TZWorks® Shim Database Parser
(shims) Users Guide

Copyright © TZWorks LLC
www.tzworks.com

Contact Info: info@tzworks.com
Document applies to v0.44 of shims
Updated: Apr 15, 2024

Abstract

shims is a standalone, command-line tool that parses and
extracts components from a Windows Application
Compatibility database. Designed for the malware
investigator, shims allows one to analyze any entry that
may have been used to compromise a Windows system.
shims runs on Windows, Linux and Mac OS-X.

http://www.tzworks.net/
mailto:info@tzworks.net

Table of Contents

1
2

© 00 N o u b

10

INEFOAUCTION ettt ettt et e bt e s bt s ae e et e et e e bt e sbeesaee st e eabeenbe e beeaneesneeennean 2
Background INfOrMationuiiiiceee e e et e e e e e e e e e abe e e e e abe e e e ennbaeeeennraeas 3
2.1 Compatibility Administrator TOO!cciiiciiiiiiiee e rree e s e sbee e s s areeas 4
HOW t0 USE the SHIimS TOONeoiiiieiieeiie ettt ettt e e sab e st e eeneeesbeeeaes 6
3.1 Quick-look Report for @ Database........cocuveiiiciiiii e 7
3.11 Statistics for Mounted System Volume or Volume Shadow............ccoceeeiciiieinciieecccieeeeees 8
3.2 YT Lol a1 =] H T Y-SRt 9
33 Y= 1ol o 11 7= €1 U 1| LSRR 10
34 YT T el a1 = e T 11PN 11
3.5 Pulling out SPecCific List TYPE TagS..uuuiiiiciireieiiiee ittt eeiee e estte e e e stee e e e stee e s s sbae e e e sabaee s ssnbeeesensseeas 12
3.6 SEANCHING PAtCRES . e e st e e et e e e ata e e e snbaeeesaatbaee e nsaaeeean 13
3.6.1 Y T Tol o TYo) il o [o] e o= | ol oY [V- 15
3.6.2 ScanNNINg for PatCh PatlerNSuviiieeiee ettt e st e e e earaeeeeas 16
3.7 PE IMEEATATA. ... e ettt b et st ettt e b e she e st st et e e beens 16
3.7.1 Matching PE Metadata with Shim ENtriesccoocoieiiiciiei e 17
3.8 Parsing Collections Of SDB filESuuiiiiiiiiiiiie sttt sbre e e s e e e areeas 17
3.8.1 Targeting @ SYStemM VOIUMEooi ittt et e e e bee e e ebe e e e e e 17
3.8.2 Targeting a Volume ShadoW COPY ...cccicuiieeiiiieeeeciiee ettt e eetee e e ette e e eetee e e bee e e e ebeee e e areeas 17
3.8.3 I LA LT o 1T =Tt (0 =N 17
Comparing the Application Compatibility Administrator to the shims toolccccceviiiniiennennnnee. 18
Available ENUMEration OPtioNSceecciiiiiiiiiie et e e e bee e s e e e s e e e e abee e e earaeas 20
JANY Y] o] [T oo @] oY d oY o 13RS 20
MISCEIIANEOUS OPLIONS . ..cceiiieeeeee et e e e e e e e et e e e e e e e e beb e e e e e eeeesannbesaeeeeeesesansrsaneeeeeaaans 21
Sub Options that can be used with the —stats OPtioN........ccceeeeecciiiiiiie e 22
Authentication and the LICENSE File........couiiiiiiieee e e 22
REFEIEINCES ...ttt st sttt e bt e s bt e sat e et e e be e s b e e sb e e sanesabesane e beens 23

Copyright © TZWorks LLC Apr 15, 2024 Page 1

TZWorks® Shim Database Parser
(shims) Users Guide

Copyright © TZWorks LLC
Webpage: http://www.tzworks.com/prototype_page.php?proto_id=30
Contact Information: info@tzworks.com

1 Introduction

shims is a command line tool that parses and extracts components from an Application Compatibility
Database (specifically referenced in this user’s guide as a Shim Database or SDB file). This database is
the configuration component used by the Window’s Shim engine used to resolve compatibility issues
between an application and how it interacts with Windows. The technology that implements this
interacts between the Application Compatibility Interface (eg. shimreg.dll and apphelp.dll), the Shim
engine (shimeng.dll), and various callbacks in the Portable Executable (PE) loader.

The Application Compatibility framework uses the Shim Database to identify if, and how, a process or
DLL should be shimmed during process startup and/or DLL loading. The default Shim Database is
located at \Windows\AppPatch\sysmain.sdb and contains thousands of entries for a normal Win7 box.
In addition to the sysmain.sdb database, Windows can have other pre-installed databases and user-
defined custom databases.

While the Window’s Shim engine is used to enhance the user experience as well as resolve
incompatibles between older binaries and operating systems they are running on, it can also be used
(and has been used) as a launching point for malware. Specifically, the Shim engine allows installed
applications on a Windows box to be patched ‘on the fly’ (ie. the term hot-patching is used by the
community). This patch can be used to spawn other processes, or inject undesired DLLs, into the
patched application. Doing this offers the malware writer another way to achieve persistence across
reboots. Therefore, understanding which Shim Databases are on your system and subsequently parsing
those databases to extract targeted patches per application are one of the primary purposes of this tool.

There are at least four different types of modifications that can be done with the Application
Compatibility framework:

e System shims, which get implemented with an APl hook to one of the libraries, AcGenrl.dll or
Aclayers.dll

e Application tailored shims, which also get implemented with an API hook, but to the library
AcSpecifc.dll.

e Flag shims, which specifies some flag(s) to the application, or to an installer, about the
application.

Copyright © TZWorks LLC Apr 15, 2024 Page 2

mailto:info@tzworks.net

e Binary patch, which represents an ‘on the fly’ memory patch on the executable instead of a
system APl hook.

To target an application, or a family of applications, entries within the Shim Database can identify either
specific internal parameters or very generic external parameters to the Application Compatibility
matching algorithm. For example, below are some of the available options that can be seen when
examining a Shim Database.

e Simple matching which can use file timestamp, compile timestamp and/or checksum entries

e More complex matching which can use the present of certain resources within a PE file, such as
bitmaps, and/or other data.

e Generic matching which can use wildcards along with Boolean logic for other matching
conditions.

2 Background Information

Shim databases are typically located in the %windir%\AppPatch main directory. Whether a shim
database targets a 32 bit or 64 bit application and whether it is a custom shim or not, determines which
subdirectory it goes into.

>

4 Windows 2 Name Type
addins o
Aol AppPatch64 File folder

ompat
APPP 5 : Custom
4 atc
£e en-US
AppPatch64
%, AcGenral.dll
4 Custom
%] AcLayers.dll
Custom64 =
%, AcRes.dll
en-US
%] AcSpecfc.dil
assembly
%] acwowb4.dll
Boot
i (%] AcXtrnal.dll
Branding .
%, apihex86.dlI
CsC)
| drvmain.sdb
Cursors i .
| msimain.sdb SDB File
debug !
| pcamain.sdb
Dell ; —
) - | sysmain.sdb SDB File
diannnctice

The 32 bit versions of the default Windows shim databases are at the root of the %windir%\AppPatch
directory. The 64 bit versions of the default Windows shim databases are in one directory down, in the
%windir%\AppPatch\AppPatch64 directory. Custom shim databases (those that are made by anyone
else or are not part of the default Windows shim databases) are stored in the
%windir%\AppPatch\Custom directory and %windir%\AppPatch\Custom64 directories. The 32 bit
versions are stored in the former and 64 bit versions are stored in the latter. Unfortunately, these
directories are only a convention and not a requirement. For example, on my Windows 8 box, the
%windir%\system32\CompatTel directory contains a sysmain32.sdb Shim Database file. The good news
is each custom shim database has a registry entry that identifies its name, path, and installation
timestamp. This can be found at HKLM\Software\Microsoft\Windows

Copyright © TZWorks LLC Apr 15, 2024 Page 3

NT\CurrentVersion\AppCompatFlags\InstalledSDB. Below is the data taken from a sample custom shim
that was installed for demo purposes. So if a Shim Database did use a different path or different
extension, then it would be documented here.

SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\InstalledSDB\{fd241cab-4568-4962-b66e-B15cb56c27ce}

Timestamp: ©x01d@S23fcblcdSe8 (©2/27/2015 ©3:45:13.677 UTC)

DatabasePath REG_SZ C:\Windows\AppPatch\Custom\{fd241ca6-4568-4962-b66e-@15cb56c27ce}.sdb
DatabaseType REG_DWORD exeeeleeee

DatabaseDescription REG_SZ TestShimDB

DatabaselInstallTimeStamp REG_QWORD 8x@1des23fcbBcd5es

2.1 Compatibility Administrator Tool

Microsoft provides a nice GUI utility, called the Compatibility Administrator to read compatible SDB
databases. Below is a screen shot of this tool examining the global sysmain.sdb database. This tool is
very useful in breaking out the various applications that are targeted, the compatibility fixes and the
modes. The tool also shows any custom database currently active as well.

g ™\
% Compatibility Administrator (32-bit) - Microsoft Application Compatibility Dat..ﬂﬂ
File Edit View Database Search Help

%j New lbOpen H y ‘@ \i) AppHel " .] ’/‘\'Search

= \3 System Database (32-bit) Applications -
i
+14 !Iiiiiﬁii! -
:) $100,000 Pyramid

+ Compatibility Fixes

-] Compatibility Modes %}_ISD& ‘ 4
+-§8) Installed Databases 9000 Legacy Registry Entries (NTVDM Compat Flags)
-8 Per User Compatibility Settings }3000 Legacy Registry Entries (User Compat Flags)
[i Custom Databases ':’55000 Test Entries
'L) 10 voor Taal 3

D 100 Years Print @ KONICA MINOLTA (Ex Store)
'L) 1000 Best Fonts

') 1000 Best Solitaire Games: 3 Peak Space Cards
') 1000 Borders & Backgrounds

5 1000 Salitaire Games
£ m »

More information about Compatibility Administrator:

Download the latest version of the Application Compatibility Toolkit

6575 Application(s)

" 7

When designing the shims tool, we used the above Microsoft tool to validate our output.
Unfortunately, we could not verify everything, as the Microsoft tool does not show much of the internal
data, which includes: patches, GUIDs, certain flags, etc. So to validate some of the other metadata, we
resorted to other techniques to identify some of the fields that were not shown in the GUI tool. This

Copyright © TZWorks LLC Apr 15,2024 Page 4

gave us the enough insight to understand many of the fields that were not shown in the GUI tool and
allowed use to write our own application that could work across multiple platforms. While we believe
our shims tools is relatively stable, there are undoubtedly boundary conditions that still need to be
discovered and fixed.

Copyright © TZWorks LLC Apr 15, 2024 Page 5

3 How to Use the shims Tool

To extract general purpose information from one of these databases, use the -stats option. This gives

summary information of what type of compatibility fixes are in the database as well as various

timestamps associated with the database.

To search a database, or find details about certain entries, one can use a variety of other options. This

includes filtering on different types of compatibility fixes (such as: patches, shims, fixes), or just

searching for specific target executables or DLLs.

Below is a menu which shows many of the options in summary form:

2. Administrator: Windows PowerShell

Usage
shims -listsdb
shims -stats
shims -sdb <DB> [opts]

Enumerate options
-apps

-exes

-fixes

-shims

-patches

-tag <#>

-guids
-stringtable

Find Options
-strings "strl | str2 |..
-guid <guid to find>
-tagids "id1 | id2 |.."
-patchbytes "pattern"
-match

nonwononon

Additional Options
-vss <index>
-partition <letter>
-pipe
-stats -sdb <file>
-stats -pe <file>
-enumsdb
-filter <*partial#*|*.ext>

LTI T T I I 1}

General Examples
shims -sdb <file> -apps
shims -sdb <file> -patches
shims -sdb <file> -stats
shims -pe <file> -stats

list SDB files on system volume
pull stats from SDB files on system volume
target SDB file w/ specific option

all apps (exes, packages, driverblocks,..)
filter only exe tags

all types of fixes (shims, flags,..)
filter only shim tag fixes

filter only patch tag fixes

filter specific tag type

enumerate guids

enumerate stringtable

finds partial strings [case insensitive]
syntax: 11111111-1111-1111-1111-111111111111
finds specified tagids

find patch, std::hex bytes w/ space delimiters
use w/ -pe <PE file> to check for shims

target Volume snapshop at index

target Shim DB locations in this volume
use stdin to identify files to process
pull stats (on SDB File). [-reg <sw hive>]
pull stats (on PE File)

list SDB files

filters stdin data from -pipe option

pull all apps from DB
pull all patches from DB
pull DB stats

pull stats from PE file

Pulling stats from multiple SDB's

dir c:\windows\AppPatch*.sdb /b /s | shims -stats -pipe -csv > out.csv
shims -vss 2 -stats -csv > out.csv

shims -partition c: -exes > out.txt

shims -enumdir <location sdb> -num_subdirs <#> [options]

All the compatibility fixes will be rendered in XML output, while the statistics options can be done in

either unformatted text or CSV output. The various options and how they can be used, are discussed in

the sections below.

Copyright © TZWorks LLC

Apr 15, 2024

Page 6

3.1 Quick-look Report for a Database

When analyzing a database, one can pull the statistics about the database and its composition by
running the -stats command. Below is an example of running shims on one of the Volume shadow
copies and truncating the output to display the global shim database (sysmain.sdb).

"cmdline:

Database Path/File
Database MDS
Database SHAl

File ModTime

File AccessTime
File CreateTime
Database ModTime
Compiler Version
Database Version
Database Internal Name
Database Platform
Database Identifier

shims64 -stats

-vss 1"

\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1l\Windows\AppPatch\sysmain.sdb
1d8c1280d38c526c7041e72db8d70dcl
da2e372481e6cdb450091794a58f294a46belads

04/12/2013 23:32:33.314 [UTC]

09/12/2014 01:00:55.654 [UTC]

09/12/2014 01:00:55.654 [UTC]

04/12/2013 23:33:25.906 [UTC]

2.1.0.3

2.1

Microsoft Windows Application Compatibility Fix Database
0x00000001

11111111-1111-1111-1111-111111111111

appname tag Ox6006: 6625 items
inexclude tag @x7003: 2419 items
shim tag ©x7004: 662 items
patch tag ©x7005: 35 items
exe tag ©x7007: 13105 items
layer tag @x7eeb: 64 items
flag tag 0x7013: 149 items
context tag ©x7018: 1 item
strings tag ©x8801: 39202 items
0x9011:

Databgse Ra i \\?\GLOBALROOT\Device\Harddiskvg

The output shows the various timestamps of the SDB file as well as the last time the database was
updated (via the internal database timestamp labeled Database ModTime). Included in the database
summary are the following: the version number, MD5/SHA1 hashes, identifier, and a number of other
stats about the contents within it, such as the occurrences of the differing fixes and other elements.
From empirical data, the database identifier either uses a class GUID or uses a custom unique GUID. For
example, both the sysmain.sdb and the appraiser.sdb databases appear to be always classified as
111111112-12211-11112-121211-111122211131121217.
Below is a table of some of the common GUIDs we have found from empirical analysis.

Other databases seem to have common GUIDs as well.

