

Abstract
ccp is a standalone, command-line tool that parses cache

files associated with the Chromium-based browsers. The

tool can target various cache types and either report the

results in a CSV type format or archive the results in a

SQLite database. This tool has working versions for

Windows, Linux and macOS.

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v0.14 of ccp

Updated: Apr 15, 2024

TZWorks® Chromium Cache
Parser (ccp) Users Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 15, 2024 Page 1

Table of Contents

1 Introduction .. 2

1.1 Chromium Cache structure ... 3

1.1.1 Disk Cache ... 3

1.1.2 Simple Cache ... 4

1.2 Chromium-based Browsers ... 5

1.3 Location of the Cache data ... 5

2 How to Use ccp ... 8

2.1 Targeting Specific Cache files .. 9

2.2 Processing Cache Files in one or more Subdirectories ... 10

2.2.1 Archiving the Content Data ... 10

3 CSV Field Names / Meaning .. 11

4 Limitations... 12

5 Available Options .. 13

6 Authentication and the License File .. 14

7 References .. 14

Copyright © TZWorks, LLC Apr 15, 2024 Page 2

TZWorks® Chromium Cache Parser (ccp)
Users Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=54

Contact Information: info@tzworks.com

1 Introduction

The Chromium Cache Parser (ccp) targets various caches associated with Chromium-based browsers, or

browsers that use the cache component of Chromium. This tool addresses parsing caches in these

browsers (at least the later versions of these browsers): Google Chrome, Microsoft Edge, Opera, Brave,

Vivaldi, and others.

Browser cache files contain useful information for the examiner. The ccp tool is not unique, in that there

are other Chromium-based cache parsers available; a few are even free. This tool was primarily created

based on a need to provide more insight into the association of the cache metadata (eg. timestamps,

URL, http request/response, etc) and cache content data (eg. data for the webpage that is displayed),

especially when applied to the various cache types that Chromium can use. In addition, and from a tool

developer's standpoint, the ccp codebase can be used as framework for future prototyping work to

evaluate Chromium cache artifact data that may be corrupted or fragmented.

As background, the Chromium cache, is a repository for web data a user has viewed or downloaded. In

general, the purpose of the cache is to store data locally, and thus allow the browser quick access for

later requests to a previously viewed website. The cache includes: website pages, files, scripts, images

and other items that were viewed by a user or data that the browser needed to use. In addition to the

raw data that was received from a web server, the cache also contains useful metadata associated with

each item. From the point of view of the forensic examiner the cache provides insights to the user’s

Internet usage, since it contains items such as: the URL of the webpage, number of times the page was

fetched from the cache, filename/type/size, last modified time, last fetched time, server time, etc.

Having a tool available that can take advantage of this artifact data is necessary to have insights into the

user's activity.

mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 15, 2024 Page 3

The Chromium cache can consist of various types of cache; each type can be determined by where it is

located in the Chromium directory structure. These various types of cache, include: normal Cache data,

CacheStorage type data, Code Cache, and ScriptCache, to name a few. A listing of all the cache types is

shown below and is taken from the Chromium project’s documentation. The ccp tool has only been

tested on a few of these types, primarily due to the limited test samples available.

Cache Type Meaning
DISK_CACHE Disk is used as the backing storage
MEMORY_CACHE Data is stored only in memory
REMOVED_MEDIA_CACHE No longer in use
APP_CACHE Special case of DISK_CACHE. cache storage, service worker script cache
SHADER_CACHE Backing store for the GL shader cache
PNACL_CACHE Backing store for the Portable native client translation cache
GENERATED_BYTE_CODE_CACHE Backing store for renderer generated data like bytecode for JavaScript
GENERATED_NATIVE_CODE_CACHE Backing store for renderer generated data native code for WebAssembly
GENERATED_WEBUI_BYTE_CODE_CACHE Backing store for renderer generated data bytecode for JavaScript from WebUI pages

As a side note, not-withstanding that the above are the cache types, when the cache location is different

than the traditional cache location (Cache_Data), it will be named using the location of where the cache

was found. For example, if the cache was in the scriptcache section, it will be labelled as ‘scriptcache’,

or GPUCache if in the GPUCache section, etc. Below is the how the ccp tool maps how it labels it cache

type to where the cache is located.

