

image  e0ae-5a54 MBR Oxofffff 0x0ffe00 0x00 i

image e0ae-5a54 MBR 0x03dfffff 0x03d00000 6e7f-824c 0xOc fat32; fector_size: 0x0200; cluster_size: 0x0200

image e0ae-5a54 MBR 0x231fffff 0x1f400000 8234-862¢ 0xOc fat32; fector_size: 0x0200; cluster_size: 0x1000

image eQae-5a54 MBR 0xa65fffff 0x83400000 289a-675: 0x07 exfat; pector_size: 0x0200; cluster_size: 0x8000

image  e0ae-5a54 MBR 0xa6600000 oxffefffff 0x59900000 oxof TXten

image e0ae-5a54 MBR oxcSafffff 0x1f400000 414e-2041 0x07 ector_size: 0x0200; cluster_size: 0x1000
image e0ae-5a54 MBR 0xc5b00000 oxffffffff 0x3a500000 0x00 unalloc

One can then use this data to process the desired volume, via the -image <name> and -offset
<value> options. Below is an example of processing the exFAT volume at disk offset 0x23200000.

Select Administrator: Command Prompt

3.2 Scan attached drives

To scan all the attached drives on a system, one can use the -scandrives option. As an example, the
two attached disks have the following explorer profile. Disk 0 has the system volume which a NTFS
Bitlocker volume. Disk 1 has 5 volumes that have an exFAT filesystem with various cluster sizes.

v = This PC

s0s(c) < DiskO
«~ pluto (G)

1

o Mmars (H:)

y

« saturn (I} <— Disk 1

.~ venus (J:)

w uranus (K:) _

With an administrator command shell, one can enumerate the disks and which volumes they include,
via:

Administrator: Command Prompt

If this was done in Windows, the disk identification will be an integer (eg. 0, 1, etc). If this was done on
macOS or Linux, one will get a device name in the form of a path (for macOS /dev/disk0, /dev/disk1, etc,
for Linux /dev/sda, /dev/sdb, etc).

Copyright © TZWorks, LLC Apr 15, 2024 Page 16



The results file is a pipe delimited CSV file. Highlighted are the exFAT volumes starting offset relative to
the physical disk and the volume letter that was used for mounting purposes. Given this data, one can
either analyze a specific volume either by the -disk <#> (if Windows) and -offset <value> option or
via the -partition <letter> option. The -partition option is only for Windows.

drive type
0 GPT
0 GPT
0 GPT
0 GPT
0 GPT
0 GPT

’ ol
1 GPT
1 GPT
1 GPT
1 GPT
1 GPT
1 GPT
1 GPT
1 GPT
1 GPT
1 GPT

O}FDT |

start_offset
0x00
0x0200
0x0400
0x4400
0x100000
0x1f500000

end_offset
0x01ff
0x03ff
0x43ff
oxofffff
ox1fafffff
0x274fffff

num_bytes
0x0200
0x0200
0x4000
0x0fbc00
0x1f400000
0x08000000

0x27500000 912400, 0612364800000

K

0x00
0x0200
0x0400
0x4400

0xffe00000

0x01ff
0x03ff
0x43ff
0x00ffffff
Ox32ffffff
0x64ffffff
0x96ffffff
Oxc8ffffff
oxffdfffff

Oxfffffff

000
0x0200
0x0200
0x4000

0xffbc00
0x32000000
0x32000000
0x32000000
0x32000000
0x36€00000

0x200000

vol_guid

©36e9469-37d5-4fb7-98d
52ddccla-fbe0-496b-af3¢

fes12c1d sgaq 4saz p0a,

731112d8-bf38-4cdc-933:
d599cefa-8a05-477e-98e
6c3247d4-9405-4a00-a32:
8aal7354-dsf5-deee-af0’
5329a05e-bf18-466¢-aed
52010f2c-06d2-44fe-bf6f

vol sig

24dc-ffeq

4142-204f

©c40-8978
8¢72-f801
0aa2-c00a
lec6-844f
24ef-cOce

letter vol_labe description

pluto
mars
saturn
venus
uranus

Windows basic data partitiongbitlocker,container; fixed: sactor_size: 0x0200; cluster
. Windgws basi partitionggitiockegcontainer ;,(Lseﬁ_ Opgluster |

