

Abstract
wisp is a standalone, command-line tool used to extract

INDX artifacts from Windows NTFS volumes. INDX

attributes are used to store the contents of a directory.

Extracting directory items from the slack portion of the

INDX attribute can identify evidence of a file’s past

presence after it has been deleted and is no longer part of

the system. wisp can operate on a live volume, an image of

a volume or a single directory. All artifacts can be

outputted in one of three formats for easy inclusion with

other forensics artifacts. wisp runs on Windows, Linux and

macOS.

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v0.58 of wisp

Updated: Apr 15, 2024

TZWorks® Windows INDX Slack
Parser (wisp) Users Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 15, 2024 Page 1

Table of Contents

1 Introduction .. 2

2 INDX Attributes (Format/Internals) .. 2

3 How to Use wisp ... 5

3.1 Parsing a Live Volume ... 6

3.2 Parsing an Image File off-line .. 7

3.3 Handling Directories in Volume Shadows ... 8

3.4 Parsing a NTFS Volume Mounted on Linux or Mac OS-X .. 9

3.5 Parsing a VMWare Volume ... 10

3.6 wisp Output ... 11

3.6.1 Which Output option yields the most data .. 11

3.6.2 Two Categories of Slack entries .. 11

3.6.3 Corruption of the Index Entry ... 12

3.6.4 Looking at the Raw Data for Slack Entries .. 13

3.7 Extracting Clusters Associated with a Deleted Entry .. 14

3.8 Eliminating the Duplicates .. 14

4 Known Issues ... 15

5 Available Options .. 15

6 Authentication and the License File .. 17

6.1 Limited versus Demo versus Full in the tool’s Output Banner .. 18

7 References .. 18

Copyright © TZWorks LLC Apr 15, 2024 Page 2

TZWorks® INDX Parser (wisp) Users Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=21

Contact Information: info@tzworks.com

1 Introduction

wisp is a Windows parser that targets NTFS index type attributes. The NTFS index attribute points to

one or more INDX records. These records contain index entries that are used to account for each item in

a directory. An index item represents either a file or a subdirectory and includes enough metadata to

contain the name, modified/access/MFT changed/birth (MACB) timestamps, size (if it is a file vice

subdirectory), as well as MFT entry numbers of the item and its parent. The wisp tool, in its simplest

form, is able to walk these structures, read the metadata, and report which index entries are present.

As a directory’s contents are changed, the number of valid index entries grows or shrinks, as

appropriate. As more directory entries are added, eventually it will exceed the existing INDX record

allocation space. At this point, the operating system will allocate an additional INDX record in the size of

0x1000 byte chunk. Conversely, when entries are removed from the directory, the INDX record space is

not necessarily deallocated. Thus, anytime the number of index entries shrinks, the invalid ones

potentially can be harvested from the slack space. The slack space is defined to be the allocated, but

unused, space. By comparing both the valid entries and those still in the slack space, one can make

some inferences about whether a file (or subdirectory) was present in the past.

A good tutorial on harvesting index entries from INDX slack space can be found on Willi Ballenthin’s

webpage [4] and his DFIRonline presentation [5].

wisp uses the NTFS and index attribute parsing engine that is used in the ntfswalk tool [6] available from

the TZWorks LLC website. Currently, there are compiled versions for Windows, Linux and Mac OS-X.

2 INDX Attributes (Format/Internals)

NTFS uses two types of index attributes to store directory items: (a) INDEX_ROOT and the (b)

INDEX_ALLOCATION. The former is meant for a small number of index items, since it is resident within

the file record of the MFT entry. The term resident means the data is stored within the file record’s

space, which is limited to a fixed size. Since the file record needs this fixed space to store its other

attributes as well, there is only enough space to store only a few index entries, which are reserved for

the root directory indexes. These leads to the latter attribute which is classified as non-resident. The

non-resident quality of the INDEX_ALLOCATION attribute allows any associated data to exist as one or

more separate ‘cluster runs’ within the NTFS volume. Consequently, the data associated with this

mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 15, 2024 Page 3

attribute can grow to whatever size is needed to account for all the index items identified in a directory.

There is a good explanation of these two specific attributes in Brian Carrier’s book on File System

Forensic Analysis [3] as well as other sources online [1, 2]. While wisp parses both attributes identified

above, it is the latter attribute that contains sufficient slack space for wisp to analyze older index

entries.

