

Abstract
jmp is a standalone, command-line tool used to extract

SHLLINK artifacts from Windows files that generate Jump

Lists. Jump Lists became available with Windows 7 and

provide a wealth of artifacts for the digital forensic analyst.

jmp can operate on a single file or a collection of files. All

artifacts can be outputted in one of three parsable formats

for easy inclusion with other forensics artifacts. jmp runs

on Windows, Linux and Mac OS-X.

TZWorks® Jump List Parser (jmp)
Users Guide

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v0.63 of jmp

Updated: Apr 15, 2024

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 15, 2024 Page 1

Table of Contents

1 Introduction .. 2

2 Jump List Format/Internals ... 3

2.1 Automatic Destinations File .. 3

2.2 Custom Destination File .. 5

2.3 Pulling out Metadata from the Segmented ItemIDs ... 6

2.4 jmp tool parsing vice the lp tool ... 7

3 How to Use jmp ... 8

3.1 Translating the Application Identifier to the Application Name ... 10

3.1.1 Going from path/name to AppID .. 10

3.1.2 Going from AppID to Application Name ... 11

3.2 Handling Volume Shadow Copies ... 12

3.3 Understanding Deleted JumpList Entries .. 13

3.4 Parsing Slack Entries (Issues and what can be done) .. 15

4 Known Issues ... 16

5 Available Options .. 17

6 Authentication and the License File .. 19

6.1 Limited versus Demo versus Full in the tool’s Output Banner .. 19

7 References .. 19

Copyright © TZWorks LLC Apr 15, 2024 Page 2

TZWorks® Jump List Parser (jmp) Users
Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=20

Contact Information: info@tzworks.com

1 Introduction

jmp is a command line Windows parser that operates on files that are used to generate Jump Lists.

Jump Lists are a new feature, starting with Windows 7. They are similar to shortcuts in that they take

one directly to the files or directories that are used on a regular basis. They are different than the

normal shortcut in that they are more extensible in what information they display. For example,

Internet Explorer will use Jump Lists to display websites frequently visited; Microsoft Office products like

Excel, PowerPoint and Word, on the other hand, will show most recently opened documents. Below are

two examples: (a) one for Most Frequently Used (MFU) list and (b) one for Most Recently Used (MRU)

list.

From a user’s standpoint, Jump Lists increase one’s productivity by providing quick access to the files

and tasks associated with one’s applications. From a forensics standpoint, Jump Lists are a good

indicator of which files were recently opened or which websites were visited frequently.

The Windows operating system derives the Jump List content from two sets of Destination files: (a) the

first set is the automaticDestinations type files. These are the ones the operating system creates and

maintains (hence the prefix of ‘automatic’). They store information about data file usage. Items are

sorted either by Most Recently Used (MRU) or by Most Frequently Used (MFU), depending on the

mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 15, 2024 Page 3

application. (b) The second set is the customDestinations type file. The content contained within, and

the tasks specified by this category of file, are maintained by the specific application responsible for that

specific Destination file. Suffice to say, both formats rely on the SHLLINK structure to store much of

their information.

Automatic and custom destination files are located in the following areas on the file system,

respectively.

a. %APPDATA%\Microsoft\Windows\Recent\AutomaticDestinations\[AppID].automaticDestinations-ms

b. %APPDATA%\Microsoft\Windows\Recent\CustomDestinations\[AppID].customDestinations-ms

The variable named %APPDATA% is used to resolve to the: C:\Users\<user account>\AppData\Roaming

location. From the path, one can see that each user account (or profile) has its own set of Destination

files.

Per reference [2], the AppID (or application identifier) is used as part of the name in the construction of

the Destination filename. This is a 16 character name in the form of an 8 byte hexadecimal number, and

is usually based on the process name, but ultimately can be specified by the application. According to

reference [2], the same process should have the same AppID across different computer systems and

depends on whether the command arguments are the same as well. Reference [3] is a list of various

application identifiers that the forensics community has compiled. It is updated as new ones are

discovered.