SDB name

sysmain[null| 32| 64].sdb,
appraiser.sdb,
sysmain[32|64]runtime.sdb

GUID
11111111-1111-11221-1111-1121111111111

Type
App Compatibility Fix D/B

drvmain[null|32]64].sdb Driver Compatibility D/B f9ab2228-3312-4a73-b6f9-936d70e112ef

pcamain.sdb Program Compatibility Assistant D/B 667fc0e7-8d3e-4013-977e-7f9af3a5a5df
msimain.sdb System Installer Compatibility D/B d8ff6d16-6a3a-468a-8b44-01714ddc49ea
KeyboardFilterShim.sdb Embedded Keyboard Filter D/B 709f8b46-ee6f-4948-bc89-cc1653ac6762
apphelp.sdb App Compatibility Message D/B 22222222-2222-2222-2222-222222222222
apph_sp.sdb App Compatibility Message D/B - Service Pack A44444444-4444-4444-4444-444444444444

Copyright © TZWorks LLC Apr 15, 2024 Page 7

One can repeat this by collecting a number of shim databases from various versions of Windows

operating systems into a directory for analysis, and then piping in the directory into the shims tool using

the -pipe and -stats commands together. The -stats command also allows one to use the
options: -csv, -csvl2t, -csv_separator, -dateformat, -timeformat.

source file
{9f4f4a9b-eec5-4906-92fe-d1f43ccf5cBd}.sdb

N

DB date

5/2¢
{fdfbalf3-74ae-4255-9c10-a0f552b4610f}.sdb @
3/21

time-UTC DB ver

platform

DBID

Custom Shim D/B’s

3/25/2005 03:48:03.783
3/25/2005 01:38:18.631
4/12/2013
8/30/2014
9/12/2014 23:41:39.410
10/8/2014

10/8/2014

9/12/2014 23:59:59.112

App helper D/B’s

2.06.03
2.06.03
2.1.03
2.1.03
3.0.0.3
3.0.0.3
3.0.0.3
3.0.03
3.0.03
3.0.03

23:33:29.354
19:13:24.267

18:55:50.679
21:50:07.784
18:55:58.228
21:50:16.878

2/2/2015

2/2/2015

1

000006

0x00000001
0x 00000004
0x00000001
0x 00000004
0x 00000002
0x 00000005
0x 00000005
0x00000002
0x00000002
0x 00000002

c5-4906-92fe-d1f43ccf5c8d
fdfbalf3-74ae-4255-9c10-a0f552b4610f
SRR R L R
22232322-3333-3233-2222-2323222322323
111131111-11311-1111-1111-111111111111
11111111-1111-1111-1111-111111111111
f9ab2228-3312-4a73-b6f3-936d70e112ef
f9ab2228-3312-4a73-b6f3-936d70e112ef
f9ab2228-3312-4a73-b6f3-936d70e112ef
f9ab2228-3312-4a73-b6f9-936d70e112ef
f9ab2228-3312-4a73-b6f9-936d70e112ef
f9ab2228-3312-4a73-b6f9-936d70e112ef
f9ab2228-3312-4a73-b6f9-936d70e112ef
f9ab2228-3312-4a73-b6f9-936d70e112ef
f9ab2228-3312-4a73-b6f9-936d70e112ef
709f8b46-ee6f-4948-bed9-ccl653ach 762

Different versions of Windows Shim D/B’s
(Win2003, Win7, Win8, Win10, etc)

td9ea
rd9ea
rd49ea
rd49ea
a5df

8/21/2013 23:53:01.281
8/22/2013 06:57:05.706
9/12/2014 23:48:35.970
9/12/2014 23:59:37.000

2.1.03
2.1.03
3.0.0.3
3.0.0.3

0x00000001
Ox 00000004
Ox 00000005
0x00000002

667fc0e7-8d3e-4013-977e-7f9af3a5a5df
667fc0e7-8d3e-4013-977e-7f9af3a5a5df
667fc0e7-8d3e-4013-977e-7f9af3a5a5df
667fc0e7-8d3e-4013-977e-7f9af3a5a5df

DB stats

shim: 1; exe: 1; strings: 15

shim: 1; exe: 1; strings: 15

apphelp: 1278; strings: 2409
apphelp: 531; strings: 1492
inexclude: 2549; shim: 709; patch: 3
inexclude: 2539; shim: 710; patch: 3
exe: 69; strings: 131

strings: 2

exe: 203; lookup: 666; strings: 970
exe: 266; lookup: 3; kdevice: 341; kdg
exe: 275; lookup: 3; kdevice: 334; kd
bios_block: 383; device_block: 229
bios_block: 383; device_block: 21708
bios_block: 393; device_block: 2283
bios_block: 393; device_block: 2163,
shim: 2; exe: 6; strings: 18

file: 54; msi_transform: 54; msi_pa
file: 214; msi_transform: 214; msi_p
file: 245; msi_transform: 245; msi_f
file: 246; msi_transform: 246; msi
exe: 190; flag: 2; strings: 467

exe: 251; flag: 5; strings: 585

exe: 31; flag: 5; strings: 73

exe: 255; flag: 5; strings: 589

exe: 34; flag: 5; strings: 77

cmd: dir e:\sdbfiles*.sdb /b /s | shims -pipe -csv -stats > out.csv

7%

4/12/2013 23:31:05.739 2.1.0.3

1111

inexcluge:

Custom shims have some additional statistics that come from their respective registry entries. Of

interest are: (a) the shim database ‘install’ timestamp and (b) when the subkey for the registry entry was

modified. Below is an example of where these additional timestamps are populated in the stats output:

"cmdline:

Database Path/File
Database MDS
Database SHAL
File ModTime

File AccessTime
File CreateTime
Database ModTime
Reg DB InstallTime
Registry ModTime
Compiler Version
Database Version

Database Platform
Database Identifier
appname

exe

strings

shims64 -sdb c:

Database Internal Name

e3/e2/2e15
@3/e3/2e15
e3/e2/2e15
@3/e2/2e15
@3/e3/2e15
@3/e3/2e15
2.1.0.3
2.1
TestShimDB
@xee000eel

2 items
2 items
15 items

tag Ox6@06:
tag ex7ee7:
tag @x3801:

19:42:24.645 [UTC)
04:39:16.900 [UTC]
19:42:24.645 [UTC)
19:42:42.176 [UTC]
94:41:96.537 [UTC]
04:41:06.537 [UTC]

\Windows\AppPatch\Custom\{fd241ca6-4568-4962-b66e-015cb56c27ce}.sdb -stats”

c:\Windows\AppPatch\Custom\{fd241ca6-4568-4962-b66e-015cb56c27ce}. sdb
2de6@abdfS6c914a336a48a7eaacabs
57d1fd6f@21d8b3d88732474e2f4@dffefdc26dd

Custom shim

]' | Times available from registry

fd241ca6-4568-4962-b66e-015ch56c27ce

3.1.1 Statistics for Mounted System Volume or Volume Shadow

If one just wants to enumerate all the shim databases in the conventional directories as well as any

custom shim databases, one can use the -partition option and the -vss option. The first option will

Copyright © TZWorks LLC

Apr 15, 2024

Page 8

analyze the specified system partition, and the second option will analyze the specified volume shadow.
Below are examples:

shims -partition “c” -stats -csv

shims -vss 1 -stats —csv

3.2 Searching Strings

The string search is case-insensitive and looks for partial strings. The search will default to scanning all
application type tags. As an example, let’s say one wanted to analyze all the entries that make up the
Compatibility Fix name, such as “InjectDLL” or “RunAsAdmin”. To search multiple strings, just use a pipe
delimiter between the strings you want to search on. If one of the substrings is found, the application
that included the substring is returned so that one can see the context of where it was used. Below is an
example of performing this search on a Windows system volume.

<shimdb>
<header>

cmd: shims64 —partition c: -strings “InjectDLL | RunAsAdmin” > out.txt

usg

<meta info="run time: ©3/03/2015 20:27:44 [UTC]" />
<meta info="cmdline: shims64 -partition c: -strings 'InjectDll | RunA
<meta file="c:\Windows\AppPatch\sysmain.sdb" />
</header>
<exe name="*.exe" wildcaname="*.exe" vendor="Big Fish Games" exeid="
<app appname="Big Fish Gamesgfnstaller" appid="6b9992e3-b4b9-4e20-90%
<matchingfile name="*.exefidompanyname="Big Fish Games" productname=
<layer name="RunAsAdmin" "layertagid="32c5c">
<layer name="RunAsAdmin" fixid="fS5ac3378-b8e4-4f9b-aa%a-d839e5blef
<data name="SHIMFLAGS" data_valuetype="0x00000004" data_dword="0x0e
<flagref name="RunAsAdmin" flagtagid="2ebe4">
<flag name="RunAsAdmin" fixid="3c824c52-8f73-4ala-81dd-19bcbe®4339
</flagref>
</layer>
</layer>
</exe>
<exe name="GLJ)*.tmp" wildcaname="GLJ*.tmp" vendor="AOL" exeid="f83aef
<app appname="AOL Instant enger"” appid="d1591404-7clc-4a8e-939
<matchingfile name="GLJ* " size="0@x00000a00" checksum="0x49446ela"
<shimref name="InjectDll" shimtagid="2524a" commandline="RTvideo.d1ll"
<shim name="InjectDll" dllfile="AcGenral.DLL" fixid="3432bc96-d181-4
</shimref>
</exe>
<exe name="SkypeSetup*.exe" wildcaname="SkypeSetup*.exe" vendor="Skypé
<app appname="Skype" appid="9431548c-b3d7-4f2e-83f1-a8daRaecefo7" />
<matchingfile name="SkypeSegupl.exe" companyname="Skype Technologies
<layer name="VistaSetup" /
<flagref name="RunAsAdmin" flagtagid="2ebe4">
<flag name="RunAsAdmin" fixid="3c824c52-8f73-4ala-81dd-19bcbe@43396
</flagref>
</exe>
<exe name="SkypeToolbarForOutlook*.exe" wildcaname="SkypeToolbarForOutj
<app appname="Skype Email Too)¥ar" appid="d9fa215c-52c3-472b-b6ff-b6¢
<matchingfile name="SkypeT, arForOutlook*.exe" companyname=""Skyp
<flagref name="RunAsAdmin'™ flagtagid="2ebe4">
<flag name="RunAsAdmin" fixid="3c824c52-8f73-4ala-81dd-19bcbe@43396"
</flagref>
</exe>