protective_mbr; fixed

gpt header; fixed

gpt partition entries; fixed

unalloc; fixed

EFI system partition; fat32; fixed; sector_size: 0x0200; cluster_size: 0x1000
Windows reserved partition; fixed

u ) VIAG
protective_mbr; fixed

gpt header; fixed

gpt partition entries; fixed
Windows reserved partition; &
Windows basic data partitionf exfat;Kixed; sector_size: 0x0200; cluster_size: 0x0400
Windows basic data partition] exfat;ffixed; sector_size: 0x0200; cluster_size: 0x0800
Windows basic data partition] exfat;ffixed; sector_size: 0x0200; cluster_size: 0x1000
Windows basic data partition] exfat;[fixed; sector_size: 0x0200; cluster_size: 0x0200
Windows basic data partitionf exfat;fixed; sector_size: 0x0200; cluster_size: 0x2000
unallog; fixed -

For example, in Windows, to target the ‘pluto’ volume, one can use either the -disk or -partition

options. Both are shown below. Note, the -disk option requires both the disk number and the offset of

the volume, whereas the -partition option only requires the mounted volume letter.

Administrator: Command Prompt

Copyright © TZWorks, LLC

Apr 15, 2024

Page 17



4 Available Options

Option

-image

-disk

-partition

-CSv

-csv|2t

-no_whitespace

-cSv_separator

-dateformat

-timeformat

Description
Process the volumes present in the image file. The syntax is: -image
<filename> [-offset <volume offset value>]. If no offset is provided, then all
the volumes in the image are processed. If the offset is provided, only that
volume is processed. This option can be used for Windows, Linux or
macOS

Process the volumes present in the physical disk number. The syntax is:

-disk <number> [-offset <volume offset value>] Windows
-disk /dev/disk<#> [-offset <volume offset value>] macOS
-disk /dev/sda (or sdb...) [-offset <volume offset Linux
value>]

If no offset is provided, then all the volumes in the disk are processed. If
the offset of the volume is provided, only that volume is processed.

Process the volume that equates to the partition letter passed in. The
syntax is: -partition <letter>. Note. This is only a Windows option.

Outputs the data fields delimited by commas. Since filenames can have
commas, to ensure the fields are uniquely separated, any commas in the
filenames get converted to spaces.

Outputs the data fields in accordance with the log2timeline format.

Used in conjunction with -csv option to remove any whitespace between
the field value and the CSV separator.

Used in conjunction with the -csv option to change the CSV separator from
the default comma to something else. Syntax is -csv_separator "[" to
change the CSV separator to the pipe character. To use the tab as a
separator, one can use the -csv_separator "tab" OR -csv_separator "\t"
options.

Output the date using the specified format. Default behavior is -dateformat
"yyyy-mm-dd". Using this option allows one to adjust the format to
mm/dd/yy, dd/mm/yy, etc. The restriction with this option is the forward
slash (/) or dash (-) symbol needs to separate month, day and year and the
month is in digit (1-12) form versus abbreviated name form.

Output the time using the specified format. Default behavior is
-timeformat "hh:mm:ss.xxx" One can adjust the format to microseconds,
via "hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no
fractional seconds, via "hh:mm:ss". The restrictions with this option is a
colon (:) symbol needs to separate hours, minutes and seconds, a period (.)

Copyright © TZWorks, LLC Apr 15, 2024 Page 18



-out
-quiet
-basel0

-utf8_bom

-copyfiles

-copy_sysdata

-copy_unalloc_data

-header_info

-md5

-shal

-sha256

-scandrives

symbol needs to separate the seconds and fractional seconds, and the
repeating symbol 'x' is used to represent number of fractional seconds.

Specifies the file to send the output to. Syntax is: -out <output file>.

Show no progress during the parsing operation.

Output values in base10. Default is basel6.

All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8
byte order mark to the output using this option.

Option that tells fata to extract file contents, if possible. The data for
these folders/files are put in the export subfolder that has the parent of
the base output folder.