Cache Type labeled in ccp tool location

disk cache ../Cache/Cache_Data

storage cache ../Service Worker/CacheStorage/..

code cache ../Code Cache/…

script cache ../Service Worker/ScriptCache/..

GPU cache ../GPUCache/..

1.1 Chromium Cache structure

The Chromium cache documentation discusses 2 main flavors of cache structure: (a) Disk Cache [2] and

(b) Simple Cache [3].

1.1.1 Disk Cache

The disk cache [2] consists of at least five files: an index file and four data files known as block files. The

index file keeps track of the block files by managing the start of few linked lists that point to a ranking

node, which in turn points to a previous or next ranking node. Block files contain records of fixed sized

data, where data_0 has the smallest chunk, and incrementally increases to the largest chunk in data_3.

Cache entries that are larger than a multiple of 4 of the largest block size gets relegated to its own

separate file. These separate files are prefixed with an f_ followed by 6 characters that represent 3

hexadecimal bytes (eg. f_00036d); this name is then referenced back in one or more of the block files to

maintain linkage. Below is a screenshot of the files created with a disk cache.

Copyright © TZWorks, LLC Apr 15, 2024 Page 4

The block sizes and the maximum cache size for the respective data_x files are shown below.

File Block size (bytes) Max Data size (bytes)

data_0 36 ranking nodes

data_1 256 1K

data_2 1K 4K

data_3 4K 16K

f_xxxxxx > 16K separate files

From the table, the data_0 file is usually dedicated to the rankings node data; the rankings node data is

used internally for identifying the least recently used (LRU) cache item for the eviction algorithm. This

algorithm determines which space can be reused by overwriting an old cache entry. From a forensics

standpoint, this metadata in the ranking node is quite useful, since it contains last access time and last

modified time of the cache entry in question.

1.1.2 Simple Cache

The simple cache [3] process creates a separate file for each cache entry. The internal structure of the

simple cache is organized by using predefined key patterns to allow the metadata data and content data

to be sandwiched, such as the browser request, the server’s response, as well as, transaction times, IP

address, etc. More information on this cache structure can by found by reviewing Chromium’s

documentation on their website.

Copyright © TZWorks, LLC Apr 15, 2024 Page 5

1.2 Chromium-based Browsers

While the table below is not a complete list, the intent here was to identify some of the more popular

browsers that use some form of the Chromium-based cache architecture. These are the ones that were

used when testing out the ccp tool. Of those listed, all have browsers operate on at least the following

desktop operating systems: Windows, Linux and macOS. Many of these same browsers work on iOS or

Android as well.

Browser Website Popular Desktop OS’s used on
Google Chrome https://www.google.com/chrome Windows, Linux and macOS

Brave https://brave.com/download Windows, Linux and macOS

Microsoft Edge
(newer version)

https://www.microsoft.com/en-us/edge Windows, Linux and macOS

Opera (newer
version)

https://www.opera.com/download Windows, Linux and macOS

Vivaldi https://vivaldi.com/download Windows, Linux and macOS

1.3 Location of the Cache data

Chromium-based cache artifacts are located in the user’s directory. It was not obvious when developing

the ccp tool just how many places Chromium-based cache files can be found. If one runs the ccp tool

while enumerating all the files in the main browser’s directly, the tool does a good job at identifying

those locations where it finds a cache file, which in turn is reflected in the output reported to the user.

The actual location in this directory varies depending on the operating system used. Below is a table

that breaks out the location by operating system. As a disclaimer, the list of cache locations shown

below is not complete. What is shown are only those locations when installing a browser and looking at

where the cache artifacts were placed. As the browser is used more extensively, other locations are

populated and these may or may not be shown below.

OS Cache location

Win XP %userprofile%\Local Settings\Application Data\Google\Chrome\User Data\Default

Post XP Win %userprofile%\AppData\Local\Google\Chrome\User Data\Default\Cache
%userprofile%\AppData\Local\Google\Chrome\User Data\Default\GPUCache
%userprofile%\AppData\Local\Google\Chrome\User Data\Default\Code Cache
%userprofile%\AppData\Local\Google\Chrome\User Data\Default\Service Worker\ScriptCache
%userprofile%\AppData\Local\Google\Chrome\User Data\Default\Service Worker\CacheStorage
%userprofile%\AppData\Local\Google\Chrome\User Data\Default\Storage\ext\<random>\def\Code Cache
%userprofile%\AppData\Local\Google\Chrome\User Data\Default\Storage\ext\<random>\def\GPUCache
%userprofile%\AppData\Local\Google\Chrome\User Data\ShaderCache\GPUCache
%userprofile%\AppData\Local\Google\Chrome\User Data\GrShaderCache\GPUCache

