

Abstract
wpn is a standalone, command-line tool that parses the

Windows Push Notification (wpn) database. This database

makes use of the SQLite architecture to store its records.

This tool can parse both valid records and those that have

been discarded or deleted and not been overwritten).

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v0.29 of wpn

Updated: Apr 15, 2024

TZWorks® Windows Push
Notification (wpn) Database Parser
Users Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 15, 2024 Page 1

Table of Contents

1 Introduction .. 2

2 How to Use wpn .. 5

2.1 Recovering Discarded Records .. 5

2.2 Processing Multiple Databases ... 7

2.3 Bypassing the Embedded SQLite library ... 7

3 Use of the SQLite Library .. 8

4 Supporting Artifact files .. 8

5 Available Options .. 9

6 Authentication and the License File .. 11

7 References .. 12

Copyright © TZWorks, LLC Apr 15, 2024 Page 2

TZWorks® Windows Push Notification (wpn)
Database Parser Users Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=42

Contact Information: info@tzworks.com

1 Introduction

Starting in Windows 8, Microsoft created the Windows Push Notification Services (WNS) to allow
applications to send tile, toast, badge and raw updates. The tiles are updates on application tiles such as
weather updates, stock updates, etc. The toasts are another word for popups that occur, for example,
when a new device is plugged into the computer requesting what action to take place. The badges are
small overlays on the tiles on the desktop used to show the status or act as an active counter. Below is
example of the operating system issuing a ‘toast’ that a new device was attached to the computer. The
icon on the bottom right with the number 2 is an example of a ‘badge’ displaying the ‘2’ value to show
the Action Center has 2 new messages.

When looking at the internals of the toast and examining what data is captured, one can see the time
the notification was sent out and the message that was displayed to the user. In this particular case the
toast notification was not persistent as a valid record in the database after the toast was acted on; for
this case, the wpn tool was able to pull out the toast record from slack space.

Later versions of Windows 10 made changes to the internal store format of the notification records. The
newer updated format makes use of the SQLite architecture to store the data. Similar to the older style
database, each user account has its own database instance to record the user’s notifications; for newer
Windows 10, it can be found in this location:
C:\Users\<useracct>\AppData\Local\Microsoft\Windows\Notifications\wpndatabase.db.

mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 15, 2024 Page 3

The wpn tool only targets the newer format of the notifications in Windows 10 and not the older format
that was used.

The wpndatabase.db has a number of tables. From these tables, wpn looks at most of them, but
primarily targets two of them for the bulk of the information; the Notification and NotificationHandler
tables. Collectively, they contain the requisite information to determine the application that initiated
the notification, content of the notification, and when it was posted. The schema (or fields) used for
these tables are shown below.

Since the database uses a relational type architecture, there are references from one table to other
table(s). Starting with the Notification table, the HanderId field in each record references an entry in the
NotificationHandler table. By following these references one can recreate the final record for the
analyst to review. Highlighted above are some of the more useful fields. One of these fields is the
PrimaryId in the NotificationHandler table. Just a quick look through some of the entries created by the
operating system by default, include some interesting artifacts that relate to devices as shown below.
There are entries for: Autoplay, BlueTooth pairing, Devices (in general) and USB devices (in particular).
Other entries, not shown are entries for specific applications that have registered to push out
notifications.

Copyright © TZWorks, LLC Apr 15, 2024 Page 4

Copyright © TZWorks, LLC Apr 15, 2024 Page 5

2 How to Use wpn

The screen shot below shows all the options available.

The semantics to run this tool just requires one to use the -db option and pass in the path/file of the

wpndatabase.db to parse. The parsed output will dump to the screen, unless one redirects the output

to a file, as shown below:

The above command will only parse the more commonly used fields from the Notification and

NotificationHandler tables. To parse all the fields from those same tables, one can use the -all_fields

option in the command above.

2.1 Recovering Discarded Records

When considering how to recover records that have been deleted or overwritten, the SQLite database

can be treated as a file system; as such, one can analyze which pages in the database are valid and

which are invalid. Of the valid pages, one can look into those areas that are slack space. Finally, one can

look into the journaling file and see which areas also can be considered for record recovery. Identifying

these unused areas (or areas marked as invalid), one can look at the data available and see if records of

Copyright © TZWorks, LLC Apr 15, 2024 Page 6

interest can be extracted. wpn has the -incl_slack option to do this. This will cause the tool to: (a)

traverse the database, and if available, the journaling file as well, (b) identify which areas are invalid or

slack space and (c) look for records that are of interest and extract them. From the empirical testing on

sample wpndatabase.db files, this has yielded a sizable number of records when compared to the valid

records normally returned without using this option.

It goes without saying, that anytime a parser tries to reconstruct records from corrupted (partially

overwritten) data, it should be cause for concern. That is why this option is still experimental.