Option that tells fata to extract certain filesystem data structures. This
includes the: VBR (volume boot record), FAT (file allocation table), Bitmap
(if available for that filesystem), etc.

The output for these extra files are put in a [export/[VBR_xxxx]_sysdatal]
subfolder where the root is the base output folder. Finally, for all the
sections extracted, a summary file (offset_map.txt ) is created in the same
subdirectory.

Option that tells fata to extract all the unallocated data into one file. Since
this resulting file will have fragmented clusters of unallocated data
consequently ordered, one can reconstruct the which clusters are
associated by volume offset, but referring to the offset_map.txt file where
each cluster is mapped.

The output for the unallocated clusters is a file [unalloc_clusters.bin], in
the subfolder [export/[VBR_xxxx]_sysdata] where the root is the base
output folder.

In addition to the sections extracted, the summary of all the extracted files
is presented in the offset_map.txt file.

Option to examine the first sector of the file and if a signature is found, it is
displayed in the output.

Computes the MD hash of the valid file contents (does not include the slack
in the file).

Computes the SHA1 hash of the valid file contents (does not include the
slack in the file).

Computes the SHA256 hash of the valid file contents (does not include the
slack in the file).

Details about the volumes of the attached drives on the system where fata
is run.

Copyright © TZWorks,

LLC Apr 15, 2024 Page 19



Details about the volumes in an image file. The syntax is: -scanimage <dd
-scanimage file>. The ‘dd’ file needs to be uncompressed image of the disk or volume
and cannot be encrypted.

5 Internals of the FAT32 Filesystem

The FAT file system has four basic regions

# Region Size in Sectors Contents
1 Reserved (num of reserved Volume Boot Sector; file system info sector
Sectors sectors in VBR) (FAT32 only); and other optional reserved sectors
2 FAT Region (num of FATs) * (sectors | File Allocation Table #1
per FAT) File Allocation Table #2 (optional)
3 Root Directory | (num of root entries * Root Directory (FAT12 and FAT16 only).
Region 0x20) / (bytes per Eliminated as a separate region in FAT32 and
sector) became part of the data region
4 Data Region (num of clusters) * Data Region (for files and directories).. (to the
(sectors per cluster) end of partition on disk)

The Volume Boot Record (VBR) is always located in logical sector 0 (LS 0) of the logical volume. The VBR
is created during the high-level formatting process of the volume and contains information about the
volume. The VBR of a primary partition will contain boot code needed to continue the boot process if
that partition is set as the active primary partition. The VBR is different than the Master Boot Record
(MBR). The MBR is located in physical sector 0 (PS 0) of the physical disk and contains the Master Boot
Code and Master Partition Table.

Note: that removable media does not always have an MBR; smaller media commonly have only a VBR.
In these cases, PS 0 of the physical disk is the same as the LS 0 of the logical volume. (PS 0 relates to the

disk and LS O relates to the volume).

Microsoft refers to the VBR for volumes formatted with a FAT file system as the Boot Sector with a BPB
(BIOS Parameter Block).

5.1 Volume Parameter Block

Offset Size Name Description

Copyright © TZWorks, LLC Apr 15, 2024 Page 20



0x00

0x03

0x0B

0x0D

OxOE

0x10

0x11

0x13

0x15

0x16

0x18

Ox1A

0x1C

JIMP
Instruction

OEMID

Bytes per
sector

Sectors per
cluster

Number of
Reserved
Sectors

Number of
FATs

Num of Root
Directory
Entries

Total Sectors

Media
Descriptor

Sectors per
FAT

Sectors per
track

Number of
heads

Hidden
Sectors

Copyright © TZWorks, LLC

The Jump instruction continued from the MBR

String of characters that can indicate the OS used during format
MSWIN4.0 = Windows 95 per-OSR2

MSWIN4.1 = Windows 95 OSR2 through Windows 98
MS-DOS5.0 = indicates Windows 2k and newer

Start of the BPB; can contain values of 512, 1024, 2048, 4096

Represents the number of sectors assigned to a single allocation
unit. If the value is positive, then the value is taken as is. If the
value is negative (high bit set), then the twos-complement is
taken and that resulting value is used as a power of 2 (eg. 1 << (-1
* sectors_per_cluster))

FAT12, FAT16 should be a value of 1. FAT32 can be a value of 32
and higher.