2 Jump List Format/Internals

This is only a brief discussion about the internals of the files that make up the Jump List. It is meant to

only guide the reader to the current, publically available sources of information, rather than to repeat

(and/or explain) the Microsoft specifications.

2.1 Automatic Destinations File

Per Microsoft (ref [2]), the automaticDestinations file consists of a Compound File Binary (CFB) structure

as the container for the individual elements. This includes a separate stream for a DestList and

individual SHLLINK streams. As background, the CFB architecture has been around for many years and

acts like a file-system within a file. This allows each SHLLINK structure to be referenced individually via

its own separate stream. Both the CFB and SHLLINK specifications are individually published by

Microsoft as part of their open specifications agreement. (ref: MS-CFB [6] and MS-SHLLINK [7],

respectively).

Copyright © TZWorks LLC Apr 15, 2024 Page 4

The DestList stream is a collection of MRU/MFU entries whose format is still being investigated, but

contains a timestamp, MRU/MFU entry, corresponding SHLLINK stream, NETBIOS name, target file

name, object/volume identifiers, and some other unknown information. Combining the DestList

information with that of the SHLLINK information, one can have a useful set of forensic artifacts when

determining activity on a computer. Some of these artifacts include:

• Relative frequency of folder or website usage or the last file used for a specific application.

• The path to the target file/directory it references along with modify/access/create timestamps

• The size of the target when it was last accessed.

• Serial number of the volume where the target was stored.

• Network volume share name (if applicable).

• Target attributes, such as whether it was 'read only', 'hidden', 'system', etc.

• One of the MAC addresses associated with the host computer (available when an Object ID is

present).

Much of this data can be seen from looking at the default output (or long form) of the jmp tool (see

below).

Copyright © TZWorks LLC Apr 15, 2024 Page 5

In certain cases, especially with portable devices, some of the more common data may not be present,

such as the target’s MACB times or MFT entry and sequence number. Fortunately, there is other useful

data that can be extracted from the IDList structures. In this example, the device vendor and product

identifier can be extracted as well as the serial number of the device and the user’s security identifier.

Below is an example of what a cell phone may look like after connecting to a computer and accessing

files on the portable device.

2.2 Custom Destination File

The customDestinations file uses a container structure that is quite different, but simpler, than that of

the automaticDestinations file. Aside from the initial header at the beginning of the file, the SHLLINK

structures do not follow the orderly grouping (using streams) like that of the Compound File Binary used

in the automaticDestinations file. Instead, the SHLLINK structures are packed sequentially.

Secondly, additional custom metadata can be inserted into customDestinations types of files. The

contents of this custom data are controlled by the application logging the data. jmp, however, only

parses the SHLLINK type metadata from these types of files and does not try to parse any of the unique

metadata that may have been placed there by the application.

Copyright © TZWorks LLC Apr 15, 2024 Page 6

2.3 Pulling out Metadata from the Segmented ItemIDs

Windows uses the Shell ItemID to build the path of the file specified for the link. Each ItemID can

contain other information beside the segment of the path. This other information can include: (a) MAC

times, MFT entry of the segment, and MFT sequence number. To pull out this additional metadata, use

the -idltimes switch. Below is an example of doing this. The additional data outputted is highlighted

below.

Copyright © TZWorks LLC Apr 15, 2024 Page 7

2.4 jmp tool parsing vice the lp tool

When designing the jmp tool, the SHLLINK parsing engine was taken from the TZWorks LNK parsing tool

called lp (ref [5]). The lp engine was wrapped in a compound file stream parsing engine to extract the

appropriate streams so the SHLLINK structures could be parsed with assured accuracy.

As an aside, the lp tool also has an option (unlike the jmp tool) to parse SHLLINK structures from raw

unstructured data. Using this capability, one can pull out SHLLINK metadata that is buried within an

image of a volume. Furthermore, lp can also parse SHLLINK structures from within a compound file,

similar to that of an automaticDestinations file. The lp tool, however, does not associate the

automaticDestinations file’s MRU/MFU data for each SHLLINK structure parsed, and hence, the reason

that the jmp tool was created. More information about what the lp tool can do, please refer to the

TZWorks website [5].