Consequently, using this option could cause the parser to crash if it tries to reconstruct a record that

causes an out-of-bound condition. More datasets are required with differing boundary conditions for

this option in the tool to come out of the experimental category.

Even though the extra output produced by the -incl_slack option will include additional records, one

should be aware, that a recovered record is not necessarily a ‘deleted’ record, but can be copied version

of older record (and it may be identical). To provide additional tracking information, wpn will output

any additional metadata in a separate column called “misc data”; a sample output of this field is shown

below:

The above metadata will identify where the recovered record came from, as well as the offset into the

file. This should be enough data to give the investigator the information to manually review the raw

data in a hex viewer for verification purposes.

Copyright © TZWorks, LLC Apr 15, 2024 Page 7

2.2 Processing Multiple Databases

If desiring to process many database files in one pass, one can put the artifact database in separate

subdirectories that share a common parent folder (or just enumerate them on a live system) and use

the -pipe option like so:

This will process all the databases and output the results into one file. To help distinguish which lines go

to which database file, an extra field is appended to each record identifying the source database.

If one cannot use the -pipe option, one can use the experimental -enumdir option, which has similar

functionality with more control. The -enumdir option takes as its parameter the folder to start with. It

also allows one to specify the number of subdirectories to evaluate using the -num_subdirs <#> sub-

option.

2.3 Bypassing the Embedded SQLite library

The wpn tool has the SQLite library embedded into the binary. More information about this is discussed

in the section Use of the SQLite Library. Sometimes, however, one may not wish to use the SQLite

library for analyzing the records, so an option was added to bypass the SQLite library and use the

TZWorks internal SQLite algorithms to parse the database. This functionality can be invoked one of two

ways: (a) with the -carve option or (b) the -parse_chunk option. Out of the two options, one should

opt for the first, -carve option. This option will try to traverse the database (even corrupted ones) and

should pull out all the same information as if using the normal SQLite library plus recover any records in

the discarded pages. The difference here is the -carve option is more immune to database corruption

than the SQLite library is.

The purpose for the second option -parse_chunk, is to go a step further and operate on only a subset of

the database. More specifically, if at least a page of the database is available, this option will try to pull

out any Notification, NotificationHandler and WNSPushChannel records it finds. The limitations of this

option include: (a) the data is segmented on page boundaries; this means any data crossing into other

pages will be truncated, and (b) it will try (on a best effort basis) to provide joins between tables that

have a relational aspect.

Copyright © TZWorks, LLC Apr 15, 2024 Page 8

3 Use of the SQLite Library

The wpndatabase.db is a SQLite database. For the purposes of the wpn tool we statically link in the

SQLite library to ensure the tool has minimal dependencies. The source code for the SQLite library is an

amalgamation of the SQLite ‘C’ source files, version 3.32.3. More information about SQLite, the

documentation and the source code can be seen at the official SQLite website [http://www.sqlite.org/].

Normally when we build a tool to parse a raw artifact, we prefer not to use outside libraries, however, in

this case, the SQLite library has an option to open a SQLite database in ‘read-only’ mode. From the

testing done and from the documentation, it appears this is acceptable for this release. As an

experimental option, we incorporated our internal library to assist parsing the slack and free space of a

SQLite database. This gives the wpn tool the ability to recover additional records that have been

deleted or overwritten. More testing in this area needs to be done to ensure the record recovery is

robust to malformed records that have been overwritten.

4 Supporting Artifact files

The SQLite architecture uses a transactional system to ensure all database commits are done in an

atomic fashion. This is implemented via the use of temporary files to allow the system to rollback to a

previous state should the database abruptly quit in the middle of a transaction due to an unexpected

power failure or a crash of the application controlling the SQLite database. The supplemental files used

for this database are: wpndatabase.db-wal and wpndatabase.db-shm.

The first supplemental file is the 'write-ahead' log (WAL) and the second is the 'shared memory' file

(SHM). The WAL file acts as a buffer for new records or changes to existing records to be recorded prior

to flushing them to the database. This is the supplemental file of interest of the two from a forensics

standpoint. The WAL file, by its nature, can grow very large since it can record many transactions prior

to flushing them to the database.

Below is a screenshot of the user account testuser. One can see these files present below. Just looking

at the size of the WAL file it should be clear that there is a significant amount of data contained in the

file that has either been flushed to or is waiting to be flushed into the database.

http://www.sqlite.org/

Copyright © TZWorks, LLC Apr 15, 2024 Page 9

From a forensics standpoint, this offers the investigator additional data to analyze. Not only is the

current record present, but potentially the previous version of the record as well. This occurs when the

WAL (or Write Ahead Log) contains the latest record prior to the commit (flush) while the database

contains the older record.