Should always be a value of 2

Number of 0x20 byte directory entries in the Root Directory
region. For FAT32 is value is 0, since the root directory entries in
FAT32 are in the data area and are only restricted by the size of
the data area.

Count of sectors occupied by one FAT for FAT12 and FAT16
volumes. On a FAT32 volume is value is 0, and is represented at
offset 0x24

Legal values include: OxFO, OxF8, 0xF9, OxFA, OxFB, OxFC, OxFD,
OxFE and OxFF. The two most common values are 0xF8 for fixed
media and 0xFO for removable media

Count of sectors occupied by one FAT for FAT12 and FAT16
volumes. On a FAT32 volume this value is 0, and the value is
represented at offset 0x24.

This field is only relevant for media that have disk geometry with
CHS (Cylinder, Head, Sector).

This field is only relevant for media that have disk geometry with
CHS (Cylinder, Head, Sector).

Count of hidden sectors preceding the partition containing the
FAT volume. Part of the BPB.

Apr 15, 2024 Page 21



0x20

4

Total Sectors

Count of total sectors for the volume, including system areas. For
volumes where the total sector count exceeds the value that can
be stored in 16 bits.

This shows the remaining byte structure for a FAT12/16 VBR

Offset

0x24

0x25

0x26

0x27

0x2B

0x36

Size

1

11

Name

BIOS drive
number

Reserved

Extended boot
signature

Volume Serial
Number

Volume label

File System
Type

Description

Supports MS-DOS bootstrap and is set to the interrupt 13 drive
number of the media. 0x00 for floppy disks; 0x80 for hard disks.
This field is OS specific

Should be setto 0

If set to (0x29), then the next 3 fields are present

32-bit value usually generated from the date/time. Used for
tracking removable media. This value can often be found in the
LNK files (in Windows).

11-byte volume label recorded in the Root directory. If no
volume label is provided, then "NO NAME" is the default value.

Although this field generally represents the file system
formatted on the volume, it is an informational field only and is
not used by FAT drivers to determine the FAT system type.

This shows the remaining byte structure for a FAT32 VBR

Offset

0x24

0x28

Ox2A

0x2C

0x30

Size

4

Name

Sectors per
FAT

Extended
Flags

FAT Version

Root
Directory
Cluster

File system
info sector

Description

Number of sectors occupied by one File Allocation Table (for
FAT32 only)

Bits 0-3 zero-based number of active FATs. Only valid if mirroring
is disabled. Bits 4-6 are reserved. Bit 7 - value of 0 means the FAT
is mirrored; value of 1 means only 1 FAT is active and is
referenced. In the first 3 bytes, bits 8-15 are reserved

The high byte is the major revision number and the low bit is the
minor revision number.

Points to the starting cluster for the Root Directory. This is usually
cluster 2, but is not required to be cluster 2.

The sector number of the FSINFO structure in the reserved area of
the FAT32 volume. Usually set to 1.

Copyright © TZWorks, LLC

Apr 15, 2024 Page 22



0x32 2 Backup boot | If not O, the value represents the sector number of the copy of the

sector boot sector in the reserved area. Generally, set to 6

0x34 12 Reserved Should be zero

0x40 1 BIOS drive Supports MS-DOS bootstrap and is set to the interrupt 13 drive
number number of the media. 0x00 = floppy disks; 0x80 = 0 hard disks.

0x41 1 Reserved / Reserved for the Volume Error flag
Error

0x42 1 Extended If value = 0x29, then the Extended boot signature indicates the
boot following 3 fields are present
signature

0x43 4 Volume 32-bit value usually generated from the date/time. Used for
Serial tracking removable media. This value can often be found in the
number LNK files (in Windows).

0x47 11 Volume label | 11-byte volume label recorded in the Root directory. If no volume

label is provided, then "NO NAME" is the default value.

0x52 8 File System Although this field generally represents the file system formatted
Type on the volume, it is an informational field only and is not used by
FAT drivers to determine the FAT system type.