%userprofile%\AppData\Local\Microsoft\Edge\User Data\Default\Cache
%userprofile%\AppData\Local\Microsoft\Edge\User Data\Default\GPUCache
%userprofile%\AppData\Local\Microsoft\Edge\User Data\Default\Code Cache
%userprofile%\AppData\Local\Microsoft\Edge\User Data\Default\Service Worker\ScriptCache
%userprofile%\AppData\Local\Microsoft\Edge\User Data\Default\Service Worker\CacheStorage
%userprofile%\AppData\Local\Microsoft\Edge\User Data\Default\Storage\ext\<random>\def\Code Cache
%userprofile%\AppData\Local\Microsoft\Edge\User Data\Default\Storage\ext\<random>\def\GPUCache
%userprofile%\AppData\Local\Microsoft\Edge\User Data\ShaderCache\GPUCache
%userprofile%\AppData\Local\Microsoft\Edge\User Data\GrShaderCache\GPUCache

%userprofile%\AppData\Local\BraveSoftware\Brave-Browser\User Data\Default\Cache
%userprofile%\AppData\Local\BraveSoftware\Brave-Browser\User Data\Default\GPUCache

Copyright © TZWorks, LLC Apr 15, 2024 Page 6

%userprofile%\AppData\Local\BraveSoftware\Brave-Browser\User Data\Default\Code Cache
%userprofile%\AppData\Local\BraveSoftware\Brave-Browser\User Data\Default\Service Worker\ScriptCache
%userprofile%\AppData\Local\BraveSoftware\Brave-Browser\User Data\Default\Service Worker\CacheStorage
%userprofile%\AppData\Local\BraveSoftware\Brave-Browser\User Data\Default\Storage\ext\<random>\def\Code Cache
%userprofile%\AppData\Local\BraveSoftware\Brave-Browser\User Data\Default\Storage\ext\<random>\def\GPUCache
%userprofile%\AppData\Local\BraveSoftware\Brave-Browser\User Data\ShaderCache\GPUCache
%userprofile%\AppData\Local\BraveSoftware\Brave-Browser\User Data\GrShaderCache\GPUCache

%userprofile%\AppData\Local\Vivaldi\User Data\Default\Cache
%userprofile%\AppData\Local\Vivaldi\User Data\Default\GPUCache
%userprofile%\AppData\Local\Vivaldi\User Data\Default\Code Cache
%userprofile%\AppData\Local\Vivaldi\User Data\Default\Service Worker\ScriptCache
%userprofile%\AppData\Local\Vivaldi\User Data\Default\Service Worker\CacheStorage
%userprofile%\AppData\Local\Vivaldi\User Data\Default\Storage\ext\<random>\def\Code Cache
%userprofile%\AppData\Local\Vivaldi\User Data\Default\Storage\ext\<random>\def\GPUCache
%userprofile%\AppData\Local\Vivaldi\User Data\ShaderCache\GPUCache
%userprofile%\AppData\Local\Vivaldi\User Data\GrShaderCache\GPUCache

%userprofile%\AppData\Local\Opera Software\Opera Stable\Cache\Cache_Data
%userprofile%\AppData\Local\Opera Software\Opera Stable\System Cache\Cache_Data
%userprofile%\AppData\Roaming\Opera Software\Opera Stable\Code Cache
%userprofile%\AppData\Roaming\Opera Software\Opera Stable\GPUCache
%userprofile%\AppData\Roaming\Opera Software\Opera Stable\GrShaderCache
%userprofile%\AppData\Roaming\Opera Software\Opera Stable\ShaderCache