Copyright © TZWorks LLC Apr 15, 2024 Page 9

In this case, four application entries are found and the output is rendered in XML. Annotated are the
locations of where the specified strings were found.

3.3 Searching GUIDs

The Shim database makes use of GUID identifiers for three main types of tags: executables,
applications, and fixes. It should be noted that the executable GUID identifier is independent of the
application GUID identifier, however all executable containers also include an application identifier.
From the empirical data, the application GUID is used to group similar executables where each
executable can have a different (or the same) name, but have different executable GUIDs. When viewed
in the Microsoft Compatibility Administrator, the Applications folder contains folder instances of
application GUID IDs, where each folder is a collection of unique executable GUID IDs (Note: the GUID
for the application and executable are not the same). The previous screen shot shows this for the first
application entry. Unfortunately, the Compatibility Administrator tool does not show the GUIDs of the
items.

Instead of repeating the search using one of the GUIDs shown from the previous example, we will use
the application identifiers used for the Skype application. To find which GUIDs are used in the database,
one can do an initial scan for all GUIDs by using the -guids switch. Below is the type of output you
would get by invoking this command:

Exe ID's
000095fb-9095-45dc-b899-63287cf2875f | exeid | fsbl.exe
0002936d-4f20-4722-8013-a73af7b495c0 | exeid | fifawc.exe
0008fac6-62bb-4476-b5e5-946a219aad4a2 exeid | SetupuT3.exe
000b3134-2e8c-4a88-b7fe-a190d8ec54b4 | exeid | sinfo.exe
000b6611-756d-4054-8f4a-667542c5¢c736 exeid setup. exe
000b9bfa-be99-4481-8e42-431dd6550252 exeid D410_AO05. EXE
001174ed-53ea-4448-9cc5-995e952412eb | exeid | Setup.exe
001228f1-d07e-45cd-9966-67e9630e5650 | exeid | kriOn.sys
0014e76a-ele0-4abe-b768-81ce93362061 exeig setup. exe
0 xei setup. exe

shims -sdb sysmain.sdb -guids > out.txt 'g “aigl’ e oholl of
940cs3acu-05F3-4. _-b4c0-889eb3142454 Py .4 | Easy CD Creator 3
9418daa3-5620-49¢c2-b3c0-5bed5070557b | appid | one-click Fixes
941f2b66-c0c3-4950-af4b-17e9b627e51d | appid | shrek 2: Team Action
942511df-edf5-463d-95a2-93ab551acca0 | appid | LivepPix 2.0
94283dbf-7a39-4ce2-8del-f001d794f2bb | appid | The Incredibles
942c88fc-8b75-456a-b603-bd8caabcicaf | appid | Novaxchange 3

31178e-33bb-4068-bef1-f778bf546c0d | app virtual peep Sea Fish
9431548c-b3d7-4f2e-83f1-a8da0a0c0f97 | appid | Skype]
94321ae2-5329-4504-96bb-/e38etr0cc/ce appid Traductor Reverso Pro
94339dee-6f53-4f4c-a2a8-ac77eb3294e8 | appid | Army Men world war
9438e295-5e01-481e-a806-0c5cf1abe690 | appid | Active Directory Migr
943f7f6e-04fd-4b6f-98bb-037377f8f4e3 | appid Jiangmin KV Antivirus

The above output is broken out by exeid (for executable identifiers), appid (for application identifiers),
and fixid (for fix identifiers). For this example, we will pull the Skype application identifier (eg.
9431548c-b3d7-4f2e-83f1-a8da0a0c0f97) and search on that. Below are the results. Alternatively, we
could have done a string search on “skype”, but the results most likely would have included other
entries that were not designated with this application identifier.

Copyright © TZWorks LLC Apr 15, 2024 Page 10

<?xml version="1.0" encoding="UTF-8"7>
- <shimdb>
+ <header>
- <exe matchmode="0x0002" exeid="d94f7ff5-1099-4f52-baa6-2b01h79a24f0" vendor="Skype Technologies S.A." wildcaname="SkypeSetup*.exe”
name="SkypeSetup*.exe"> H
<app appid="9431548c-b3d7-4f2e-83f1-a8da0a0c0fo7" appifame="Skype"/>
<apphelp summarymsg_rcid="0x00002714" problemseverity="NOBLOCK"/>
<matchingfile name="SkypeSetup*.exe" upto_bin_fileversion="3.8" companyname="Skype Technologies S.A.*"/>
<fexe>
- <exe matchmode="0x0002" exeid="ac65ebbf-77¢c8-4562-b031-5c07{058e0f5" vendor="Skype Technologies S.A." wildcaname="SkypeSetup*.exe"
name="SkypeSetup*.exe"> k
<app appid="9431548c-b3d7-4f2e-83f1-a8da0a0c0fo7" 3 me="Skype"/>
<matchingfile name="SkypeSetup*.exe” upto_bin_fileversion="2" companyname="Skype Technologies S.A.*"/>
<layer name="VistaSetup"/>
- «flagref name="RunAsAdmin” flagtagid="2eb04" >

</flagref>
<fexe>
- <exe matchmode="0x0002" exeid= '275834a8-0fal—4a9c—89w7995435" vendor="Skype Technologies S.A." name="Skype.exe">
<app appid="9431548c-b3d7-4f2e-832f1-a8da0a0c0fo7" me="Skype"/>

<apphelp summarymsa_rcid="0x00002714" problemseverity="NOBLOCK"/>
<matchingfile name="Skype.exe" companyname="Skype Technologies S.A_*" bin_productversion="3.8"/>
<fexex
- «exe matchmode="0x0002" exeid="326|]c340—5299—463e—h8%3ec?bd31" vendor="Skype Technologies S.A." name="Skype.exe >
<app appid="9431548c-b3d7-4f2e-83f1-a8da0a0c0fo7" me="Skype"/>
<matchingfile name="Skype.exe" companyname="Skype Technologies S.A.*" bin_productversion="3"/>
- <shimref name="RedirectDefaultAudioToCommunications” shimtagid="26d8c" >
<shim name="RedirectDefaultAudioToCommunications” description_rcid="0x0000eb58" general="set" fixid="a8fa7f99-cal13-4d56-b43c-43ed4ca8beda”
dlifile="AcGenral.DLL"/>
< /shimref=

P shims -guid 9431548c-b3d7-4f2e-83f1-a8da0a0c0f97 -sdb sysmain.sdb > out.xml

zflag name="RunAsAdmin” description_rcid="0x0001117d" general="set" flag_lua="0x0000000000000004" fixid="3c824c52-8f73-4ala-81dd-19bcbe043396"/>

3.4 Searching TagIDs

Internally, the Shims database uses tag identifiers to identify certain elements in the database. From
empirical analysis, this TagID turns out to be the offset into the database where the element is located.
Therefore, one can arbitrarily assign the offset of the element as the TaglD. This provides a unique key
for each element when creating an associative array for indexing purposes. Therefore, if you know the
TaglD of an element, shims can easily look-up the element associated with that Tag/D and output the
resulting data.

