

Abstract
minx is a standalone, command-line tool that acts as a

client to exchange data from any client computer

(Windows, Linux or macOS) to a forensic workstation

running a nx server. Data that is transferred to the client is

encrypted.

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v0.28 of minx

Updated: Apr 15, 2024

TZWorks® Modular Inspection
Network Xfer (minx) Agent Users
Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 15, 2024 Page 1

Table of Contents

1 Introduction .. 3

2 How to use minx and nx to complement live forensics collection ... 4

3 Configuring nx as a server ... 5

4 Configuring minx (the client) .. 8

5 Sending data to the server .. 10

5.1 Sending the output of other tools with minx .. 10

5.2 Copying the contents of files .. 11

5.2.1 Copying one or more files ... 12

5.2.2 Using the -pipe option to copy many files .. 12

5.2.3 Using the -copydir option to copy whole directories or a set of subdirectories 13

5.2.4 Using the Combination Copy Options ... 14

5.2.5 Volume Shadow Copies... 14

5.3 Imaging Disks and Volumes .. 15

5.3.1 Scan the drives on the system .. 16

5.3.2 Imaging an entire drive ... 16

5.3.3 Imaging an entire volume ... 16

5.3.4 Copying Interesting disk sections .. 17

5.4 Running with and without a license file .. 17

6 Annotating metadata to the data sent ... 17

6.1 Tagging a minx Client with Identifiers ... 17

7 Using Scripts .. 18

7.1 Script File Syntax ... 18

7.1.1 General Rules .. 19

7.1.2 Command Lines ... 19

7.1.3 Environment Variables .. 19

7.2 Using Built-in commands .. 20

7.3 Spawning third party tools .. 20

Copyright © TZWorks LLC Apr 15, 2024 Page 2

7.4 Enumerating files and copying them .. 21

7.4.1 Copying a collection of files (method 1 – just using built-in commands) 21

7.4.2 Copying a collection of files (method 2 – spawning 3rd party tools) 21

7.5 Serving out command scripts .. 22

7.5.1 Example of the setup of using -queryfile <script name> .. 23

8 Example of a script file to collect various artifacts ... 24

9 Various Use-Case for Transferring Data .. 24

9.1 Normal Private Intranet for both minx and nx.. 25

9.2 Sending Data from a Private Intranet to a Public Internet Address ... 26

9.3 Using TCP/IP Redirection .. 26

10 Zlib Dependency.. 28

11 Available Options .. 28

12 Authentication and the License File .. 30

13 References .. 30

Copyright © TZWorks LLC Apr 15, 2024 Page 3

TZWorks® Modular Inspection Network Xfer
(minx) Agent Users Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=36 [05-MINX-111SM]
Contact Information: info@tzworks.com

1 Introduction

The minx utility is a command line tool that runs on an endpoint target machine, acting as an agent to

collect data from the endpoint and send it a central forensics workstation running the nx tool.

Therefore, to understand minx, one needs to understand nx.

As background, the nx tool can act as both a client and server to transfer data from one computer to a

central computer. From a terminology standpoint, the server is the forensic collection point gathering

information during an incident response (not necessarily a Windows Microsoft Server). The clients are

those endpoint computers that are under investigation that would be sending data to the central

forensics workstation. What can be confusing at first, is that the nx tool can be both (a client and a

server), depending on the application’s configuration. Both minx and nx clients can co-exist and work

with an nx server as shown below.

The network relationship between the minx client and the nx service uses peer-to-peer communication.
This is defined to be communication between just two nodes, as opposed to multi-node or broadcast
communication. For peer-to-peer communication, domain credentials are not required to be set up if
deployed in an enterprise network. As long as minx can communicate to the nx service’s IP
address/port, without being impacted by firewalls or other network devices that can block IP traffic, the
communications should be seamless.

http://www.tzworks.net/prototype_page.php?proto_id=36
mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 15, 2024 Page 4

When designing minx, and expanding the existing nx client capabilities, there were several requirements

levied by users. These requirements were: (a) the ability to copy files that were locked down by the

operating system, (b) to have the client run from an internal script such that a separate instance was not

required for each command executed, and (c) image/copy raw bytes from a disk or volume.

The enhancements put into minx include: (a) an integrated NTFS engine to allow minx to copy any file

from a host Windows computer by accessing the file data via raw cluster reads, (b) an ability to scan all

drives attached to a Windows computer, (c) an ability to copy any number of bytes from a specific drive,

(d) an internal directory enumerator with a filtering ability to target specific files within one, or a group,

of subdirectories, (e) the ability to spawn other applications and act on their output, (f) the ability to pull

common artifacts from all the volume shadow copies, and (g) an internal scripting engine that allows

minx to receive instructions from the nx service and act on them.

The communications protocol between nx and minx is the same as the previous nx-client to the nx-

server communication, with some additional changes to accommodate the enhanced features of minx.

The network transport used is TCP/IP with the data content encrypted in an RC4 stream cipher. To

ensure data integrity from the client computer to the final archived file on the server, the data is

computed into a hash at client side before transmission and during receipt by the server. A mismatch in

hashes results in the archive file being labeled as having errors. Labels, comments, and filenames are

allowed to be passed during each data transfer, which is read by the server and acted upon accordingly.

Currently, minx and nx are restricted to IPv4.

There are compiled versions for Windows, Linux, and macOS, and the architecture is such that each one

is designed to play well with another instance despite operating on a different OS (e.g. use nx on a Linux

box as the server and use minx on a Windows client box to send data to the server). To use this tool, an

enterprise license is required.

2 How to use minx and nx to complement live forensics collection

The terms 'client and server' are used here as 'roles' for the minx and nx tools, respectively. Any

machine that minx or nx runs on does not require the operating system to run as a client or formal

server. Any standard (non-server operating system) computer configuration will work. All that is

needed is that there be some level of network connectivity between the computers.

Copyright © TZWorks LLC Apr 15, 2024 Page 5

The direction of data flow is initiated by the client to the server. One can think of the clients as those

workstations you would like to extract forensics artifacts from, and the workstation you are sending the

extracted artifacts to is the server. In the server role, nx can handle multiple clients at once. Since the

nx server-mode is a multi-threaded application, nx spawns a separate thread per client connection.