Copyright © TZWorks LLC Apr 15, 2024 Page 8

3 How to Use jmp

While the jmp tool doesn't require one to run with administrator privileges, without doing so will restrict

one to only looking at files available to the current logged in account or those common to the operating

system. Thus, to access either other accounts, you should run this tool with administrator privileges.

One can display the menu options by typing in the executable name without parameters. A screen shot

of the menu is shown below.

To parse an individual Destinations file, use the following notation:

 jmp [Destinations filename] > results.txt

Without specifying one of the format options, the output is rendered in a default, unstructured output.

The snapshot in the section (2.1) above is an example of what this output looks like. The information is

useful if one is not trying to parse any artifacts into a database. Notice that the example above, the

output is redirected to a text file called ‘results.txt’. Since the output that is generated is usually very

long (and wide, if using the CSV option), it is recommended that one redirect the output of the

command into a file as show above.

Copyright © TZWorks LLC Apr 15, 2024 Page 9

The -csv (comma separated value) option will render the output so that all the metadata is rendered

with one SHLLINK record per line, where each field is delimited by a comma. The other two output

formats are the: (a) -csvl2t and (b) -bodyfile. Each will attempt to conform to either the log2timeline

format or the SleuthKit’s body-file format, as appropriate.

While parsing one Destinations file is useful, one will usually want to parse all the Destinations files that

are on a system or in a set of directories. One way to do this is to pipe in all the paths/filenames of the

Destinations type files one wishes to parse into jmp. To allow jmp to receive data from an input pipe,

one needs to invoke the -pipe switch. This will allow jmp to receive a separate path/filename per line as

input. To provide this input, one can use the Windows built-in dir command along with some of its own

switches to get the desired result. For those not familiar with syntax that uses a pipe or the dir

command and options, the figure below provides annotations to what each portion in the command is

doing.

The above syntax will process all the Destinations-ms files that are located anywhere in the c:\users

directory or subdirectories. This assumes, of course, that one is running with administrator privileges.

If one cannot use the -pipe option, one can use the experimental -enumdir option, which has similar

functionality with more control. The -enumdir option takes as its parameter the folder to start with. It

also allows one to specify the number of subdirectories to evaluate using the -num_subdirs <#> sub-

option.

When analyzing the CSV output the automaticDestinations metadata will include MRU/MFU index,

stream and timestamp. The annotated snapshot below has been trimmed to show this information.

Copyright © TZWorks LLC Apr 15, 2024 Page 10

On the left of the output, one can see the application identifier. Matching this identifier to a known

application can be done by visiting the http://www.forensicswiki.org/wiki (see ref. [3]), where there are

tables of application IDs matched to their respective application.

The MRU/MFU index is a chronological list of entries, where #1 is the latest. Each application ID has

each own sequential list. Following the index value is the stream number (or directory name) that holds

the data in the compound file. It is not uncommon to find hundreds of streams, where each stream

(with a couple exceptions) contains a SHLLINK data structure. The MRU/MFU entry has a unique

timestamp that shows when that entry was updated. Finally, some of the entries contain the target

MFT entry (or inode) and sequence number. Combining the MRU/MFU data with that of the SHLLINK

metadata and the MFT entry provides a wealth of forensic information to the investigator.

3.1 Translating the Application Identifier to the Application Name

An application identifier (AppID) can be set by the application itself or it can be generated by the

operating system using a set of rules. The jmp tool has two options to assist in this area.