OSX /Users/[user acct]/Library/Caches/Google/Chrome/Default/Cache
/Users/[user acct]/Library/Caches/Google/Chrome/Default/Code Cache
/Users/[user acct]/Library/Caches/Google/Chrome/Default/Storage/ext/<random>/def/Cache
/Users/[user acct]/Library/Caches/Google/Chrome/Default/Storage/ext/<random>/def/Code Cache
/Users/[user acct]/Library/Caches/Google/Chrome/Default/Storage/ext/<random>/def/GPUCache
/Users/[user acct]/Library/Application Support/Google/Chrome/Default/GPUCache
/Users/[user acct]/Library/Application Support/Google/Chrome/Default/Storage/ext/<random>/def/Code Cache

/Users/[user acct]/Library/Caches/Microsoft Edge/Default/Default/Cache
/Users/[user acct]/Library/Caches/Microsoft Edge/Default/Default/Code Cache
/Users/[user acct]/Library/Caches/com.microsoft.edgemac/Cache.db
/Users/[user acct]/Library/Caches/Microsoft Edge/Default/Storage/ext/<random>/def/Code Cache
/Users/[user acct]/Library/Caches/Microsoft Edge/Default/Storage/ext/<random>/def/GPUCache

/Users/[user acct]/Library/Caches/BraveSoftware/Brave-Browser/Default/Cache
/Users/[user acct]/Library/Caches/BraveSoftware/Brave-Browser/Default/Code Cache
/Users/[user acct]/Library/Caches/com.brave.browser/Cache.db
/Users/[user acct]/Library/Application Support/BraveSoftware/Default/GPUCache
/Users/[user acct]/Library/Application Support/BraveSoftware/Default/Service Worker/CacheStorage
/Users/[user acct]/Library/Application Support/BraveSoftware/Default/Service Worker/ScriptCache

/Users/[user acct]/Library/Caches/Vivaldi/Default/Cache/Cache_Data
/Users/[user acct]/Library/Caches/Vivaldi/Default/Code Cache
/Users/[user acct]/Library/Caches/Vivaldi/Default/Storage/ext/<random>/def/Code Cache
/Users/[user acct]/Library/Application Support/Vivaldi/Default/GPUCache
/Users/[user acct]/Library/Application Support/Vivaldi/GrShaderCache/GPUCache
/Users/[user acct]/Library/Application Support/Vivaldi/ShaderCache/GPUCache
/Users/[user acct]/Library/Application Support/Vivaldi/Default/Storage/ext/<random>/def/GPUCache

/Users/[user acct]/Library/Caches/com.operasoftware.Opera/Cache
/Users/[user acct]/Library/Caches/com.operasoftware.Opera/Code Cache
/Users/[user acct]/Library/Caches/com.operasoftware.Opera/System Cache
/Users/[user acct]/Library/Application Support/com.operasoftware.Opera/GPUCache
/Users/[user acct]/Library/Application Support/com.operasoftware.Opera/ShaderCache
/Users/[user acct]/Library/Application Support/com.operasoftware.Opera/GrShaderCache

Linux
(Ubuntu)

/home/[user acct]/.cache/google-chrome/Default/Cache
/home/[user acct]/.cache/google-chrome/Default/Code Cache
/home/[user acct]/.cache/google-chrome/Default/Storage/ext/<random>/def/Cache
/home/[user acct]/.cache/google-chrome/Default/Storage/ext/<random>/def/Code Cache
/home/[user acct]/.config/google-chrome/Default/GPUCache
/home/[user acct]/.config/google-chrome/Default/Storage/ext/<random>/def/GPUCache
/home/[user acct]/.config/google-chrome/GrShaderCache/GPUCache
/home/[user acct]/.config/google-chrome/ShaderCache/GPUCache

/home/[user acct]/.cache/microsoft edge/default/Default/Cache
/home/[user acct]/.cache/microsoft edge/default/Default/Code Cache
/home/[user acct]/.cache/microsoft edge/default/Default/Storage/ext/<random>/def/Cache
/home/[user acct]/.cache/microsoft edge/default/Default/Storage/ext/<random>/def/Code Cache
/home/[user acct]/.config/ microsoft edge/Default/GPUCache
/home/[user acct]/.config/ microsoft edge/Default/Service Worker/CacheStorage
/home/[user acct]/.config/ microsoft edge/Default/Service Worker/ScriptCache

Copyright © TZWorks, LLC Apr 15, 2024 Page 7

/home/[user acct]/.config/ microsoft edge/Default/Storage/ext/<random>/def/GPUCache
/home/[user acct]/.config/microsoft edge/GrShaderCache/GPUCache
/home/[user acct]/.config/microsoft edge/ShaderCache/GPUCache