Therefore, simultaneous collection from a few clients should not be an issue under normal loading

conditions. The maximum number of simultaneous client connections is really a function of (a) the

computer and network resources of the machine acting in the server role, (b) the amount of data

transferred from each client, and (c) the network bandwidth of the system.

3 Configuring nx as a server

To configure nx as a server to work with a minx client, both the nx and minx network protocols need to

be in sync. This is done by looking at the version of either of the tools’ protocol (which is different than

the version of the tool). For example, version 0.27 is the first version of nx that is compatible with minx.

The protocol used with version 0.27 of nx is version 0.08.

If you are unsure which version you have or need, then just run nx (or minx) at the command prompt;

the tool will display the current version you have as well as what version of the protocol it is using. The

protocol version matching allows for proper network handshaking between the minx client and the nx

service. It is anticipated that the protocol will rarely be updated, so while the version number of the

tools (nx and minx) will increment with each update, the protocol version typically will not.

Below is a screenshot of the nx server options. The highlighted area is where the protocol versioning is

shown on the command prompt.

Copyright © TZWorks LLC Apr 15, 2024 Page 6

To run nx in server mode, these are the required parameters:

• -server option to tell nx to run in server mode and listen for client connections.

• -ip <IPv4 address> and -port <number> identifies which IP address and port number nx should

listen to for client connections. This IP address should be the one assigned to the computer that

is running the nx service.

• -dir <folder> identifies which directory to store the log file and any data sent from a client to the

server.

The rest of the server parameters can be optional, depending on whether they are needed or not. For

example, if you want to set up a session key, one can use the -key <password phrase>. If this is done,

then the same <password phrase> needs to be used at the minx client end. This <password phrase> is

used to assist in the generation of the RC4 encryption key that is used. Without using the -key option,

minx and nx still encrypts the data transferred over the network but will use its own key generation

algorithm.

Still in the experimental phase: if you want to have the nx server offer up scripts for the minx client to

run, then use the -scripts <folder> option. Then, when a request comes in from minx to retrieve a

particular script, the above option tells the nx server where to look for them and then pass the script

back to the minx client. Once minx receives the script, it will execute it and pass the results back to the

nx server. This architecture allows the scripts to reside and be maintained on the server side. Thus,

when a change is made to a script, all the minx clients will have access to the same modifications of the

script when they run. More details about scripts and how to write them are discussed later.

In some situations, it may be required to make use of a redirector to send data from a private network

to the host computer running the nx service. To handle this use-case, we have the -redirect <ip addr>

option available. This tells the nx service to expect minx network packets to be directed to another IP

address before reaching the nx service. Since network configuration with IP and port redirection can be

a complicated topic, it is discussed in its own section later in this document.

The final set of server options is related to formatting the log file. Since the results log file is archived as

a CSV type file, one can use the same TZWorks command options used in many of the other tools, such

as: excluding whitespace between field delimiters (-no_whitespace), changing the field delimiter from a

Copyright © TZWorks LLC Apr 15, 2024 Page 7

pipe character to a comma character (-csv_separator “,”), changing the timestamp format (-dateformat

“yyyy/mm/dd”) or grouping the date and time together (-pair_datetime).

Below is an example of setting up nx in server mode:

After invoking the above command, the operating system will request permission to open up a network

connection at the port specified in the 'listen' mode. One should get a pop-up box similar to the

screenshot below. To configure nx to work with minx clients (or nx clients) on various networks, select

the “public networks” option.

Copyright © TZWorks LLC Apr 15, 2024 Page 8

4 Configuring minx (the client)

When configuring minx to talk to the nx service, one needs to specify the same IP address, and port

number used when setting the nx server, and then append the desired command to whichever action is

needed. The screenshot below shows the command line options that are currently available.

Copyright © TZWorks LLC Apr 15, 2024 Page 9

Continuing with the basic configuration, one should test out the network connectivity between the minx

client and the nx service. To do this, one should try to 'ping' the server from the client computer using

the [-ping] option. This will ensure the crypto is synchronized between minx and nx.

Below is an example of doing this. The nx service was configured to be listening on IP address

192.168.3.97, port 3333 (first screenshot). The minx client is running on an Ubuntu 64-bit computer,

sending the ping command to the nx service (second screenshot).

Not only does the [-ping] verify the connection, but the timing statistics get archived in the server log.

For the above example, if one notices closely, one can see that the client's clock is 'behind' that of the

server's clock. How does one know this? One can see that the round-trip delay from the client -> server

-> client was about 89 milliseconds (difference of 17:56:54.594 and 17:56:54.683). Using half of this

difference should approximately equate to the transit time in one direction or 44.5 msec. However, the

difference in timestamps from when the client sent the packet (using the client’s clock) and when the

server received the packet (using the server’s clock) is approximately 5 minutes. This says the client and

server are out of sync by approximately 5 minutes. Anything that significant in time difference should

be noted since any artifacts extracted from a client computer is relative to that specific client's computer

clock. While this is a contrived example where the clock was manipulated on one system, it makes the

point that when taking artifacts from one computer and comparing them to another computer, one

needs to be able to synchronize the time between artifacts from different machines.

On the nx server side, all metadata is archived in the log file; this includes the time statistics from the

ping operation. This log file is named '<start_date_time>_results.csv'. Based on where the server set up

the root directory for this session, multiple subfolders are set up. For now, the one of interest is the logs

subdirectory which stores all the log files. The other subdirectories will be discussed later.

Copyright © TZWorks LLC Apr 15, 2024 Page 10

When looking in the log file for the specific entry, one should see the following type statistics for the

ping operation.

5 Sending data to the server

After the minx client and nx server connectivity have been verified, one can send artifacts from a client

computer to the server in a couple of ways. These can be categorized into three groups: (a) running

separate or built-in operating system tools and piping their output into minx to send to the server, (b)

sending the contents of a file to the server with one of minx’s copy options, and (c) sending raw bytes

from a drive or the drive’s statistics to the server. Each of these categories is discussed below.