5.2 File Allocation Table (FAT) basics

The size of each entry within the FAT is determined by the FAT version. The number after the FAT is
actually the number of bits used by the File Allocation Table for each entry. FAT16 = 16 bits for each
entry; FAT32 = 32 bits for each entry. More bits per entry equates to more addressable clusters.

Media Descriptors
The first entry in the FAT table is the "Media Descriptor". It gives an indication as to the type of media
on which the FAT File System is located as well as the type of FAT being used.

e 0OxFO =3.5" single-sized floppy disk

e O0xF9 =3.5" double-sized floppy disk

e OxF8 = Hard disk drive

The next remaining bits of the "Media Descriptor" is the "FAT Type Descriptor" which gives an indication
as to the type of the FAT file system itself (FAT12/16/32).

e FAT12 - 4bits after the Media Descriptor are 1 (eg. OxOF)

e FAT16 - 8 bits after the Media Descriptor are 1 (eg. OxFF)

e FAT32 - 20 bits after the Media Descriptor are 1 (eg. OxOF OxFF)

The bits after the "Media Descriptor" and "FAT Type Descriptor" are reserved. Cluster 1 is padded with
either OxFF or the "End of Cluster Chain" marker, depending on the OS used to format the volume.
Cluster mapping values start after these 2 FAT entries with the Cluster 2 entry.

Copyright © TZWorks, LLC Apr 15, 2024 Page 23



The first entry for a Hard disk with a FAT32 filesystem would be: OxOFFFFFF8
The second entry for FAT32 would be: OxFFFFFFFF

FAT table have 4 different types of entries:
1. Unallocated cluster: value of 0x00
2. Allocated cluster: value is the hex value of the next cluster in the cluster run
3. Allocated cluster: End of File (EOF), normally represented by OxFB, OxFF, OxOF, depending on the
OS writing to the FAT. For FAT32 this is normally OxOFFFFFFF
4. Bad cluster: normally OxF7

Symbolic FAT12 FAT16 FAT32 Description

value (hex) (hex) (hex)
Unallocated | 0 00 0000 00 00 00 | Unused cluster that is available for storage
00
Next cluster |002-F | 0002- |[000000 |Clusterisin use and indicates the next cluster in the run
EF FF FE 02 -
FF FF FF
EF
End of File |FFB FFFB - FF FF FF | Indicates the last cluster in the run (or that the run only
FF FF FB - contains one cluster of data
FF FF FF
OF
Bad Cluster | F F7 FF F7 FF FF FF | Cluster is bad and will not be used by the OS. Each
F7 sector is verified to ensure it is able to hold 0x200 bytes

of info. If the sector is unable to hold 0x200 bytes of
data, the sector is marked as BAD. A cluster marked as
bad survives a quick format. (data of evidentiary value
can be hidden in clusters marked as BAD in the FAT;
also a user can mark a cluster as bad to hide data from
average users; thus all clusters should be examined in
detail when possible).

5.3 FAT32 Volume layout

Offset Description
Start of Partition Volume boot sector
Start of Partition + # of Reserved Sectors FAT tables

Start of Partition + # of Reserved Sectors + (# of sectors/FAT * 2) | Data area

Copyright © TZWorks, LLC Apr 15, 2024 Page 24



5.4 FAT Formatting options:

Command | Type of forma

line

FORMAT
A:/Q

FORMAT
A:

FORMAT
A: /U

"quick" format

"normal" format

"unconditional"
format (only available
via command line)

What actually happens

The VBR will be verified and update with at least
a new OEM ID, volume serial number, and
volume label.

The FAT entries that contain a cluster number or
EOF marker will all be changed to a 0x00.
Clusters marked as BAD will not be changed.
The Root Directory entries will all be overwritten
with 0x00. For FAT32, only the first cluster of
the Root Directory is overwritten with 0x00

Each sector that is not marked as BAD in the FAT
is checked for read errors.

Any newly discovered BAD sectors are updated
in the FAT as BAD.

Every sector on the media is verified as GOOD or
BAD.

The FAT is updated to reflect the current status
of that cluster.

Sectors previously marked as BAD in the FAT are
rechecked and updated.

On removeable media only, every byte in the
Data Area is overwritten with a value such as
OxE6, 0xF6, or 0x00, since the command will
perform both a read and write test for each
sector.