To visually see where TagIDs are used (from our perspective) and how they are lined up with a
container, we will look at the first executable from the previous example, which is GUID d94f7{f5-1099-
4f52-baa6-2b01b79a24f0. Using our internal (non-public) options, we show how the shims tool dissects
this entry and identifies each element. The highlighted column shows the mapping of Tag/D to each
element. Therefore, if a database entry used a TaglD to reference a fix, shim, or whatever, it is
straightforward to find it within the database and merge it. Suffice to say, using and searching on
TagIDs is something useful to the reverse engineers.

Copyright © TZWorks LLC Apr 15, 2024 Page 11

eees f432: 01 ee 66 60
20e3 f442: 10 °20 o0 ee
@ee3 f452: b7 9a 24 fe
20083 f462: 2e 4f 83 f1
2003 f472: 24 00 e ee
2ee3 f482: 15 40 oe ee
eee3 f492: ©e ee 26 40
eee3 f4a2: 32 o4 o0 ee
eees f4b2: ©E @e 63 ee

50
5
11
a3
17
ee
14
e9

seed upto_bin_fileversion |
raw data Tags
2ee3 f422: @7 7o § ee el 68 2a

47 @l ee es
7f 4f d9 99
92 1@ ee ee
da @a 8c @of
49 el ee oo
22 24 40 e@e
27 ©e ee @8
6@ 98 47 @1

e3f422 || 7ee7 | exe & Tag Meanings
83428 || 6@@1 | name vpeSetup*.exe
@3f42e || 688b | wildcaname | SkypeSetup*.exe
83f434 || 6@e6 | appname | Skype
83f43a || 6@es | vendor | Skype Technologies S.A.
83F448 || 9ee4 | exeid | d94f7FF5-10899-4F52-baab-2b@1b79a24F@
83456 || 9e11 | appid | 9431548c-b3d7-4F2e-83F1-a8dataBcOfI7
83f46¢ || 301 | matchmode eee2
(TaglDs
83f47e || 7eed | apphelp
037476 || 417 | flags | exeeeeeeel
83F47c || 4816 | problemseverity | exeeeoeeel
03€482 || 4615 | html_helpid | exeeesoeeo
23f488 || 4024 | appname_rcid | exeeeceoss
@3f48e || 4025 | vendorname_rcid | exeeeeoosce Tag Values
83494 || 4026 | summarymsg_rcid | exeeee2714
@3f49a || 7ee8 | matchingfile
83f4ae || 6ee1 | name | =
@3f4a6 || 6809 | companyname | Skype Technologies S.A.*
e3f4ac || 3.8

47 @1 @0 @b 6@ 2a 47 .p..... *G... *G

6@ 62 47 01 @@ @4 98 ... PG... bG....
10 52 4 ba a6 2b @81 0...RO..+.
@@ 8c 54 31 94 d7 b3 ..$........ Ti...
97 @1 32 02 88 8d 78 .0......... 8...p
20 10 40 ©1 00 20 €0 $....@..... @unns
22 92 @0 25 40 20 00 .@....%@....%8..
70 16 00 00 00 @1 68 ..8Q.'...p..... :
20 8d 50 FF FF FF FF 2.... .G...P....

<?xml version="1.0" encoding="UTF-8"7>
- <shimdb>
+ <header>

<fexe>
</shimdb>

shims -sdb sysmain.sdb -tagids 0x3f422 > out.xml

- <exe matchmode="0x0002" exeid="d94f7ff5-1099-4f52-baa6-2b01b79a24f0" vendor="Skype Technologies S.A.”
wildcaname="SkypeSetup*.exe" name="SkypeSetup*.exe">
<app appid="9431548c-b3d7-4f2e-83f1-a8da0a0c0f97" appname="Skype"/>
<apphelp summarymsg_rcid="0x00002714" problemseverity="NOBLOCK"/>
<matchingfile name="SkypeSetup*.exe” upto_bin_fileversion="3.8" companyname="Skype Technologies S.A.*"/>

3.5 Pulling out Specific List Type Tags

A Shim database has all sorts of tags that can be searched on. The shims tool only has shortcut options
for some of the more basic tags. For example: -exes for TAG_EXE, -apps for TAG_APP, -patches for
TAG_PATCHES and a few others. There are many other tags that are available, such as TAG_APPHELP
(0x700d), TAG_KDRIVER (0x701c), etc, which we do not have menu shortcuts. However, one can use
the -tag option to enumerate some of these. Many of these are documented on the Microsoft website
at: (http://msdn.microsoft.com/en-us/library/bb432487).
handles some of the TAG_TYPE_LIST items. Below is a table of some of the ones that can be used.

The -tag <tag number> currently only

TAG_TYPE_LIST types handled Menu option Purpose

TAG_SHIM -shims Shim entry

TAG_PATCH -patches In-memory (hot-patch) info
TAG_APP -apps Application entry

TAG_EXE -exes Executable entry

TAG_LAYER -layers Layer shim entry
TAG_MSI_FLAG -flags Flag entry to enable built-in fixes
TAG_MATCHING_FILE -tag 0x7008 Matching file entry

Copyright © TZWorks LLC

Apr 15, 2024

Page 12

http://msdn.microsoft.com/en-us/library/bb432487

TAG_FILE -tag 0x700c File attributed used in a shim entry
TAG_APPHELP -tag 0x700d Application help info entry

TAG_LINK -tag 0x700e Application help on-line link info entry
TAG_DATA -tag 0x700f Name-value mapping entry
TAG_MSI_TRANSFORM -tag 0x7010 MSI transform entry
TAG_MSI_PACKAGE -tag 0x7012 MSI package entry
TAG_MSI_CUSTOM_ACTION -tag 0x7014 MSI custom action entry
TAG_LOOKUP -tag 0x7017 Lookup entry in a driver database

As an example, to enumerate all the TAG_FLAG’s, one normally would use the -flags option, however,
one could also use the option -tag 0x7013 (0x7013 equates to TAG_FLAG) as part of the command. The
TAG_FLAG is actually interesting, in that its presence indicates which built-in Compatibility fix to turn on.
Shown below what one would see if enumerating the flag entries. Highlighted is the flag entry
RunAsAdmin Compatibility fix.

34 I laliza I 42 -184e-4c62-9eb0-6

3.6 Searching Patches

The fixes in the Shim database come in a variety of types (shims, flags, quirks, etc.), where patches are
just but one. Focusing on patches, there are two types of patch entries in Shim databases: (a) Those
that are patch sequences that need to be found in the target file and (b) those that are patch sequences
that are meant to replace the sequence found. In addition, the patch entry has the binary location in
the target file where to look and also where to apply the patch. This location is called the RVA which
just equates to the relative virtual address.

Below is a simple patch example that replaces 4 bytes (39 c3 7c da) with NOPs (90 90 90 90) at the RVA
of 0x0003856f. In this particular patch, the module name is not explicitly listed, which then defaults to
the one of the matching file names.

Copyright © TZWorks LLC Apr 15, 2024 Page 13

<?xml version="1.0" encoding="UTF-8"?>
- <shimdb>
+ <header>
- <exe matchmode="0x0002" exeid="21b5a994-da33-4b3d-9¢54-c89838fc4947" vendor="Bethesda Softworks"
name="f-16.exe">
<app appid="44940aa2-d534-4298-99aa-f6ab43aaa0bc” appname="F-16 Aggressor’/>
<matchingfile name="f-16.exe"/>

<matchingfile name="datafile_f-16.dll"/>

<matchingfile name="dddcore.dll"/> match

<matchingfile name="SurfaceLockl.wav"/> 9 e —
- <patchref name="F16Aggressor” patchtagid="2b2b0"> 7c da i1 0x00de

PORN TS
+

- <patch name="F16Aggressor” fixid="81cc249d-94af-4adb-a6$9-b902a5f

<patch_translated rva="0x0003856f" action="match” module="
<patch_translated rva="0x0003856f" action="replace" module
/. (PN Y
</patch>
</patchref> Replace
- <shimref name="ForceColnitialize" shimtagid="24144"> .
- <shim name="ForceColnitialize" fixid="9b49a208-0349-4d46-a23d-2b858¢ W/ nop's
description_rcid="0x0000eacl"” general="set" dlifile="AcLayers.DLL">
<include module="AVIFIL32.DLL"/>
</shim>
</shimref>
</exe>
</shimdb>

>39 ¢3 7c da</patch_translated>
">90 90 90 90</patch_translated>

Some of the patches do not have assembly opcodes, but could just target constants or strings. For
example, this next patch clears out two of the video options from a codec DLL module with the name of
tm20dec.ax. From the patch data shown below, there are 2 pairs of match/replace entries. One can see
this by looking at the matching RVA for each pair. The first pair starts by looking for the byte sequence
“55 59 56 59”, which equates to the ASCII characters 'UYVY'. The second pair starts by looking for the
byte sequence “59 55 59 32”, which equates to the ASCII characters 'YUY2'. Both of these happen to be
video formats. The 'replace' portion for both of the matches are a sequence of “2d 2d 2d 2d”, which
equates to the ASCII characters '----', to evidently remove the video format options, should their
companion match condition be satisfied.