5.1 Sending the output of other tools with minx

The most basic command one can invoke is to take any console output from some other tool and relay it

to the server. Below are some examples of doing this:

If we take apart an example and annotate each field/option, it becomes clear what is going on. For this

example, we look at the network configuration as described by ifconfig (on Linux) or ipconfig (on

Windows). As part of the command, one can annotate a comment to help the examiner remember any

context information at the time of the collection. One can also specify a name to be used as part of the

filename that is saved on the server end. Below is the command that is used along with annotations of

what each portion of the command does.

Below is a snapshot of the log file entry for this above command. From it, one can see the type of

metadata recorded per transaction, such as status, date/time, source IP/port, data type, etc. For those

transactions that created a file in the archive directory, an MD5 hash will be computed and documented

here. Furthermore, the name of the archive file itself will incorporate: (a) date/time, (b) md5 hash, and

Copyright © TZWorks LLC Apr 15, 2024 Page 11

(c) any name that was requested to be used. While this makes for long filenames, it solves the problem

of ensuring all names are unique.

The comment, specified by the -comment option in the above command, was included in the log entry.

The name, specified by the -name option, was appended to the end of the filename of the archived file.

Finally, the customer ID was changed from the default of the client IP address to a user-defined name

via the -cust_id option.

The location of the raw data that was transmitted is put in the customer ID’s folder as shown below.

5.2 Copying the contents of files
There are a few ways of copying a file. The option that is best will depend on your requirement. Below

demonstrates the various options:

For all the copy operations, the following rules are used in minx:

• For files that have sparse clusters like $UsnJrnl:$J, minx will only extract non-sparse clusters.

• Internally, minx will determine if the file is locked down by Windows, and if it is, then it will

bypass the Windows security and restrictions and resort to raw disk cluster reads to copy a file.

If the file can be read with normal file reads, then it will do that instead. Raw disk cluster

reading requires minx to run with Administrator privileges.

• If the analyst wishes to save the resulting file that is copied in a set of subdirectories that mimic

the source computer, then one needs to specify the -retain_path option. Without this option,

the default behavior is to store the copied file in a common directory unique to that target

computer. In either case, the original path will be stored in the results log.

Copyright © TZWorks LLC Apr 15, 2024 Page 12

• One can specify each target computer’s unique results subdirectory path, by using one or both

of the options: -host_id <user defined name> and/or -cust_id <user defined name >. The

default behavior uses a combination of the target computer’s IP address and hostname for the

unique results subdirectory path.

5.2.1 Copying one or more files

To copy one or more files, one can use the -copyfile <file(s)> option. Typical files you may want to copy

individually are the $MFT file, $UsnJrnl:$J file, and any other hidden file that is not easily enumerated by

a directory command. One can copy more than one file by separating the argument passed in -copyfile

by a pipe character, like “file1 | file2 | … “. This variation is useful if the number of files is limited to a

few files. For example, to copy the $MFT, $Boot, and $Bitmap files, one could issue the following

command:

minx -copyfile “c:\$MFT | c:\$Boot | c:\$Bitmap” -ip <addr of the nx server> -port <# of the server>

5.2.2 Using the -pipe option to copy many files

For copying a category of file types, you will most likely want to either pipe in the files in one session

using the -pipe option or use a more scriptable option that makes use of the -copydir option. The -pipe

option is used in conjunction with the -copyfile option to tell minx to use standard input to determine

which files to copy. This is best shown via an example.

In the example below, the macOS command pipes in all the plist type files from a specified directory into

minx to copy:

On the server end, when nx receives data from a file copy operation from minx, the nx service stores

each file contents in the subfolder that matches the source minx target machine (which in this case is

the IP address of the source machine). One can override this behavior by specifying a -host_id, -cust_id

or both, which will cause the nx server to store the data in the subfolders specified by these other

parameters. In the example above, two additional options are used: (a) -retain_path, and (b) -host_id

“OSX-12345”. The first (-retain_path), tells the nx server when storing the results of the copy operation

to store the file in the directory hierarchy from the original client machine. The second (-host_id) tells

the nx server not to use the default client hostname to store the results, but to use the -host_id

specified; it is another way to further categorize the client’s data.

Copyright © TZWorks LLC Apr 15, 2024 Page 13

Other implicit behavior on the nx side can be seen from the results log file. This includes: (a) the name

of the file is used as the archived name, (b) the path of the file is included in the comments section of

the server log, and (c) the MD5 hash of the file.

One point to mention here is in regards to the client source IP address that gets archived in the log: this

IP address is extracted from the client side and packaged as part of the data that gets sent to the nx

server. This means that if a client is behind a NAT'd firewall, the actual IP address of the client machine

still shows up in the log file as opposed to the firewall’s IP address.

5.2.3 Using the -copydir option to copy whole directories or a set of subdirectories

Piping in file names from standard input using the -pipe and -copyfile options is a common way to copy

files. However, there is another way which is more flexible and is the choice option when using scripts.

The - copydir allows one to specify a starting folder, the number of subdirectories to traverse (via

the -level option), and to discriminate files based on some filter criteria (via the -filter option).

Let’s say one wanted to pull artifacts from the c:\users directories. These artifacts could be user hives,

user documents, LNK files, jump lists or whatever. One could construct the following command where

the filter would have the following syntax: “ntuser.dat|usrclass.dat|*.lnk|*ions-ms|*.docx|*.txt”,

starting at the root folder c:\users. The syntax would look something like this:

Copyright © TZWorks LLC Apr 15, 2024 Page 14

minx -copydir c:\users -level 8 -filter “ntuser.dat | usrclass.dat | *.lnk | *ions-ms | *.docx | *.txt”

<rest of the command>

The <rest of the command> would include the -ip <address of the nx server> and -port <# of the server>.