5.5 Long File Name (LFN) Directory Entry Structure

Offset

0x00

0x01
0x0B
0x0C
0x0D
OxOE

Ox1A

Length | Byte Usage

1

10

12

Bits 0-5 = LFN sequence number, bit 6 (0x40) is set if this is the last entry for the

file.

1st 5 letters of the LFN entry

0xOf (first nibble of attributes byte is set)

Reserved; set to 0

Checksum generate from SFN (Short Filename)

Next 6 letters of the LFN entry

Always 0

Copyright © TZWorks, LLC Apr 15, 2024 Page 25



0x1C 4 Last 2 letters of the LFN entry

5.6 LFN Sequence Numbers

Directory Entry | Hex values of the Sequence Byte

1 0x41

2 0x01 0x42

3 0x01 0x02 0x43

4 0x01 0x02 0x03 0x44

5 0x01 0x02 0x03 0x04 0x45

6 0x01 0x02 0x03 0x04 0x05 0x46

7 0x01 0x02 0x03 0x04 0x05 0x06 0x47

8 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x48

9 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x49

10 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 Ox4A

11 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 Ox0A 0x4B

12 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 Ox0A 0x0B 0x4C

13 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 Ox0A 0x0B 0x0C 0x4D

14 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 Ox0A 0x0B 0x0C 0xOD Ox4E

15 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 OxOA 0x0OB 0xOC 0xOD OxOE Ox4F

16 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0xOA 0xOB 0xOC 0xOD OxOE OxOF
0x50

6 Internals of the exFAT Filesystem

he Main Boot and the Backup Boot Region has the same sub-regions and data structures.

The Boot regions are created when the volume is formatted and can be further broken down into 5
separate data structures called sub-regions. These are:
1. Boot Sector
Extended Boot Sectors
OEM Parameters
Reserved
Boot Checksum

vk wn

Copyright © TZWorks, LLC Apr 15, 2024 Page 26



6.1 Main Boot Sector

Offset
0x00

0x03

0x0B

0x40

0x48

0x50
0x54

0x58

0x5C

0x60

0x68

Ox6A

0x6C

0xe6D

Ox6E

0x70

0x71

Length

0x03

0x08

0x35

0x08

0x08

0x04

0x04

0x04

0x04

0x04

0x02

0x02

0x01

0x01

0x01

0x01

0x07

Name
Jump Boot

File system
name

Must be
zero

Partition
offset

Volume
length

FAT offset
FAT length

Cluster
heap offset

Cluster
count

Volume
serial
number

File system
version

Volume
flags

Bytes per
sector shift

Sectors per
cluster shift

Number of
FATs

Percent in
use

Reserved

Description
Jump Instruction to boot code field

ASCII - exFAT

Replaces the FAT BIOS parameter block

Sectors from the start of the media

Total sectors in the volume

Logical start sector of FAT
Length of the FAT table in sectors

Logical start sector of the cluster heap

Number of clusters in cluster heap

Major/minor

(see below)

2~N, where N = value for bytes per sector shift

2~N, where N = value for sectors per cluster shift

0x01 = 1 FAT and 1 Bitmap (current exFAT version)

0x02 = 2 FATs and 2 Bitmaps (TexFAT only)

Percentage of allocated clusters in the cluster heap. 0x00 - 0x64,
OxFF are not available

Copyright © TZWorks, LLC

Apr 15, 2024 Page 27



0x78 0x186 Boot code Boot strapping instructions

Ox1FE 0x02 Boot 0x55AA [this signature will always be at this offset, regardless of
Signature the sector size. For example, if the sector size was 0x400, the
signature would not be relocated to the end of the sector 0]. Thus,
it is important to read the bytes per sector field located at offset
0x6C of the Boot Sector in an exFAT volume.