3.1.1 Going from path/name to AppID

The first option is to go from path/filename to AppID, using the -appid <pathfile> option. The

algorithm first converts the path to uppercase Unicode and then substitutes any known Windows

folders with the associated GUID identifier. Based on the string final string generate, the CRC is

computed and result is a possible AppID. Since the AppID is very sensitive to the inputted path, one

needs to keep this in mind when trying to compute AppID’s from an executables path and name. A

good example of this is trying to compute the AppID for the notepad application. If one opens a

command prompt and issues the command: where notepad, one may see two possible paths as I do on

Copyright © TZWorks LLC Apr 15, 2024 Page 11

my default Win7 box. One exists at the path C:\windows\System32\. Since this is the first one shown, it

is considered the default one. But there is one also at the path c:\windows\. To complicate matters, the

Win7 box happens to be a 64 bit OS, so there happens to be a 3rd path at the c:\windows\SysWOW64\

directory. Out of these 3 possible paths for notepad, the AppID could be using the GUID version of the

path instead of the ones listed before. The Windows OS likes to use GUID identifiers for common

folders. Given this, we now have 6 possible AppID’s for notepad. The AppID’s in the output below are

called hashes.

One should note that the computation of the AppID did not care whether the application was 32 bit or

64 bit, but just the path it came from. This means that for a 32 bit OS, the AppID for

C:\Windows\System32\notepad.exe would be identical to the AppID for a 64 bit OS with the same path.

So while some references show the mapping between the 32 and 64 bit in the appid.txt file, it could be

misleading.

3.1.2 Going from AppID to Application Name

The second option takes a file as its argument that already has the mapping of AppID’s to application

names in a file. This option uses the -appid_ref <file> to tell jmp to use these associations to output the

mapped application name in the output.

Included in the distribution of jmp is a pre-generated file (named appids.txt) that contain the mappings

included from the online forensics-wiki website (see reference 3 at the end of this document). One is

cautioned and should verify the accuracy of the data in this file, since we just took the output from the

website and formatted it in a way that the jmp tool could easily parse it and use the mappings.

If one desires to add new entries to this file, then use the following rules:

• Blank lines are ignored

• Lines starting with a forward double slash are ignored and used for comments

Copyright © TZWorks LLC Apr 15, 2024 Page 12

• An AppID mapping to an application name is separated by a pipe character. If we took the

AppIDs computed for notepad above, one could generate a few entries this way:

3.2 Handling Volume Shadow Copies

For starters, to access Volume Shadow copies, one needs to be running with administrator privileges.

Also, Volume Shadow copies, as is discussed here, only apply to Vista, Win7, Win8 and beyond. It does

not apply to Windows XP.

To tell jmp to look at a Volume Shadow, one needs to use the -vss <index of volume shadow> option.

This then points jmp at the appropriate Volume Shadow and it starts processing the various user

automatic and custom destination files.

In addition to the -vss <index of volume shadow>, we've built in a shortcut syntax to access a specific

file in a specified Volume Shadow copy, via the %vss% keyword. This internally gets expanded into

\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy. Thus, to access index 1 of the volume shadow

copy, one would prepend the keyword and index, like so, %vss%1 to the normal path of the file. For

example, to access a file located in the testuser account from the HarddiskVolumeShadowCopy1, the

following syntax can be used:

 jmp %vss%1\Users\testuser\AppData\Roaming\Microsoft\Windows\Recent\

AutomaticDestinations\1b4dd67f29cb1962.automaticDestinations-ms > out.txt

To determine which indexes are available from the various Volume Shadows, one can use the Windows

built-in utility vssadmin, as follows:

 vssadmin list shadows

 To filter some of the extraneous detail, type

 vssadmin list shadows | find /i "volume"

While the amount of data can be voluminous from that above command, the keywords one needs to

look for are names that look like this:

 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1

 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy2

Copyright © TZWorks LLC Apr 15, 2024 Page 13

 ...

From the above, notice the number after the word HarddiskvolumeShadowCopy. It is this number that is

passed as an argument to the -vss option.

3.3 Understanding Deleted JumpList Entries

As discussed earlier, the automaticDestinations structure is like a FAT file system within a file.

Therefore, it stands to reason that deleted entries will be persistent until the Jump file shrinks or the

delete space is reused.