5.2.4 Using the Combination Copy Options

These are command shortcuts that make use of the various internal options to copy common collections

of files. They include the following:

There are groups for registry hives, event logs, prefetch files, LNK/JumpList, trash entries, and system

files. One can use one or more of the options listed above in one session, or just invoke the -pull_all

parameter to tell minx to pull all pre-canned artifacts. minx will discern which version of the Windows

operating system the tool is running on so that the proper default directories are targeted for the file

groups selected. The other unique aspect about this option is that it will spawn multiple instances to go

after the specific groups. For computers with multiple cores, this will result in a faster copy.

5.2.5 Volume Shadow Copies

To access Volume Shadow copies, one needs to be running with administrator privileges. Volume

Shadow copies, as is discussed here, only applies to Windows Vista, Win7, Win8, Win10 and beyond. It

does not apply to Windows XP.

To make it easier with the syntax, we’ve built in some shortcut syntax to access a specified Volume

Shadow copy, via the %vss% keyword. This internally gets expanded into

\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy. Thus, to access index 1 of the volume shadow

copy, one would prepend the keyword and index, like so: %vss%1, to the normal path of the file. For

example, to access a user hive located in the testuser account from the HarddiskVolumeShadowCopy1,

the following syntax can be used:

minx -copyfile %vss%3\Users\testuser\ntuser.dat -ip <nx server IP addr> -port <nx server port #>

Group Option Files Targeted

-pull_sysfiles $MFT, $Boot, $LogFile, $Bitmap, $BadClus:$Bad, &UsnJrnl:$J files

-pull_reghives User and OS level (system, software, security, etc) registry hives

-pull_evtlogs Event and setupapi logs

-pull_lnks LNK and JumpList files

-pull_pfs prefetch files

-pull_systrash Recycle Bin directory on the system drive.

-pull_all All pre-defined groups above

Copyright © TZWorks LLC Apr 15, 2024 Page 15

To determine which indexes are available from the various Volume Shadows, one can use the Windows

built-in utility vssadmin, as follows:

 vssadmin list shadows

To filter some of the extraneous detail, type:

 vssadmin list shadows | find /i "volume"

While the amount of data can be voluminous, the keywords one needs to look for are names that look

like this:

 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1
 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy2
 ...

From the above, notice the number after the word HarddiskvolumeShadowCopy. It is this number that

is appended to the %vss% keyword.

5.2.5.1 Volume Shadow Copies applied to the Combination Copy Options

The second flavor of targeting artifacts in the volume shadow copies is to use the -vssall <partition

letter>. This instructs minx to analyze all volume shadow copies on that volume and pull the files

requested.

5.3 Imaging Disks and Volumes

Since minx can pull the file contents by reading raw clusters, this functionality is extended to perform

imaging of volumes, drives and specific sectors. The following options are available in this regard.

One should keep in mind that minx/nx was not designed for entire disk imaging; it would be very slow

compared to other imaging tools that image over the network. The reason is that minx/nx uses much

more network overhead than other network tools and consequently imaging over the network. This

option was only added so one could image small portions of the disk (such as the boot sector or sectors

that are suspicious). With that in mind, this capability is provided, if it is needed. The imaging format

available for minx does not allow for E01 or AFF formats, but only in the raw ‘dd’ format. One, however,

can compress the ‘dd’ image by using the -gzip option. The compression uses the zlib library and will

Copyright © TZWorks LLC Apr 15, 2024 Page 16

make use of multiple threads to process the raw data in parallel chunks to minimize the processing

image of the compression.

When using the default option, the extension used for the resulting image file will be “.dd”. If using the

compression option (-gzip), then the extension used will be “.gz”. The other naming convention is to

use the following syntax to represent the drive image name.

<MD5 hash>_drive_<#>_offset_<starting offset>_<ending offset>.[dd | gz]

5.3.1 Scan the drives on the system

To copy specific raw sectors of a drive, one should understand the details of the drives on the system.

Specifically, one needs to know: (a) the physical drive number of the device, (b) the device volume

offsets, and (c) the number of bytes for each volume. There are a number of built-in Windows tools to

get this information, but an easy way is to use the -scandrives option in minx. This option will

enumerate all the drives attached on the target system and output the results to the console (as well as

send the results to the nx server). Below is a snapshot of doing this on a system. From the data, one

can see the starting/ending offset of a volume along with its signature. Based on this data, one can

extract volume data using the starting offset and desired number of bytes one wishes to extract.

If one wanted to pull the partition boot data from the 2nd volume in disk 0, one would start at offset

0x500000 (note: there are empty sectors between the 1st volume and 2nd volume and this set of empty

sectors shows up as a separate line item in the output above). Then one needs to determine how many

bytes are desired. For this example, we will pull the first 0x1000 bytes. Putting this data together into a

command, would give the following:

minx -copydrive 0 –offset 0x500000 -size 1x000 < rest of the command>

5.3.2 Imaging an entire drive

If desiring to image an entire drive, one would use the -copydrive <#> option without specifying either

the -offset or the –size options. To have the results compressed, use the -gzip option.

5.3.3 Imaging an entire volume

Copyright © TZWorks LLC Apr 15, 2024 Page 17

If desiring to image an entire volume, one would use the -copyvolume <partition letter> option without

specifying either the -offset or the –size options. To have the results compressed, use the -gzip option.

5.3.4 Copying Interesting disk sections

If interested in boot sectors, whether it is from the master boot record or volume boot record, one can

use the -copy_bootfiles option.

If interested in locations on the drive that may be used by malware for persistence storage, one can use

the -copy_diskgaps <#> or -copy_all_diskgaps options. The first one targets a specific disk, whereas the

second pulls the disk gaps from all the drives on the system.

5.4 Running with and without a license file

The minx tool can be run with or without the license file. Starting with v.0.27, if one knows the license

number used with the nx server, one can use that same license number in the minx command line to

have minx sync up with nx. One just needs to append the option -nx <license number> to any

command used in minx.