/home/[user acct]/.config/BraveSoftware/Brave-Browser/GrShaderCache/GPUCache
/home/[user acct]/.config/BraveSoftware/Brave-Browser/ShaderCache/GPUCache
/home/[user acct]/.config/BraveSoftware/Brave-Browser/Default/GPUCache
/home/[user acct]/.config/BraveSoftware/Brave-Browser/Default/Service Worker/ScriptCache
/home/[user acct]/.config/BraveSoftware/Brave-Browser/Default/Service Worker/CacheStorage
/home/[user acct]/.cache/BraveSoftware/Brave-Browser/Default/Cache
/home/[user acct]/.cache/BraveSoftware/Brave-Browser/Default/Code Cache
/home/[user acct]/snap/brave/[#]/.config/BraveSoftware/Brave-Browser/Default/GPUCache
/home/[user acct]/snap/brave/[#]/.config/BraveSoftware/Brave-Browser/GrShaderCache/GPUCache
/home/[user acct]/snap/brave/[#]/.config/BraveSoftware/Brave-Browser/ShaderCache/GPUCache
/home/[user acct]/snap/brave/common/BraveSoftware/Brave-Browser/Default/Cache
/home/[user acct]/snap/brave/common/BraveSoftware/Brave-Browser/Default/Code Cache

/home/[user acct]/.config/Opera/GPUCache
/home/[user acct]/.config/Opera/GrShaderCache/GPUCache
/home/[user acct]/.config/Opera/ShaderCache/GPUCache
/home/[user acct]/.config/Opera/Service Worker/ScriptCache
/home/[user acct]/.cache/opera/Cache
/home/[user acct]/.cache/opera/Code Cache
/home/[user acct]/.cache/opera/System Cache
/home/[user acct]/snap/opera/[#]/.config/Opera/GPUCache
/home/[user acct]/snap/opera/[#]/.config/Opera/GrShaderCache/GPUCache
/home/[user acct]/snap/opera/[#]/.config/Opera/ShaderCache/GPUCache
/home/[user acct]/snap/opera/common/opera/Cache
/home/[user acct]/snap/opera/common/opera/Code Cache
/home/[user acct]/snap/opera/common/opera/System Cache

/home/[user acct]/.cache/vivaldi/Default/Cache
/home/[user acct]/.cache/vivaldi/Default/Code Cache
/home/[user acct]/.cache/vivaldi/Default/Storage/ext/<random>/def/Cache
/home/[user acct]/.cache/vivaldi/Default/Storage/ext/<random>/def/Code Cache
/home/[user acct]/.config/vivaldi/GrShaderCache/GPUCache
/home/[user acct]/.config/vivaldi/ShaderCache/GPUCache
/home/[user acct]/.config/vivaldi/Default/GPUCache
/home/[user acct]/.config/vivaldi/Default/Service Worker/CacheStorage
/home/[user acct]/.config/vivaldi/Default/Service Worker/ScriptCache
/home/[user acct]/.config/vivaldi/Default/Storage/ext/<random>/GPUCache

Copyright © TZWorks, LLC Apr 15, 2024 Page 8

2 How to Use ccp

The screenshot below shows the options available. The formatting options are similar to the rest of the

TZWorks tools. The output can be rendered in either: delimited text (CSV and Log2Timeline) or SQLite.

The SQLite option was added primarily to allow one to parse the cache records into their metadata

components while archiving the companion cache content data with the metadata results.

To process cache files, ccp can either target a folder (which is the preferred method) or an individual

cache file. The tool will automatically determine which version of the format the cache files are in and

adjust the parsing engine accordingly. In fact, when parsing many subdirectories of Chromium-based

cache artifacts in one session, the tool will dynamically address each cache type it knows about,

resulting in a cohesive mapping of artifact metadata to the cache content data sorted. The retention of

the raw cache content is a benefit of using the SQLite option, since a separate table will be generated,

one for the cache metadata and another for the cache content data. The mapping between the tables is

implemented via a unique key value that the correlates the records of the two tables.

If processing a directory of cache files (either by using the -pipe command or the -enumdir command),

the user should point to the browser subdirectory that is desired to be parsed.