Below is a series of annotated screenshots of a Jump List from Windows Explorer. The images show

what happens when an entry is deleted from the list and how it affects the metadata in the Compound

File Binary (CFB) data structure used to encapsulate automaticDestinations files. For this example, the

“Documents” entry is deleted. From the bottom left image, Stream #3 is highlighted to show what the

data looks like prior to the deletion. On the bottom right image, one can see that Stream #3 is now

absent from the stream list. Also highlighted is the additional number of mini-sector chunks that are

now available for use by the CFB container. The tool being used for this analysis is a CFBViewer that we

wrote for internal use at TZWorks to help analyze the internals of CFB files.

Copyright © TZWorks LLC Apr 15, 2024 Page 14

When looking at the results from jmp, one will see the following data before and after the deletion of

the entry. The snapshot below collapses many of the fields to show both the stream# and entry name

for clarity.

Copyright © TZWorks LLC Apr 15, 2024 Page 15

3.4 Parsing Slack Entries (Issues and what can be done)

Now that one has a basic understanding on how deleted entries may persist in the CFB Container, one

can then target these unused mini-sectors to carve out any deleted LNK files. First of all, the bad news

is that there is no way to tell how these newly free mini-sectors were aligned in a run when representing

the data in a LNK file. This means if the CFB file was severely fragmented, one will not be able to

reconstruct many of the deleted entries. The second point we have observed from empirical data is

when a run of mini-sectors frees up, and it happens that these same mini-sectors comprise an entire

sector (many mini-sectors make up 1 sector), then the CFB file is shrunk down in size and the sector is no

longer backed by file data. These two issues make reconstructing a deleted LNK file a hit and miss type

problem.

What we can do is look at the freed up mini-sectors and reconstruct a larger dataset by ordering them

from lowest offset to highest offset. From this ordered set of data, we can then scan for LNK

signatures, and if found, we can parse the data starting with the signature. With that as the initial

conditions, there are two tools that can do this within our toolset. The first is to use a tool such as lp

(ref: https://tzworks.com/prototype_page.php?proto_id=11), which understands how to reconstruct

CFB files into a contiguous run of data and then scan the resulting data for LNK signatures. While this

works fine for allocated chunks of data, it has the same issues with freed up chunks of data discussed

before. The second option is to use the jmp -slack option to scan these unallocated chunks of data for

LNK signatures, and if found, parses them.

Since any results returned from slack are not registered with the DestList stream in the CFB container,

the MRU/MFU and other metadata associated with the DestList will not present with these retrieved

Copyright © TZWorks LLC Apr 15, 2024 Page 16

entries. Furthermore, unallocated chunks of data may or may not be aligned in contiguous blocks, and

therefore the results returned that are labeled as ‘slack’ may be corrupted or have errors in the data.

Below is an example of running jmp on a Jump List with a number of deleted entries, but only one was

able to be parsed. The output was trimmed to show just the entries that are changed during a

reconstruction of the deleted entry. If using slack results for analysis, one is encouraged to use

the -show_offset option as well. This option will output the actual offset in the automaticDestinations

file where the entry was parsed from (keep in mind, while the starting offset is valid, the rest of the data

may not be contiguous and could be fragmented). But for the slack data, it will allow one to later go and

verify the results manually with any hex editor.

4 Known Issues

jmp doesn't parse some of the fields in the SHLLINK structures documented by the Microsoft

specification. As time permits, future versions will incorporate incremental capabilities to handle these

additional fields.

For CSV (comma separated values) output, there are restrictions in the characters that are outputted.

Since commas are used as a separator, any data containing commas are replaced with a space. For the

default (non-CSV) output no changes are made to the data. To address this issue, an option was added

to change the CSV default separator character from the comma (,) to whatever is desired. The pipe (|)

character is a good choice, since it doesn't overlap with characters in filenames. (This option is discussed

below, reference -csv_separator).

For Linux and Mac builds, ‘file create’ date is not shown, but the ‘system changed’ time is instead.

(Windows only). When processing filenames containing characters that are not ASCII one option is to
change the code page of the command window from the default code page to UTF-8. This can be done

via the command:

chcp 65001

Copyright © TZWorks LLC Apr 15, 2024 Page 17

5 Available Options

Option Description

-csv

Outputs the data fields delimited by commas. Since filenames can have

commas, to ensure the fields are uniquely separated, any commas in the

filenames get converted to spaces.