6 Annotating metadata to the data sent

When sending any category of data, minx allows one to add extra metadata to each transmission that
will then get archived in the log on the server side. This includes: (a) comments, (b) a name to be used
as part of the filename of the data archive, (c) customer ID, and (d) host ID. The first option, (a)
comments, has the syntax -comment <data to annotate> and gets recorded directly in the log on the
server for that transaction. The second option, (b) filename, has the syntax -name <filename> and gets
used as the name recorded when the file is recreated on the server. The last two options are for the
customer and host ID. They are special, in the sense that they will create a separate directory structure
for each customer and host identifier specified. This is one way to keep artifacts from one target
box/customer separated from another target box/customer. The syntax for these are: -cust_id
<customer name or id> and -host_id <host name or id>, respectively. This last pair of options is
discussed in more detail below.

6.1 Tagging a minx Client with Identifiers

The default minx identifier that is sent to the nx server is derived from the minx’s client source IP

address and hostname. The source IP address and hostname are packaged by minx and sent to the

server. To change this behavior, the user can specify that minx use some other set of identifiers. There

are two optional switches available to do this: -cust_id <name1> and -host_id <name2>. The -cust_id

affects the first-tier subdirectory at the nx server end and is meant to identify a specific customer.

The -host_id affects the second-tier subdirectory and is meant to identify a specific host computer at the

customer’s facility. The only limitation with these options are that each name (or identifier) can only be

up to 16 characters each. This flexibility was added along with the tiered directory structure so one

Copyright © TZWorks LLC Apr 15, 2024 Page 18

could easily associate the results at the nx server end to that of its source, and thus what minx client

endpoint the data originated.

As an example, we can use TZWorks as the customer identifier and leave the host identifier as default

(which will then cause minx to pull the endpoint’s hostname directly from the box). For our test

command, the example invokes a simple ipconfig /all command and pipes the output into minx. The

screen snapshots below show the interaction between minx and nx server. One can see that the

customer identifier, TZWorks, was created as a first-tier subdirectory and the endpoint hostname was

used as the second tier.

7 Using Scripts

The scripting capability allows any or all the functionality of minx to be packaged into a script to be

acted on in one session. These scripts can either be invoked directly from the command line on the

minx side, or be stored on the nx server side, and when minx starts up on the remote computer, it can

request any script to be forwarded to it. Once minx receives a script from the nx server, it will

immediately execute it.

7.1 Script File Syntax

The script file is a text-based file that allows one to automate minx. The parsing engine used to read the

command from a script file is reliable if the rules are followed. There are some nuances, however, that

are caused by text editors used in Windows and those used in Unix based operating systems. Windows

text editors, for example, will put both [CRLF] (two separate characters, 0x0d, 0x0a hexadecimal) at the

end of a line, while Unix text editors like to put [LF] (one character, 0x0a hexadecimal) for an end of line.

The older version of the Mac operating system used to put a [CR] (one character, 0x0d hex) for an end of

line. Since the minx parsing engine tries to parse one line at a time it uses either [CRLF] or [LF]

sequences to determine when the line ends and when a new line starts. Therefore, either the Windows

OR Unix format is supported, but not both types of formats within one document. Thus, if a

Copyright © TZWorks LLC Apr 15, 2024 Page 19

configuration file is created in Windows with notepad, and then edited in Linux with gedit or some other

Linux based editor, there can be a mixture of [CRLF] and [LF] combinations for the EOL (end of line)

characters. The caution here is stick to the same editor, when editing a script file, that it was created

with.

7.1.1 General Rules

The syntax rules for script files are as follows:

1. Each line is parsed separately.

2. A line that starts with two forward slashes (e.g. //) is ignored and used for comments.

3. A blank line is ignored.

4. Any line not satisfying the above Rules 2 and 3 is assumed to be a command.

5. All command lines are in CSV (comma separated value) format. The commas are used to

separate the keywords and parameters associated with the keywords.

7.1.2 Command Lines

1. Commands must start with the text sequence: !cmd

2. Commands can contain the following keywords; comma delimited (in any order). If a keyword

has parameters associated with it, they are also comma delimited. The exception to this is the

<spawn>… </spawn> phrase. The main keywords are listed below:

• -ping

• -copyfile

• -copydir

• -copydrive

• -copyvolume

• <spawn type=”pipe_output”> cmdline syntax </spawn>

• <spawn type=”send_output”> cmdline syntax </spawn>

• -name <name to output file>

• -comment <any comment you want associated>

• -cleanup

7.1.3 Environment Variables

1. minx tries to resolve any environment variables that are passed as part of the command line

parameters. Environment variables are surrounded by percent characters (e.g. %)

2. minx defines two internal, custom environment variables:

a. %userbase%, which gets resolved to:

i. C:\users [Vista, Win7 and higher]

ii. C:\Documents and Settings [pre Vista]

b. %eventlogs%, which gets resolved to:

i. %systemroot%\System32\winevt\Logs [Vista, Win7 and higher]

Copyright © TZWorks LLC Apr 15, 2024 Page 20

ii. %systemroot%\System32\config [pre Vista]

Note: When using environment variables, one needs to account for the expansion of the variable to a

name that may contain spaces. Therefore, it is recommended to always use quotes around the

path/filename that includes an environment variable to avoid problems.

7.2 Using Built-in commands

Below are examples of using some of the minx built-in commands within a script file. Action 1 is a

simple custom command with no extra parameters. Actions 2-4 are custom commands with additional

parameters. Notice that each additional parameter is delimited by commas.

 Desired Action Example built-in commands used in script file

1 Ping the server !cmd, -ping

2 Copy the Volume C: boot record !cmd, -copy, c:\$boot

3 Copy the first 0x1000 bytes from
hard drive 0

!cmd, -copydrive, 0, -offset, 0, -size, 0x1000

4 Copy the change log journal on the
C volume

!cmd, -copy, c:\$extend\$usnjrnl:$j

5 Cleanup (remove) the minx app !cmd, -cleanup

If the above commands were put into a text file, and then invoked by the -script option, minx would

proceed to execute commands 1-4 synchronously. Synchronously, in the sense, the previous command

in the script must be completed before the next command in the sequence is executed.

7.3 Spawning third party tools

There are many times when you just want to use one of the operating system’s built-in commands, or a

3rd party tool. From a script file perspective, the syntax to do this is <spawn type=”send_output”> [cmd to

invoke] </spawn>. The implicit behavior for minx when spawning another tool is to extract any console

output from the tool and transport that data to the nx server.