In addition to the above behavior, it is common for the WAL file to save more than one transaction prior

to the overall commit (flush to the database). Unfortunately, there is not a simple SQLite query to pull

out invalid older records or examination of slack space. To build up this history, consisting of previous

records, one needs to reconstruct them. This requires traversing the SQLite file internals to locate and

extract invalid records, data in slack space, etc, and then try to match the data to the proper table

schema available.

5 Available Options

Option Description

-db
Specifies which database file to act on. The format is:

 -db <wpndatabase.db to parse>

-csv

Outputs the data fields delimited by commas. Since filenames can have
commas, to ensure the fields are uniquely separated, any commas in the

filenames get converted to spaces.

-csvl2t Outputs the data fields in accordance with the log2timeline format.

-bodyfile
Outputs the data fields in accordance with the 'body-file' version3 specified in
the SleuthKit. The date/timestamp outputted to the body-file is in terms of UTC.
So if using the body-file in conjunction with the mactime.pl utility, one needs to

Copyright © TZWorks, LLC Apr 15, 2024 Page 10

set the environment variable TZ=UTC.

-all_fields Show all fields available for CSV output

-username

Option is used to populate the output records with a specified username. The

format is:

-username <name to use>.

-hostname

Option is used to populate the output records with a specified hostname. The

format is:

-hostname <name to use>.

-pipe
Used to pipe files into the tool via STDIN (standard input). Each file passed in is

parsed in sequence.

-enumdir
Experimental. Used to process files within a folder and/or subfolders. Each file is
parsed in sequence. The syntax is -enumdir <folder> -num_subdirs <#>.

-filter

Filters data passed in via STDIN via the -pipe or -enumdir options. The syntax is

-filter <"*.ext | *partialname* | ...">. The wildcard character '*' is restricted
to either before the name or after the name.

-no_whitespace
Used in conjunction with -csv option to remove any whitespace between the
field value and the CSV separator.

-csv_separator

Used in conjunction with the -csv option to change the CSV separator from the
default comma to something else. Syntax is -csv_separator "|" to change the
CSV separator to the pipe character. To use the tab as a separator, one can use
the -csv_separator "tab" OR -csv_separator "\t" options.

-dateformat

Output the date using the specified format. Default behavior is -dateformat
"yyyy-mm-dd". Using this option allows one to adjust the format to mm/dd/yy,
dd/mm/yy, etc. The restriction with this option is the forward slash (/) or dash (-
) symbol needs to separate month, day and year and the month is in digit (1-12)
form versus abbreviated name form.

-timeformat

Output the time using the specified format. Default behavior is

-timeformat "hh:mm:ss.xxx" One can adjust the format to microseconds, via

"hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no fractional

seconds, via "hh:mm:ss". The restrictions with this option is a colon (:) symbol

needs to separate hours, minutes and seconds, a period (.) symbol needs to

separate the seconds and fractional seconds, and the repeating symbol 'x' is

used to represent number of fractional seconds.

-quiet Show no progress during the parsing operation.

-incl_slack
Experimental option to look at slack space free blocks to see if any records are
present.

-carve
Experimental option. Bypass the SQLite embedded library and parse using
TZWorks internal algorithms. This is for the situation where the database to be

Copyright © TZWorks, LLC Apr 15, 2024 Page 11

parsed is corrupted and the SQLite library has trouble parsing it.

-parse_chunk
Experimental option. Given a portion of the database (at least 1 page), this
option will examine the data to see if any records exist and parse out the
contents.

-utf8_bom
All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8 byte
order mark to the output using this option.

6 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication validates that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

Copyright © TZWorks, LLC Apr 15, 2024 Page 12

7 References

1. Windows Push Notification Services (WNS) Overview; [https://docs.microsoft.com/en-

us/windows/uwp/design/shell/tiles-and-notifications/windows-push-notification-services--wns--

overview].

2. Badge Notifications for UWP apps; [https://docs.microsoft.com/en-

us/windows/uwp/design/shell/tiles-and-notifications/badges].

3. Toast Content; [https://docs.microsoft.com/en-us/windows/uwp/design/shell/tiles-and-

notifications/adaptive-interactive-toasts].

4. Raw Notification Overview; [https://docs.microsoft.com/en-us/windows/uwp/design/shell/tiles-

and-notifications/raw-notification-overview].

5. SQLite library statically linked into tool [Amalgamation of many separate C source files from

SQLite version 3.32.3].

6. SQLite documentation [http://www.sqlite.org].

	1 Introduction
	2 How to Use wpn
	2.1 Recovering Discarded Records
	2.2 Processing Multiple Databases
	2.3 Bypassing the Embedded SQLite library

	3 Use of the SQLite Library
	4 Supporting Artifact files
	5 Available Options
	6 Authentication and the License File
	7 References