<?xml version="1.0" encoding="UTF-8"?>
- «<shimdb>
+ <header>
- <exe matchmode="additive" exeid="d87c32f8-8ce0-4837-adaa-323be0d233a8" vendor="SquareSoft” name="ff7.exe">
<app appid="32ed2326-ale3-4d7d-933e-d4b3e36680e7" appname="Final Fantasy VII'/>
<matchingfile name="ff7.exe"/>
<matchingfile name="FF7Config.exe"/> ‘ ’
<matchingfile name="data\battle\rain7.tex"/> Match ‘UYVY
<matchingfile name="data\music\sato.wav"/>

- <patchref name="FinalFantasy7" patchtagid="2b390">
- <patch name="FinalFantasy7" fixid="eble6b19-bdad-4174-b1 oseezc};soﬁ(Match ‘YUY2’

< [
<patch_translated rva="0x000017c7" action="match” modu! 20dec.ax">55 59 56 59</patch_translated>
<patch_translated rva="0x000017c7" actions "replace”, e="tm20dec.ax">2d 2d 2d 2d</patch_translated>
<patch_translated rva="0x0000187e" acti “match” dule="tm20dec.ax">59 55 59 32</patch_translated>
<patch_translated rva="0x0000187e" ag i'replacc' module=“tm20dec.ai">2d 2d 2d 2d</patch_translated>,

<
</patch> /

</patchref> 5
- <shimref name="Emu| Replace w/ dashes “’ (2d 2d 2d 2d) tm20dec.ax = DLL that is a codec
<shim name="Em 0-fdfe el g} ot =
general="set" dlifile="AcLayers.DLL"/>
</shimref>
- <shimref name="VirtualRegistry” shimtagid="28200" commandline="TRUEMOTION20">
- <shim name="VirtualRegistry” fixid="8e412efc-5b34-4c46-9bb4-71f7290efe3f" description_rcid="0x0000eb2b"
general="set" dlifile="AcLayers.DLL >
<include module="OPENGL32.DLL"/>
<include module="DEVENUM.DLL"/>
<include module="MSVFW32.DLL"/>
<include module="SHLWAPIL.DLL"/>
</shim>
</shimref>
</exe> shims -sdb sysmain.sdb —strings “FinalFantasy7” > out.xml
</shimdb=>

Copyright © TZWorks LLC Apr 15,2024 Page 14

As a final example, to show how the pattern matching rules allow for a pattern sequence with gaps, the
byte pattern of “ff 152090 ?? ?? 89 1e” is scanned for at the RVA of Ox4fe5. The ‘??’ are just wildcards
in the notation above. This wildcard sequence is implemented, in this case, by using a pair of ‘match’
patterns at the appropriate RVA offsets to create the gap for the wildcards. This pair of match entries is
followed by one ‘replace’ pattern that covers the full size covered by the match-pair and substitutes
NOPs in their place.

<patch name="NetManageViewNowTN327@" fixid="7269485b-3f58-443f-b414-68ea92795df4">

<patchbits>
<patch_translated module="TCPCONN.DLL" action="match" rva="@x@@e84fe5">ff 15 20 9@</patch_translated>
<patch_translated module="TCPCONN.DLL" action="match" rva="@x8@084feb">89 le</patch_translated>
<patch_translated module="TCPCONN.DLL" action="replace" rva="@x@0084fe5">90 90 90 90 9@ 9@ 9@ 90</patch_translated>

tchbit -
<:;§:c;> e Pattern: ff 1520 90 ?? ?? 89 1e with nops

Using various combinations of 'match/replace’ entries, it is relatively straight forward to come up with
any number of patterns to filter and act on. While not strictly necessary, a companion part of the
Application Compatibility architecture is creating hot-patch points (or stubs) within a binary for each
program or library entry point.

3.6.1 Microsoft Hot-Patching

Microsoft designs some of their functions to be dynamically hot-patched. This was first seen in the early
examples of 32bit functions using the byte pattern “8b ff ..” at the beginning of the function. Further,
the function was preceded by 5 NOPs (0x90) or breakpoints (Oxcc) bytes. In fact, the Visual Studio
development platform from Microsoft allows developers to build binaries with hot-patching built in as a
normal course, using the /hotpatch and /functionpadmin options during compiling and linking,
respectively. Since the /hotpatch option only guarantees that each function’s first instruction is at least
2 bytes, the “8b ff” pattern is seen when the function starts with a 1 byte instruction. The NOP byte
sequence is shown below, with the 2 byte pad added by the /hotpatch compile option:

920 nop

% neo
90 nop

90 nop

8b ff mov edi edi | Function start here |
55 push ebp

8b ec mov ebp esp

The function above starts with the byte sequence (8b ff), which translates to moving the contents of the
EDI register to itself. While this is a completely meaningless statement, it acts as filler bytes. From a
hot-patch standpoint, these two filler bytes can be used by replacing them with a two byte jump
instruction that jumps backward 5 bytes to redirect control to the five bytes of patch space that comes
immediately before the start of each function. During the hot-patch operation, the five NOP bytes (or
breakpoint bytes if using Oxcc) are replaced with a full jump instruction that can go anywhere in the
code execution space (a 32 bit operating system is assumed here). So if one was to do a hot-patch and
call some other routine, something like this could be done. Below is what the hot-patch operation

Copyright © TZWorks LLC Apr 15, 2024 Page 15

would result in if wishing to JMP to address Oxdebf9. The arrow below shows the start of the original
function.

e9 f4 eb @d @@ jmp ©@xeeedebf9 ; any relative 32 bit addr
eb 9 6 jmp @xfb ; jmp -5 bytes

55 push ebp

8b ec mov ebp esp

3.6.2 Scanning for Patch Patterns

To assist in searches for patches, one uses the -patchbytes option. The argument is the sequence of
bytes one would like to find. The bytes are represented by hexadecimal notation and each byte is
separated with a space. The entire sequence of bytes is then encompassed in double quotes. To look
for a certain patch, it is useful to understand assembly language, since the byte sequence could
represent the mnemonic opcodes used in the patch.

3.7 PE Metadata

When it comes to finding if a fix or patch targets a particular PE file, one needs access to the PE
metadata to see if there is a match. Shims includes an option -pe <filename> -stats for looking at some
of the more common PE metadata used in the matching syntax. Below is the type of data this option

produces.
"cmdline: shimsé4 -pe c:\windows\notepad.exe -stats”
source file c:\windows\notepad. exe
CcompanyName Microsoft Corporation
compileTimestamp | Ox4a5bc9b3 [07/13/2009 23:56:35 UTC]
FileDescription Notepad
Fj120§ nt, win32
Filesize | 0x0002f400 | pylling PE metadata that can
FileType | app P :
Fileversion | 6.1.7600.163] be used for shim matching
Filename notepad. exe
InternalName Notepad
Legalcopyright © Microsoft Corporation. All rights reserved.
Linkerversion 0x00090000
osmajorversion 0x00000006
osMinorversion 0x00000001
originalFilename | NOTEPAD.EXE
PeChecksum 0x0003e749
ProductName Microsoft® windows® Operating System
Productversion 6.1.7600.16385

Similar to the SDB stats, this option also allows one to use the
options: -pipe, -csv, -csv_separator, -dateformat, -timeformat. The -pipe option is useful if wishing to
pull many PE file matching stats in one run.