Below are some examples of spawning another tool to perform some action:

 Desired Action Example spawn commands used in configuration file

1 Send network configuration
data

!cmd, <spawn type=”send_output”> ipconfig.exe /all
</spawn>, -comment, ipconfig /all

2 Send all open network
connections

!cmd, <spawn type=”send_output”> netstat -anob </spawn>, -comment,
netstat –anob

3 Send the process list !cmd, <spawn type=”send_output”> tasklist /svc </spawn>, -comment,
tasklist /svc

4 Send the processed result of
the prefetch files

!cmd, <spawn type=”send_output”> dir “%systemroot%\prefetch*.pf”
/ b /s | pf.exe -v -pipe</spawn>

Copyright © TZWorks LLC Apr 15, 2024 Page 21

5 Send the processed results of
the change log journal.

!cmd, <spawn type=”send_output”> jp.exe -partition c -v </spawn>

6 Send the processed results of
all the LNK files

!cmd, <spawn type=”send_output”> dir “%usersbase%*.lnk” /b /s |
lp.exe -csv </spawn>

Notice that the command that is spawned includes the name of the command and its related

arguments. Notice also that that the spawned command is enclosed in the tags <spawn

type=”send_output”> and </spawn> without using commas to separate the tags or commands, except

before and after the <spawn> and </spawn>, respectively.

The complexity of the command to be spawned is up to the user. One can use environment variables,

multiple tools on one command line, etc. The use of the [-comment, any text can go here] is strictly

used to annotate notes in the nx log.

Examples 4 and 6 uses two commands each. Example 4 uses the built-in operating system directory

listing, which then gets piped into a 3rd party TZWorks prefetch tool (called pf.exe). Example 6’s

directory listing gets piped into the TZWorks LNK parsing tool (called lp.exe). The result of the each

parsing is sent to the server. In example 6, the %usersbase% is a minx custom environment variable for

the Users directory. Note that double quotes were used around the variable and path/filename to avoid

errors in processing the command on a Windows XP box. Windows XP would resolve the %usersbase%

to be “C:\Documents and Settings*.lnk” vice in Windows 7 “C:\users*.lnk”.

7.4 Enumerating files and copying them

There are 2 methods to enumerate a directory of files for the purpose of passing these same files or a

subset of them into a copy command. The first method is the recommended way, and the second is an

older way that was left in as an alternative.

7.4.1 Copying a collection of files (method 1 – just using built-in commands)

This method is handled internally to minx, and thus does not rely on spawning another tool. It makes

use of the -copydir command and the companion subcommands/arguments to specify a starting folder,

how deep to traverse down, and any filters to discriminate specific files. Below are some examples:

 Desired Action Example -copydir commands used in configuration file

1 Copy user hives !cmd, -copydir, %usersbase%, -level, 6, -filter,
ntuser.dat*|usrclass.dat*, -retain_path

2 Copy LNK & JumpList files !cmd, -copydir, %usersbase%, -level, 9, -filter, *.lnk|*ions-ms, -retain_path

3 Copy event logs !cmd, -copydir, %eventlogs%, -level, 1, -filter, “*.evtx|*.evt”

7.4.2 Copying a collection of files (method 2 – spawning 3rd party tools)

Copyright © TZWorks LLC Apr 15, 2024 Page 22

This method uses both a <spawn> ... </spawn> command as well as the -copyfile keyword. The idea

here would be to spawn a directory enumerator and put the results into a temporary buffer. After the

enumeration is finished, replay the resulting buffer back performing the next command (in this case

copying the file) one by one until the entire listing in the temporary buffer was exhausted.

To invoke this type of behavior, one uses the <spawn type=”pipe_output”> versus the previous example

of <spawn type=” send_output”>. The “pipe_output” instruction will spawn the command enclosed in

the <spawn> ... </spawn> tags and then collect the output of the command into a temporary buffer.

The second part would be to specify an action keyword that operates on piped data; this would

be -copyfile. Below are some examples:

 Desired Action Example spawn & -copyfile commands used in configuration file

1 Copy all ntuser.dat hives !cmd, <spawn type="pipe_output"> dir "%usersbase%*ntuser.dat" /b /s /a
</spawn>, -copyfile, -comment, pull user registry hives

2 Copy all LNK files !cmd, <spawn type="pipe_output"> dir "%usersbase%*.lnk" /b /s /a
</spawn>, -copyfile

3 Copy EVTX event logs !cmd, <spawn type="pipe_output"> dir "%eventlogs%*.evtx" /b /s /a
</spawn>, -copyfile

There are two major advantages of using the previous method compared to this method. The first is

that another instance of a separate tool does not need to be spawned. The second is the -copydir

option has more filtering options, and therefore, more generic statements can be made. Look at Action

3 for the two methods. The first method allows one to target any event log type with the script line,

while the second needs to be more specific and can target either evtx (new eventlog format) or evt

(older eventlog format) types, but not both.

7.5 Serving out command scripts

This area is still experimental in nature. The idea here is to have all the command scripts located at the

nx server workstation and serve them out as requested by the minx clients. To enable this functionality,

one needs to tell the nx server where the command scripts are located. This is done when starting up

the nx server via the option -scripts <folder containing the command scripts>.

The second item one needs to account for is the command script names that get placed in the script

folder. There are two options available: (a) The first case is straightforward in that the minx client

explicitly requests a specific script via the -get_cmds -queryfile <script name>. In this mode, the nx

service will look in the script folder and if it finds the name given, will send it back to the minx client for

processing. The name of the script should follow the syntax: <script name>.cmds.txt. The nuance here is

the <script name> without the cmds.txt extension should be used in the -queryfile argument. (b) The

second case is where the minx client issues the -get_cmds option without specifying a specific script. In

this case, the nx service will look in the script folder and search for the following script filename

<cust_id>.cmds.txt. If the file is found, it will be sent back to the minx client for processing. This case

Copyright © TZWorks LLC Apr 15, 2024 Page 23

requires more upfront planning, but allows one the flexibility of targeting specific scripts for a class of

customer via the -cust_id <user defined name> option.