Copyright © TZWorks, LLC Apr 15, 2024 Page 9

2.1 Targeting Specific Cache files

While not recommended for processing a collection of artifacts, if one only wants to target a specific

cache file or a block cache, one can use the -simple <simple cache file> or the -index <block cache

index file> option, respectively. These were left in as options primarily for debugging of the ccp tool. In

the example below, we are targeting a disk cache folder by passing in the ‘index’ file. The results would

be rendered in the test.csv file.

Pipe delimited text is the default output that is rendered by the tool. This can be adjusted to either a

comma or tab character by using the -csv_separator <delimiter> option.

When looking at the output in a spreadsheet type app, on the left is the Chromium type and version of

the cache format (major and minor version separated by a dot). Many of the other fields are the

metadata associated with the Chromium cache internals, requesting a page/data and the server serving

up the webpage/data.

Shown in the screenshot is only the server timestamp, but also in the data (but truncated in the

screenshot), is up to 6 – 8 timestamps that range from those associated with the server, browser and file

timestamps. There is a mix of JSON-like fields in the sense they contain key/value pairs. In this way all

the parsed data could be rendered in a CSV type format where each record is delimited.

Copyright © TZWorks, LLC Apr 15, 2024 Page 10

2.2 Processing Cache Files in one or more Subdirectories

If desiring to process many Chromium cache files in one pass, one can make use of ccp’s piping option

(-pipe) or the folder enumeration option (-enumdir). This is the more typical use of the ccp tool. Either

of these options allow one to target multiple subdirectories during the parsing operation. Below is a

simple way to target the cache files in an extracted account. In this case the output is sent to a SQLite

file named ‘results1.sqlite’

If desiring more control on the number of subdirectories to traverse, one can use the -enumdir option

along with the -num_subdirs sub-option. It would look like this for the above example:

Below is an example of the SQLite output when rendered with the DB Browser for SQLite. Notice the

actual content of the webpage is archived in the cache_ctxdata_entries database table using this option.

2.2.1 Archiving the Content Data

With the default option, the tool sends the parsed output to delimited text. This is fine when only

wanting the results associated with the metadata such as URLs visited, timestamps of the visit, etc. If

desiring to archive the content data as well, then one would run the tool with the -sqlite <db_name>

option, which then tells ccp to create a database table for the metadata and a database table for the

content data.

To view the results, one will need to be familiar with the SQL syntax to query the database, or

alternatively, will need a separate SQLite viewer to look at the data. A good SQLite viewer is the “DB

Browser for SQLite” and a reference is located at the end of this document.

The database schema created by ccp consists of 4 tables: (a) cache_metadata_entries, (b)

cache_ctxdata_entries, (c) metadata and (d) ref. Only the first two tables have the records from the

Copyright © TZWorks, LLC Apr 15, 2024 Page 11

parsed metadata and content data, respectively. The metadata table is used to record the session

parameters used when running the parser. The last table (ref), is not shown in the diagram, and is used

internally by ccp for bookkeeping only. The fields for the first three tables and their relationship are

shown below.

The records in the cache_metadata_entries table are similar to the information rendered in the CSV

output. The actual content data is stored in the cache_ctxdata_entries table under the field name

“ctxdata_raw”. This is a ‘blob’ type since the data can be either text or binary.

3 CSV Field Names / Meaning

Below is a refence of all the CSV fields used and their meanings.

CSV Field Definition

cache_version Cache type and version

url_hash SHA1 hash of the key contained in the metadata. This is a computed value
by ccp.

url_etag The HTTP etag that was present in the HTTP response

request_type_reply_status HTTP request type (eg. GET, POST), and reply status (eg. HTTP/1.1 200 OK)

Copyright © TZWorks, LLC Apr 15, 2024 Page 12

serv_name Server name recorded in the HTTP Response

serv_timezone Server time zone

serv_date Server timestamp included in the HTTP Response

serv_modify_date Server modify timestamp included in the HTTP Response

serv_expires_date Server expire timestamp included in the HTTP Response

browser_fetch_utc Browser - last time the cache was fetched

browser_modify_utc Browser modify timestamp associated with the cache

browser_expires_utc Browser expire timestamp associated with the cache

content_create_utc Actual content data file create timestamp. This is only present if the
content file is a separate file. For Linux and OSX, this is the status change
timestamp

content_modify_utc Actual content data file modify timestamp. This is only present if the
content file is a separate file.