0x200 Excess If sector size > 0x200 bytes.
space

6.2 Boot Sector Volume Flags

Bit Name Description

0 Active FAT Which FAT and Bitmap are in use.
0 = first FAT and first Bitmap
1 = second FAT and second Bitmap

1 Volume dirty | 0 = Volume consistent
1 = Volume potential inconsistent

2 Media failure | 0 = Any known failures marked as "bad" clusters
1 = Media reported failures

3 Clear to zero | No significant meaning (revision 1.00)

4 Reserved Bits4-15 = Reserved

6.3 FAT Region

Sector 24 of an exFAT volume marks the beginning of the FAT region. The exFAT file system does not
operate the FAT in the same way as the FAT32 file system. There are 2 major changes.
a. exFAT does not utilize the FAT for cluster allocation status; this is now done by a Bitmap file
b. exFAT uses the FAT for fragmented files only; if a file is in contiguous clusters (not fragmented)
the FAT is unused for that file. This is annotated in the flags in the directory entry for that file;
which will indicate if the file is contiguous or fragmented. For system files only, exFAT makes
entries in both the FAT and the Bitmap sections.
Although sector 24 is the start of the FAT region, the 1st FAT will not necessarily be located at the
beginning of the FAT region. While the current version of exFAT only contains 1 FAT sub-region, the
spec has a definition for the 2nd FAT to be used for the Transaction-Safe exFAT (TexFAT) version.

6.4 Data Region

There are 10 different types of Directory Entries. There is no support for DOS compliant file names. No
dot and double-dot directory entries. The additional of 2 system files (Bitmap and UpCase).

Copyright © TZWorks, LLC Apr 15, 2024 Page 28



Below are the Directory Entry Types. The first three are used for "system files" and the Volume Label.
The Volume GUID, TexFAT, Vendor Allocation, and Vendor Extension types are not currently in use.

Identifier (in Use) | Directory Entry Type Identifier (Not in Use)
0x81 Allocation Bitmap 0x01
0x82 UpCase Table 0x02
0x83 Volume Label 0x03
0x85 File 0x05
O0xA0 Volume GUID 0x20
OxA1 TexFAT Padding 021
0xCO Stream Extension 0x40
OxC1 File name 0x41

Vendor Extension
Vendor Allocation

Copyright © TZWorks, LLC

Apr 15, 2024

Page 29



7 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital
X509 code signing certificate embedded into the binary (Windows and macQOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools
(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The
license needs to be in the same directory of the tool for it to authenticate. Furthermore, any
modification to the license, either to its name or contents, will invalidate the license.

Copyright © TZWorks, LLC Apr 15, 2024 Page 30



8 References

1. Microsoft FAT32 Specification. Various sources including
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system

2. Microsoft exFAT Specification [https://learn.microsoft.com/en-us/windows/win32/fileio/exfat-
specification].

3. International Association of Computer Investigative Services (IACIS) Basic Computer Forensic Examiner
(BCFE) class notes

Copyright © TZWorks, LLC Apr 15, 2024 Page 31



	1 Introduction
	2 How to Use fata
	2.1 Disk/Volume file enumeration options
	2.1.1 Using Disk number that is attached to a system
	2.1.2 Using a Mounted Partition letter
	2.1.3 Using an Offline Image of the disk or volume

	2.2 Extraction of Data
	2.2.1 Copying file contents
	2.2.2 Copying system data
	2.2.3 Copying unallocated clusters
	2.2.4 File content header information

	2.3 Hashing
	2.4 Mapping the results
	2.4.1 FAT and exFAT internals and where it they are located in the output
	2.4.1.1 Notes Field
	2.4.1.2 Extra_info Field

	2.4.2 Where files are copied to
	2.4.3 Where system data is copied to
	2.4.4 Mapping of unallocated space

	2.5 Cluster Runs and how to read them

	3 Scanning options
	3.1 Scan ‘dd’ image file
	3.2 Scan attached drives

	4 Available Options
	5 Internals of the FAT32 Filesystem
	5.1 Volume Parameter Block
	5.2 File Allocation Table (FAT) basics
	5.3 FAT32 Volume layout
	5.4 FAT Formatting options:
	5.5 Long File Name (LFN) Directory Entry Structure
	5.6 LFN Sequence Numbers

	6 Internals of the exFAT Filesystem
	6.1 Main Boot Sector
	6.2 Boot Sector Volume Flags
	6.3 FAT Region
	6.4 Data Region

	7 Authentication and the License File
	8 References