7.5.1 Example of the setup of using -queryfile <script name>

Below is a screen shot showing the location of the script file “test1.cmds.txt”, which is in the folder

c:\dump\nx\scripts. This location is passed into the server to identify it as the script repository, via the -

scripts c:\dump\nx\scripts option. The minx client can then issue a command to invoke this script via

the options: -get_cmds -queryfile “test1”. These sequences of events are shown below:

Copyright © TZWorks LLC Apr 15, 2024 Page 24

8 Example of a script file to collect various artifacts

// minx - ver: 0.10, [protocol ver: 0.07 (nx)], Copyright (c) TZWorks LLC

// sample script demo

//

!cmd, -comment, Test live collect using various techniques to gather data

!cmd, -ping

// copy the usnjrnl file for the 'C' volume

!cmd, -comment, change log journal

!cmd, -copy, c:\$extend\$usnjrnl:$j, -retain_path

// copy the prefetch files

!cmd, -comment, normal copy of prefetch files

!cmd, -copydir, %systemroot%\prefetch, -level, 1,-filter, *.pf, -retain_path

// copy the event logs

!cmd, -comment, event log raw copies

!cmd,-copydir, %eventlogs%,-level,1,-filter,*.evtx|*.evt, -retain_path

// copy the system hives

!cmd, -comment, system registry hive raw copies [ntfsraw required since this files are locked down]

!cmd, -copydir, %systemroot%\system32\config,-level,0,-filter,sam|security|system|software, -retain_path

// copy the user hives [ntfsraw required since this files are locked down]

!cmd, -copydir, %usersbase%, -level, 9, -filter, ntuser.dat*|usrclass.dat*, -retain_path

// copy the LNK and JumpList files

!cmd, -comment, LNK files [normal copy]

!cmd, -copydir, %usersbase%, -level, 9, -filter,*.lnk|*ions-ms, -retain_path

// get the disk and volumes mounted to this machine

!cmd, -comment, drive stats

!cmd, -scandrives

// copy some $boot records. The first copies the $boot on a hidden partition

// if it exists. The second copies the $boot on the 'C' drive, which may

// be the second partition, if there is a hidden partition.

!cmd, -comment, $boot raw copies [require ntfsraw copy]

!cmd, -copyfile, c:\$boot, -retain_path

// copy MBR plus extra bytes

!cmd, -comment, MBR w/ extra bytes

!cmd, -copydrive, 0, -offset, 0, -size, 0x1000

// copy the $MFT file

!cmd, -copyfile, c:\$MFT, -retain_path

9 Various Use-Case for Transferring Data

As stated earlier, the communications between minx and nx is what is called peer-to-peer
communications. This is defined to be communications between two nodes in contrast to multi-node or
broadcast communication. In this case, minx must specify the IP address of the nx server and the
communication is directly between them. One must assume routing will occur, but it should not impact
the communication since the minx client explicitly specifies the nx IP address when running. For peer-
to-peer communication, domain credentials are not required to be set up for enterprise networks. As
long as minx can communicate to the nx IP address, without being impacted by firewalls or other
network devices that can block IP traffic, the communication should be seamless.

There are many use-cases in setting up minx/nx, depending on the network architecture. This section
goes over some of the common ones.

Copyright © TZWorks LLC Apr 15, 2024 Page 25

9.1 Normal Private Intranet for both minx and nx

For the case where the target endpoint and the forensics workstation are on the same private intranet,

the IP and port specified on the command line should be equivalent on both nx and minx as shown

below. In the example, the target endpoint (where the data is being collected from, e.g. minx) has an IP

address of 192.168.0.100 and the forensics workstation (running nx in server mode) is at IP address

10.0.0.10. The nx service is using port 2222, in this example:

Copyright © TZWorks LLC Apr 15, 2024 Page 26

9.2 Sending Data from a Private Intranet to a Public Internet Address

If you have a situation where your forensics collection point is accessible from the Internet, then the

setup is not any different than the case discussed above. Both the IP address and port specified in the

minx/nx setup are the same and will match whatever the nx server has specified.

9.3 Using TCP/IP Redirection

These examples require more advanced knowledge and familiarity with setting up redirectors and VPNs.

For more complex cases, where one needs to use a redirector to send the packets to the forensics
collection point, two cases are shown below. The first one is similar to the previous case with a variation
in that the forensics workstation is protected by a firewall/router. Since the IP address of the
firewall/router (on the nx service side) is the only thing addressable from an Internet standpoint then
the minx client must use this address. The firewall/router needs to be set up to redirect this traffic on
the nx port (e.g. 2222 in this example) to the forensic workstation.

Normally, for peer-to-peer communications this should work without any other changes; however, for
the minx/nx architecture, one must specify this redirection on the nx server side. To be clear, the
redirection only needs to be specified from the minx perspective (as opposed to any other case that
may happen unbeknownst to user). To do this, when one sets up the nx server, one specifies the
additional option -redirect <IP address that minx will be specifying to send data to the server>. Below is a

Copyright © TZWorks LLC Apr 15, 2024 Page 27

diagram with command line arguments for both minx and nx that shows an example of how to set this
up.

The second variation of the redirection use-case is when the target endpoint that is sending data is
restricted from doing so because of a firewall or network blocking device. There are a number of
solutions that one can implement. The one shown here is to set up an intermediary computer that is
accessible to the target endpoint running minx. The intermediary computer will employ a redirection
service for the internal private network to access the outside network. In this example, the internal
private network is on subnet 192.168.0.x. The intermediary computer is connected to both this private
network as well as to the 10.10.10.x subnet, so it can effectively route/redirect any packets received on
port 1234 on IP address 192.168.0.5 to port 2222 on IP address aaa.bbb.ccc.ddd, as well as handle the
reverse redirection. From minx’s perspective, it is sending data to IP address 192.168.0.5, port 1234.
Doing so will allow the network packets to get to the forensics workstation running the nx service. For
the nx service to accept minx’s packets, however, it must be told that a -redirect was occurring on
192.168.0.5. These command arguments are shown below:

Copyright © TZWorks LLC Apr 15, 2024 Page 28

10 Zlib Dependency

minx makes the of the zlib library. If one is unfamiliar with zlib, the official zlib website is

https://zlib.net. It has documentation and details on everything one would ever want to know. The zlib

library is statically linked into minx binary. What this means is the tool is standalone and does not

require any external zlib shared libraries.