Copyright © TZWorks LLC Apr 15, 2024 Page 16

3.7.1 Matching PE Metadata with Shim Entries

One of the requirements of the Application Compatibility framework is to scan the metadata in every PE
file during their load operation and compare it to any of the Shim Databases active on the system at that
time. This is required to see if an executable, DL,L or driver PE file needs to be considered for a fix-up
operation. To test out this with the shims tool, there is an experimental -match option to take in a
desired PE file with companion Shim database to see if any entries in the Shim database target this
particular PE file. Since this option only covers some of the parameters identified in the Shim Database
used for matching, it should be considered prototype in nature and the results should not be considered
definitive.

3.8 Parsing Collections of SDB files

There are 3 basic options for parsing a collection of SDB files: (a) targeting a particular system volume,
(b) targeting a Volume Shadow copy, and (c) targeting a directory and its subdirectories that has a
collection of SDB file.

3.8.1 Targeting a System Volume

If desiring to just parse a system volume without the fuss of finding each Shim database, one can use
the -partition <volume letter> option to look in the conventional locations for SDB databases. The
volume letter would normally be the c: volume for a live system collect, but it can also be a mounted
volume from a system image from another computer.

3.8.2 Targeting a Volume Shadow Copy

To target a Volume Shadow copy, use the -vss <#> option, where the <#> is the index of the targeted
Volume Shadow. The shims tool will scan the registry for custom Shim database locations as well as look
in the conventional locations to find SDB files and parse them all in one session.

3.8.3 Targeting Directories

To target a specific directory (or a nested set of subdirectories within a parent director) that contains
many SDB files, one can use the -pipe option. The first is used to gather statistics about all the SDB files
and renders the output in CSV notation. The second pulls all the applications’ entries from all the SDB
files and renders the output in XML format.

dir e:\sdbfiles*.sdb /b /s | shims -pipe -csv -stats > statsl.csv

dir e:\sdbfiles*.sdb /b /s | shims -pipe -apps > apps.txt

Copyright © TZWorks LLC Apr 15, 2024 Page 17

If one cannot use the -pipe option, one can use the experimental -enumdir option, which has similar

functionality with more control. The -enumdir option takes as its parameter the folder to start with. It
also allows one to specify the number of subdirectories to evaluate using the -num_subdirs <#> sub-

option.

4 Comparing the Application Compatibility Administrator to the shims

tool

There are two Compatibility Administrator tools: (a) one for 32 bit databases and (b) one for 64 bit
databases. Below is the 32 bit version of the tool, looking at the default 32 bit database on a Win7
operating system, 64 bit install. One can see the number of fixes, modes, and applications the 32 bit
default database handles by looking at the stats in the lower bottom of the dialog window.

-

.
% Compatibility Administrator (32-bit) - Microsoft Application ... E@ﬂ

File Edit View Database Search Help

;j New !7} Open H)j 6576 Applications ||

® 19 Applications

-4 System Database (32

R] Compatbiity Fixes [l

-] Compatibility Modes
& f_—’;] Installed Databases
+-88 Per User Compatibility Settings
@) % Custom Databases

Compatibility Fixes

)

‘ 811 Compatibility Fixes

B 30studioMax

64 Compatibility Modes
f\cﬁveMarkG

4 | m

»

More information ab;)ut Compatibility

Administrator:

Download the latest version of the Applic3

tion

Compatibility Toolkit

811 Compatibility Fix(es)

\

<€

——

——

Running the shims tool against the same SDB file and using the -stats option, yields the following

information.

Copyright © TZWorks LLC

Apr 15, 2024

Page 18

Database Path/File
Database MDS

Database SHAl

File ModTime

File AccessTime

File CreateTime
Database ModTime
Compiler Version
Database Version
Database Internal Name

E:\testcase\sdb\win7\AppPatch\sysmain.sdb
1d8c1280d38c526c7841e72db8d7@dcl
da2e372481e6cdb450091794a58F294a46beladb
©4/12/2013 23:32:33.314 [UTC)

82/25/2015 14:26:13.879 [UTC]

©4/12/2013 23:33:25.9@6 [UTC]

1

e.3

I

|

|

|

|

| 82/25/2015 14:26:13.879 [UTC]

I

| 2.

| 2.

I I-‘.:I.Cr‘CISOF’t Windows Application Compatibility Fix Database
e

Database Platform xeeeeeeel
‘s R _ 1
appname | tag exseefs: 6625 items
inexclude | tag ex/ : items
shim | tag ex7ee4: 662 items
patch | tag @x7ees: 35 items
exe tas - i
layer tag ex7eeb: 64 items I
tlag tag @x/els: 149 1tems
context | tag @x7e18: 1 item
strings | tag @x88e1: 39202 items | #shims + #flags = 662 + 149 = 811
appid | tag @x9011: 7013 items

Comparing the two outputs shows a couple of things: (a) the Compatibility Fixes in the Microsoft tool

include both the entries of type shim entries and type flag, (b) the Compatibility Mode correlates to the

entries of type layer, and (c) the Applications correlate to the entries of type app name. For the last

one, the Application does not directly correlate to the entries of type exe. The reason for the mismatch

is an Application entry can include 1 or more exe type entries (as well as other types).

To see this, one

can look at a few of the Application entries in the Compatibility Administrator tool. For the Application

Entry ‘000 Test Entries’ there contains four exe entries.

g Al
%4 Compatibility Administrator (32-bit) - Microsoft Application Compatibility Data... @Eﬂ

File Edit View Database Search Help
';j New 1% Open

ve | @rx @ e

=7 Run ‘/\) Search |

<

= :fj Applications

L) $100,000 Pyramid
Y _ISDEL
‘L) 000 Legacy Registry Entri
Q 000 Legacy Reglstry Entri
5000
L) 10 voor Taal 3
i) 100 Years Print @ KONIC/
‘L) 1000 Best Fonts
‘L) 1000 Best Solitaire Games
‘L) 1000 Borders & Backgrour
‘L) 1000 Solitaire Games
i 101
L) 102 Dalmations Activity C:
‘L) 102 Dalmations Puppies tc
T 1075
) 1239.5
) 12398
L) 123 Free Solitaire
‘L) 1503 AD: The New World
7Y 1602 AD
i) 1701A.D.

] ‘ r

=-m7 AppsHelpMechamssttAppBadMsg.exe

77[‘1) AppHelp - NOBLOCK

-] Matching Files
" AppsHelpMechanismTestAppBadMsg.exe
=-/n"] AppsHelpMechanismTestAppBadMsgBlocked.exe
1) AppHelp - HARDBLOCK
-] Matching Files
[n7] AppsHelpMechanismTestAppBadMsgBlocked.exe
=-{a"7] windowsXPAppsHelpMechanismBlockedTestApp.exe
‘1) AppHelp - HARDBLOCK
-] Matching Files
" WindowsXPAppsHelpMechanismBlockedTestApp.exe
=87 windowsXPAppsHelpMechanismTestApp.exe
‘1) AppHelp - NOBLOCK
=)-+,_) Matching Files
{87 WindowsXPAppsHelpMechanismTestApp.exe

_'

his single application entry has 4 exe entries

Application: "000 Test Entries” contains 4 fix(es)

Copyright © TZWorks LLC

Apr 15, 2024

Page 19

If one looks at the companion entry in the shims tools, one can do this by searching on the string “000
Test Entries” and examining the output. Below is an example of doing this and one can see the data that
is in the Microsoft tool is a subset of the data in the shims tool.