fetch_count Number of times the cache was fetched

url URL of the webpage visited

url_params Any URL parameters used. This is formatted as JSON.

content_type The content data type (eg. GIF, JPEG, text, etc) extracted from the HTTP
response

content_filename Last part of the URL prior to the URL parameters extracted from the HTTP
response

content_encoding The encoding used on the content data (eg. gzip, br, etc) extracted from
the HTTP response

content_size Size of the content data extracted from the HTTP response

content_location_info The file and offset (if not zero) within the file where the content data is
located. This is formatted as JSON.

extra_fields The key/value pairs extracted from the HTTP response. This is formatted
as JSON.

file The original path/file containing the metadata

4 Limitations

This version of the tool has a number of limitations. They are listed below.

• The tool is still prototype in nature being that this is the first version released. It still needs to

be tested against various types of files, corrupted files, etc. to ensure the tool can perform

consistently.

Copyright © TZWorks, LLC Apr 15, 2024 Page 13

5 Available Options

Option Description

-csv

Outputs the data fields delimited by commas. Since filenames can have
commas, to ensure the fields are uniquely separated, any commas in the

filenames get converted to spaces.

-csvl2t Outputs the data fields in accordance with the log2timeline format.

-sqlite
Outputs the data into a SQLite database. The syntax is:
-sqlite <db name to create or use>.

-pipe
Used to pipe files into the tool via STDIN (standard input). Each file passed in is

parsed in sequence.

-enumdir
Experimental. Used to process files within a folder and/or subfolders. Each file
is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs <#>.

-filter
Filters data passed in via STDIN via the -pipe option. The syntax is -filter <"*.ext
| *partialname* | ...">. The wildcard character '*' is restricted to either before
the name or after the name.

-no_whitespace
Only applies to -csv and -csvl2t options. Used in conjunction with -csv option to
remove any whitespace between the field value and the CSV separator.

-csv_separator

Only applies to -csv and -csvl2t options. Used in conjunction with the -csv
option to change the CSV separator from the default comma to something
else. Syntax is -csv_separator "|" to change the CSV separator to the pipe
character. To use the tab as a separator, one can use the -csv_separator "tab"
OR -csv_separator "\t" options.

-dateformat

Output the date using the specified format. Default behavior is -dateformat
"yyyy-mm-dd". Using this option allows one to adjust the format to mm/dd/yy,
dd/mm/yy, etc. The restriction with this option is the forward slash (/) or dash
(-) symbol needs to separate month, day and year and the month is in digit (1-
12) form versus abbreviated name form.

-timeformat

Output the time using the specified format. Default behavior is -timeformat

"hh:mm:ss.xxx". One can adjust the format to microseconds, via

"hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no

fractional seconds, via "hh:mm:ss". The restriction with this option is a colon

(:) symbol needs to separate hours, minutes and seconds, a period (.) symbol

needs to separate the seconds and fractional seconds, and the repeating

symbol 'x' is used to represent number of fractional seconds.

-quiet Show no progress during the parsing operation.

-utf8_bom
All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8 byte
order mark to the CSV output using this option.

Copyright © TZWorks, LLC Apr 15, 2024 Page 14

6 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

7 References

1. Chromium Design documents [https://www.chromium.org/developers/design-documents]
2. Chromium disk cache [https://www.chromium.org/developers/design-documents/network-

stack/disk-cache]
3. Chromium simple cache [https://www.chromium.org/developers/design-documents/network-

stack/disk-cache/very-simple-backend]
4. SQLite library statically linked into tool [Amalgamation of many separate C source files from

SQLite version 3.32.3].

5. SQLite documentation [http://www.sqlite.org].

6. DB Browser for SQLite [http://sqlitebrowser.org/]

http://sqlitebrowser.org/

	1 Introduction
	1.1 Chromium Cache structure
	1.1.1 Disk Cache
	1.1.2 Simple Cache

	1.2 Chromium-based Browsers
	1.3 Location of the Cache data

	2 How to Use ccp
	2.1 Targeting Specific Cache files
	2.2 Processing Cache Files in one or more Subdirectories
	2.2.1 Archiving the Content Data

	3 CSV Field Names / Meaning
	4 Limitations
	5 Available Options
	6 Authentication and the License File
	7 References