11 Available Options

Option Description

-ip
IP address of the server. The syntax is: -ip <server IP address>.

-port
Port address of the server. The syntax is: -port <server port address>.

-key

If network encryption is required, this is the symmetric key to use. If

used, the same key is needed for both the minx client and nx server. The

syntax is: -key <password phrase>.

-nx

If desiring to run minx without a license file, then one can use the license

number of the nx server, as follows: -nx <license number>

-ping Option for the client to check whether the server is up and has

Copyright © TZWorks LLC Apr 15, 2024 Page 29

synchronized time statistics. These statistics are recorded in the server-

side logs.

-quiet
Option for minx to not echo to the user what is being sent to the server.

-cust_id

Option for the client to identify itself to the server with a unique client

label. This label is associated with all the files sent by this client. The

syntax is: -cust_id <label>.

-host_id

Option for the client to identify itself to the server with a unique host

label. This label is associated with all the files sent by this client. The

syntax is: -host_id <label>.

-pipe

Used to pipe files or commands into the tool via STDIN (standard input).

Each file passed in is parsed in sequence.

-copydir

Option to enumerate a directory or subdirectories without using the

piping option. The -level sub-option specifies how deep to look in the

subdirectories. A value of 0 (which is the default) means just the current

directory. The -filter is discussed later as its own separate option. The

syntax is: -copydir <dir> -level <#> -filter <*partial*|*.ext>.

-name

Option for the client to request the server to use the specified filename

to archive the results. The syntax is: -name <filename>.

-comment

Option for the client to cause the server to annotate a comment in the

logs stored on the server session side. The syntax is: -comment

<"phrase">.

-filter

Filters data passed in via stdin via the -pipe option or via the -copydir

option. The syntax is -filter <"*.ext | *partialname* | ...">. The

wildcard character '*' is restricted to either before the name or after the

name.

-copyfile

Option for the client to copy a specified file and send it to the server. The

syntax is: -copyfile <file to copy>. Can also be used to copy more than

one file if delimiting the other files with a pipe character: -copyfile <file1

| file2 | …>.

-retain_path
Option to store the copied file in the original subdirectory tree as the

target. Default (without this option) is to copy all the files in a common

Copyright © TZWorks LLC Apr 15, 2024 Page 30

subdirectory; and files are prepended with a MD5 hash to ensure files

with like names are not overwritten.

-scandrives

Enumerates the drives on the host machine and pulls stats, including

volume information.

-copydrive

Copies raw bytes from a specified drive. The syntax is: -copydrive

<drive #> -offset <start> [-size <#>].

-script <name>

If one wants to run minx with a script, use this option. The syntax

is: -script <script file>.

-get_cmds

Experimental. This instructs minx to contact the nx server and ask if any

scripts are available to run. If a script is present on the server side, it will

be sent to the minx client and minx will execute it. The optional sub

argument allows minx to specify which script file for the nx server to send

to it. The syntax is: -get_cmds [-queryfile <script>].

12 Authentication and the License File

This tool requires an enterprise license to run.

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

13 References

Copyright © TZWorks LLC Apr 15, 2024 Page 31

1. zlib library version 1.2.8, April 28th, 2013, by Jean-loup Gailly and Mark Adler.
2. http://tools.ietf.org/html/rfc1950 (zlib format), rfc1951 (deflate format) and rfc1952 (gzip format)
3. ntfscopy – TZWorks NTFS copy utility - https://tzworks.com/prototype_page.php?proto_id=9
4. dup – TZWorks Disk Utility & Packer utility - https://tzworks.com/prototype_page.php?proto_id=37
5. nx – TZWorks Network eXchange utility - https://tzworks.com/prototype_page.php?proto_id=18

http://tools.ietf.org/html/rfc1950
https://tzworks.net/prototype_page.php?proto_id=37

	1 Introduction
	2 How to use minx and nx to complement live forensics collection
	3 Configuring nx as a server
	4 Configuring minx (the client)
	5 Sending data to the server
	5.1 Sending the output of other tools with minx
	5.2 Copying the contents of files
	5.2.1 Copying one or more files
	5.2.2 Using the -pipe option to copy many files
	5.2.3 Using the -copydir option to copy whole directories or a set of subdirectories
	5.2.4 Using the Combination Copy Options
	5.2.5 Volume Shadow Copies
	5.2.5.1 Volume Shadow Copies applied to the Combination Copy Options

	5.3 Imaging Disks and Volumes
	5.3.1 Scan the drives on the system
	5.3.2 Imaging an entire drive
	5.3.3 Imaging an entire volume
	5.3.4 Copying Interesting disk sections

	5.4 Running with and without a license file

	6 Annotating metadata to the data sent
	6.1 Tagging a minx Client with Identifiers

	7 Using Scripts
	7.1 Script File Syntax
	7.1.1 General Rules
	7.1.2 Command Lines
	7.1.3 Environment Variables

	7.2 Using Built-in commands
	7.3 Spawning third party tools
	7.4 Enumerating files and copying them
	7.4.1 Copying a collection of files (method 1 – just using built-in commands)
	7.4.2 Copying a collection of files (method 2 – spawning 3rd party tools)

	7.5 Serving out command scripts
	7.5.1 Example of the setup of using -queryfile <script name>

	8 Example of a script file to collect various artifacts
	9 Various Use-Case for Transferring Data
	9.1 Normal Private Intranet for both minx and nx
	9.2 Sending Data from a Private Intranet to a Public Internet Address
	9.3 Using TCP/IP Redirection

	10 Zlib Dependency
	11 Available Options
	12 Authentication and the License File
	13 References