7xml version="1.0" encoding="UTF-8"?>
. Senimdp T eacoding shims -strings “000 Test Entries” -sdb sysmain.sdb > out.xml
+ <header>
- <exe matchmode="0x0002" exeid="088bb9d5-2a9b-42a6-b7d4-6focd79f25ef" vendor='Micheme="Apyd IpMechanismTestA dMsg.exe’ >
<app appid="5c314a3c-78e6-4e14-%ade-df784a85272b" appname="000 Test Entries’/>

<apphelp summarymsg_rcid="0x00000001" vendorname_rcid="0x00009cbe” appname_rcid="0x00007530" problemseverity="NOBLOCK"/>
<matchingfile name="AppsHelpMechanismTestAppBadMsg.exe"/>

<fexe>

<exe matchmode="0x0002" exeid="3e4c403a-a000-4019-856b-af609e1533b8" \fendor-"Mianame-'AppsHelpNechanism'l'estnpuBadMsgSIocked‘exe'::-
<app appid="5c314a3c-78e6-4el14-9ade-df784a85272b" appname="000 Test Entries”/>
<apphelp summarymsg_rcid=" Ux(IDl]CIODIH vendorrame rcid="0x00009cbe” appname_rcid="0x00007530" problemseverity="HARDBLOCK"/ >
<matchingfile name="AppsHelp T locked.exe™/ >

<fexes

- <exe matchmode="0x0002" exeid="0c93f5d4-2f11-4bae-8a2d-4de7073094f3" vendor=" Iohl:r*ﬂame= d XPA {elpMechani kedTestApp.exe™ >
<app appid="5c314a3c-78e6-4el4-9ade-di784a85272b" appname="000 Test Entries"/>
<apphelp summarymsg_rcid="0x00002712" vendorname_rcid="0x00009cbe" appname_rcid="0x00007530" problemseverity="HARDBLOCK"/>
<matchingfile name="WindowsXPAppsHelpMechanismBlockedTestApp.exe”/ >
<fexe>

- <exe matchmode="0x0002" exeid="19ffce91-3b3d-4597-9f21-8b7486144a04" -«endor-"Micnfﬂame-" indowsXPAppsHelpMechanismTestApp.exe”>
<app appid="5c314a3c-78e6-4e14-%ade-df784a85272b" appname="000 Test Entries’/>
<apphelp summarymsg_rcid= UXUDCIUZ?J.Z vendcrr‘ame rcid="0x00009cbe” appname_rcid="0x00007530" problemseverity="NOBLOCK"/>
<matchingfile name="Wind. XPAppsHelp i Tesmpp exe” /=
<fexe>
<fshimdb>

5 Available Enumeration Options

Option Description

Enumerate application category entries. This includes, but is not limited

-apps ; .
to, the following types: exe, packages, msi_packages.

-exes Enumerate executable category entries (TAG_EXE)

fixes Enumerate the various types of fixes, including but not limited to: shims,
patches, flags, layers, etc.

-shims Enumerate shim category entries (TAG_SHIM).

-patches Enumerate patch category entries (TAG_PATCH).

tag Enumerate the specified tag. Needs to be of type TAG_LIST_LIST. The
syntax is -tag <#>

_guids Enumerate all GUIDs in the database along with the name associated with
the GUID

-stringtable Enumerate all the strings in the string table

6 Available Find Options

Option Description
Search for the specified partial strings. If more than one partial string is
-strings listed, then use a pipe delimiter between each string and enclose the entire

set of strings between double quotes. Will search using case-insensitive

Copyright © TZWorks LLC Apr 15, 2024 Page 20

logic and will look for partial strings.

Search for the specified GUID. The GUID syntax is 11111111-1111-
1111-1111-111111121111.

Search for the specified tagid’s. More than one tagid can be searched on
-tagids as long as the entire set of tag identifiers are enclosed in quotes and
delimited by the pipe character.

-guid

-patchbytes Search for the specified byte pattern in the available patches

Experimental. Used in conjunction with the -pe <PE File> option, to

“match search the specified Shim DB for possible shims to the specified PE file.

7 Miscellaneous Options

Option Description

Experimental. Parse SDB artifacts from Volume Shadow. The syntax is -vss
-VSS <index number of shadow copy>. Only applies to Windows Vista, Win7,
Win8 and beyond. Does not apply to Windows XP.
Output a set of summary statistics about the Shim DB. Syntax is -sdb
<db> -stats. This option also is aware of the following sub-options: -reg
<sw hive> (to pull stats from the hive as well), -csv (for CSV
output), -csvl2t (for log2timeline output), -timeformat, -dateformat,

-stats

and -csv_separator.

Specifies the target file is a PE file vice a Shim DB file. Used in
-pe conjunction with the -stats option (eg. -pe <file> -stats) and the -match
option (eg. -pe <file> -match —sdb <shim db>).
_pipe Used to pipe files into the tool via STDIN (standard input). Each file
passed in is parsed in sequence.
Experimental. Used to process files within a folder and/or subfolders.
-enumdir Each file is parsed in sequence. The syntax is -enumdir <folder> -
num_subdirs <#>.

Filters data passed in via STDIN via the -pipe option. The syntax is -filter
<"*ext [*partialname* [...">. The wildcard character '*'is restricted

-filter

to either before the name or after the name.

All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8
-utf8_bom byte order mark to the output using this option.

Copyright © TZWorks LLC Apr 15, 2024 Page 21

8 Sub Options that can be used with the -stats Option

Option Description
reg Pull Application Compatibility data related to custom shim databases
from the specified Software hive. Syntax is -reg <sw hive>.
-CSV Outputs the data fields delimited by commas.
-csvl2t Outputs the data fields in accordance with the log2timeline format.

Used in conjunction with the -csv option to change the CSV separator
-csv_separator |from the default comma to something else. Syntax is -csv_separator "["
to change the CSV separator to the pipe character.

Used in conjunction with -csv option to remove any whitespace between

-no_whitespace
- P the field value and the CSV separator.

Option is used to populate the output records with a specified hostname.

-hostname i
The syntax is -hostname <name to use>.

Output the date using the specified format. Default behavior is -
dateformat "yyyy-mm-dd". Using this option allows one to adjust the
-dateformat format to mm/dd/yy, dd/mm/yy, etc. The restriction with this option is
the forward slash (/) or dash (-) symbol needs to separate month, day and
year and the month is in digit (1-12) form versus abbreviated name form.

Output the time using the specified format. Default behavior is -
timeformat "hh:mm:ss.xxx" One can adjust the format to microseconds,
via "hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no
fractional seconds, via "hh:mm:ss". The restrictions with this option is
that a colon (:) symbol needs to separate hours, minutes and seconds, a
period (.) symbol needs to separate the seconds and fractional seconds,
and the repeating symbol 'x' is used to represent number of fractional
seconds. (Note: the fractional seconds applies only to those time formats
that have the appropriate precision available. The Windows internal file
time has, for example, 100 nsec unit precision available.

-timeformat

9 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital
X509 code signing certificate embedded into the binary (Windows and macQOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools
(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The
license needs to be in the same directory of the tool for it to authenticate. Furthermore, any
modification to the license, either to its name or contents, will invalidate the license.

Copyright © TZWorks LLC Apr 15, 2024 Page 22

10 References

1. Microsoft Application Compatibility Toolkit: https://msdn.microsoft.com/en-
us/library/windows/desktop/dd562082(v=vs.85).aspx
2. Various MSDN articles, including but not limited to:
a. Application Compatibility Database: http://msdn.microsoft.com/en-
us/library/bb432182(v=vs.85).aspx
b. Tag Types: http://msdn2.microsoft.com/en-us/library/bb432490
c. Tags: http://msdn.microsoft.com/en-us/library/bb432487
3. Secrets of the Application Compatibility Database (SDB) parts 1-4, by Alex lonescu. Ref: http://www.alex-
ionescu.com/.

Copyright © TZWorks LLC Apr 15, 2024 Page 23

http://msdn.microsoft.com/en-us/library/bb432487
http://www.alex-ionescu.com/
http://www.alex-ionescu.com/

	1 Introduction
	2 Background Information
	2.1 Compatibility Administrator Tool

	3 How to Use the shims Tool
	3.1 Quick-look Report for a Database
	3.1.1 Statistics for Mounted System Volume or Volume Shadow

	3.2 Searching Strings
	3.3 Searching GUIDs
	3.4 Searching TagIDs
	3.5 Pulling out Specific List Type Tags
	3.6 Searching Patches
	3.6.1 Microsoft Hot-Patching
	3.6.2 Scanning for Patch Patterns

	3.7 PE Metadata
	3.7.1 Matching PE Metadata with Shim Entries

	3.8 Parsing Collections of SDB files
	3.8.1 Targeting a System Volume
	3.8.2 Targeting a Volume Shadow Copy
	3.8.3 Targeting Directories

	4 Comparing the Application Compatibility Administrator to the shims tool
	5 Available Enumeration Options
	6 Available Find Options
	7 Miscellaneous Options
	8 Sub Options that can be used with the –stats Option
	9 Authentication and the License File
	10 References