-csvl2t Outputs the data fields in accordance with the log2timeline format.

-bodyfile

Outputs the data fields in accordance with the 'body-file' version3 specified in

the SleuthKit. The date/timestamp outputted to the body-file is in terms of

UTC. So if using the body-file in conjunction with the mactime.pl utility, one

needs to set the environment variable TZ=UTC.

-csv_separator

Used in conjunction with the -csv option to change the CSV separator

from the default comma to something else. Syntax is -csv_separator "|"
to change the CSV separator to the pipe character. To use the tab as a
separator, one can use the -csv_separator "tab" OR -csv_separator "\t"
options.

-base10
Ensure all size/address output is displayed in base-10 format vice

hexadecimal format. Default is hexadecimal format

-username
Option is used to populate the output records with a specified

username. The syntax is -username <name to use>.

-hostname
Option is used to populate the output records with a specified

hostname. The syntax is -hostname <name to use>.

-pipe
Used to pipe files into the tool via STDIN (standard input). Each file

passed in is parsed in sequence.

-enumdir
Experimental. Used to process files within a folder and/or subfolders. Each
file is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs
<#>.

-filter

Filters data passed in via STDIN via the -pipe option. The syntax is -filter

<"*.ext | *partialname* | ...">. The wildcard character '*' is restricted to

either before the name or after the name.

-vss

Experimental. Extract Jump List data from Volume Shadow. The syntax
is -vss <index number of shadow copy>. Only applies to Windows Vista,
Win7, Win8 and beyond. Does not apply to Windows XP.

-idltimes

Experimental. Shell item identifiers are grouped together to form a path.
Each Item ID can have embedded in it an associated MAC timestamps as well
as MFT entry number for the segment of the path that creates the final path.
Using this option will display any additional metadata associated with each
segment (or Item ID) in the list

Copyright © TZWorks LLC Apr 15, 2024 Page 18

-no_whitespace
Used in conjunction with -csv option to remove any whitespace

between the field value and the CSV separator.

-slack

Experimental: automaticDestinations files retain some of their deleted
entries in slack space. The -slack option traverses this slack space to extract
any additional LNK entries. These entries that are retrieved do not have any
MRU/MFU data associated with them.

-appid
Experimental: Points to a path/file combination and computes the AppID.
The syntax is –appid <file>.

-appid_ref

Experimental: Points to a text file to translate application identifiers to
application names. The syntax is –appid_ref <file>. Distribution contains a
sample file called appids.txt and the data is taken from the forensic wiki (ref:
http://www.forensicswiki.org/wiki/List_of_Jump_List_IDs). The file uses a
pipe delimiter between the application ID and the application name. If a
different delimiter is used, one can use the option -appid_separator “,” to
tell jmp to use a different delimiter (in this case a comma) to parse the
AppID file.

-dateformat

Output the date using the specified format. Default behavior is -dateformat

"yyyy-mm-dd". Using this option allows one to adjust the format to

mm/dd/yy, dd/mm/yy, etc. The restriction with this option is the forward

slash (/) or dash (-) symbol needs to separate month, day and year and the

month is in digit (1-12) form versus abbreviated name form.

-timeformat

Output the time using the specified format. Default behavior is

-timeformat "hh:mm:ss.xxx" One can adjust the format to microseconds, via

"hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no

fractional seconds, via "hh:mm:ss". The restrictions with this option is a

colon (:) symbol needs to separate hours, minutes and seconds, a period (.)

symbol needs to separate the seconds and fractional seconds, and the

repeating symbol 'x' is used to represent number of fractional seconds. (Note:

the fractional seconds applies only to those time formats that have the

appropriate precision available. The Windows internal filetime has, for

example, 100 nsec unit precision available. The DOS time format and the

UNIX 'time_t' format, however, have no fractional seconds). Some of the

times represented by this tool may use a time format without fractional

seconds, and therefore, will not show a greater precision beyond seconds

when using this option.

-pair_datetime
Output the date/time as 1 field vice 2 for csv option

-quiet
Used in conjunction with -pipe option. This option suppresses status

output as each file is processed.

http://www.forensicswiki.org/wiki/List_of_Jump_List_IDs

Copyright © TZWorks LLC Apr 15, 2024 Page 19

-show_offset

Displays starting offset of the file where the parsed artifact starts. This

is used primarily for verification purposes when used in conjunction

with a hex-editor during the analysis. (Note: the automaticDestinations

jumpfile does not necessarily have contiguous sectors of data for a

parsed artifact. Therefore, if using this option, be aware that the

reconstruction of the data depends on following the allocated chain of

sectors and not just looking at the starting offset in a hex-editor and

assuming the rest of the data follows after the first sector or mini-

sector).

-utf8_bom
All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8
byte order mark to the output using this option.

6 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

6.1 Limited versus Demo versus Full in the tool’s Output Banner

The tools from TZWorks will output header information about the tool's version and whether it is

running in limited, demo or full mode. This is directly related to what version of a license the tool

authenticates with. The limited and demo keywords indicates some functionality of the tool is not

available, and the full keyword indicates all the functionality is available. The lacking functionality in the

limited or demo versions may mean one or all of the following: (a) certain options may not be available,

(b) certain data may not be outputted in the parsed results, and (c) the license has a finite lifetime

before expiring.

7 References

1. Windows 7 Taskbar – Part 1, The Basics. http://blogs.msdn.com/b/yochay/archive/2009/01/06/windows-
7-taskbar-part-1-the-basics.aspx, by Yochay Kiriaty, dated 01/05/2009.

2. Windows 7 Jump Lists, windows7forensics-jumplists-rv3-public-110606164708-phpapp01.pptx, Troy
Larson PowerPoint charts.

http://blogs.msdn.com/b/yochay/archive/2009/01/06/windows-7-taskbar-part-1-the-basics.aspx
http://blogs.msdn.com/b/yochay/archive/2009/01/06/windows-7-taskbar-part-1-the-basics.aspx

Copyright © TZWorks LLC Apr 15, 2024 Page 20

3. Application Identifiers used in Jump Lists, http://www.forensicswiki.org/wiki/List_of_Jump_List_IDs.
4. Discussion of the Jump List structure, http://www.forensicswiki.org/wiki/Jump_Lists
5. http://tzworks.com/prototype_page.php?proto_id=11, lp tool, Windows LNK Parsing Utility, TZWorks,

LLC.
6. [MS-CFB]: Compound File Binary Format, 06/10/2011, sourced from Microsoft Corporation.
7. [MS-SHLLINK]: Shell Link (.LNK) Binary File Format, 11/12/2010, sourced from Microsoft Corporation.
8. Jesse Hager "The Windows Shortcut File Format", Available at

http://www.i2slab.com/Papers/The_Windows_Shortcut_File_Format.pdf.
9. SleuthKit Body-file format, http://wki.sleuthkit.org
10. Log2timeline CSV format, http://log2timeline.net/

http://www.forensicswiki.org/wiki/List_of_Jump_List_IDs
http://tzworks.net/prototype_page.php?proto_id=11
http://wiki.sleuthkit.org/index.php?title=Body_file
http://log2timeline.net/

	1 Introduction
	2 Jump List Format/Internals
	2.1 Automatic Destinations File
	2.2 Custom Destination File
	2.3 Pulling out Metadata from the Segmented ItemIDs
	2.4 jmp tool parsing vice the lp tool

	3 How to Use jmp
	3.1 Translating the Application Identifier to the Application Name
	3.1.1 Going from path/name to AppID
	3.1.2 Going from AppID to Application Name

	3.2 Handling Volume Shadow Copies
	3.3 Understanding Deleted JumpList Entries
	3.4 Parsing Slack Entries (Issues and what can be done)

	4 Known Issues
	5 Available Options
	6 Authentication and the License File
	6.1 Limited versus Demo versus Full in the tool’s Output Banner

	7 References