When parsing index attributes (or any NTFS attribute for that matter), is useful to take each attribute

apart at the most basic level and extract all the fields to find the best way to analyze it. For example,

when looking at any directory on the file system that contains more than a few index entries, one should

be able to see both the INDEX_ROOT and INDEX_ALLOCATION attributes. Below is a snapshot of the

attributes of interest for the some arbitrary directory. For clarity, all the attributes have been trimmed

out with the exception of the INDEX_ROOT and INDEX_ALLOCATION attributes, since this is what wisp

will analyze. One can see that the INDEX_ROOT entry, which is resident, only has 176 (0xb0) bytes

allocated for data, while the INDEX_ALLOCATION attribute has 12288 (0x3000) bytes allocated for data.

Both attributes must be parsed to give one a complete picture of all the index entries associated within

a directory. Therefore, wisp will first pull out the data from the resident attribute and parse it. Next, it

will identify the cluster run(s) for the non-resident data, read the clusters, fix-up the INDX records, and

extract each index entry found.

Upon examining non-resident INDX records, one can immediately see each INDEX_ALLOCATION record
starts with the signature ‘INDX’ followed by some metadata. Some of the metadata allows one to verify
the integrity of the INDX record as well as fix-up the record on sector boundaries. Also included in the
header info is a DIRECTORY_INDEX record to identify the space used to store all the index entries. For
details on the structure makeup, see ref [1, 2, or 3]. After the header information, the index entries

Copyright © TZWorks LLC Apr 15, 2024 Page 4

follow. These are parsed by wisp to enumerate both valid index entries and those which are in slack
space.

Copyright © TZWorks LLC Apr 15, 2024 Page 5

3 How to Use wisp
While the wisp tool doesn't require one to run with administrator privileges, without doing so will

restrict one to only looking at off-line ‘dd’ images. Therefore, to perform live processing of volumes, one

needs to launch the command prompt with administrator privileges.

One can display the menu options by typing in the executable name without parameters. A screen shot

of the menu is shown below.

From the available options, one can process NTFS INDX records with a handful of ‘use-cases’.

Specifically, wisp allows processing from any of these sources: (a) live volume, (b) ‘dd’ type image, (c)

VMWare volume, or (d) separately extracted INDX type record. After selecting the source of the data,

one can either: (a) process a single directory on the file system, (b) recursively process the

subdirectories to some specified level, or (c) process all the index entries in an entire volume.

Processing every directory in the entire volume is not explicitly shown in the above menu since it is the

default option.

If one only wants a certain type of index entry, one can select: (a) just show valid index entries, (b) just

show index entries in the slack space, or (c) both. For default output, the data is represented

unstructured text. If parsable output is desired (or something that can be displayed in a spreadsheet

Copyright © TZWorks LLC Apr 15, 2024 Page 6

application), one can select from 3 options that allow for structured output (CSV, log2timeline CSV [8],

or SleuthKit body-file [9]). The other useful option is the ‘no duplicates’ choice to minimize any

redundancy in the output. There is a discussion of why one might want to use the ‘no duplicates’

option in a later section.

Since there are a number of possible combinations of options, the figure below shows the possible

choices and where they apply in a logical processing flow. The comments in the figure annotate any

restrictions for a particular option.

3.1 Parsing a Live Volume

To parse INDX entries from a live NTFS volume (or partition), one has two choices: (a) specify the volume

directly by using the -partition <drive letter> option or (b) specify the drive number and volume offset

by using the -drivenum <num> -offset <volume offset> option. Either choice accomplishes the same

task. The first choice is more straightforward and easier to use. The second choice, while more

complex, allows one to target hidden NTFS partitions that do not have a drive letter.

The next step is to decide what you want to target. The choices are: (a) a specific directory on the file
system (specified by either the -mft or -path options) or (b) a collection of subdirectories within a
directory (how deep you wish to go is specified by the –level option). A couple examples are shown
below:

wisp -path c:\$Recycle.Bin -level 2 -all -csv > results1.csv

wisp -partition c -all -csv > results2.csv

wisp -drivenum 0 -offset 0x100000 -all -csv > results3.csv

Copyright © TZWorks LLC Apr 15, 2024 Page 7

The first example targets the hidden directory of c:\$Recycle.Bin, and the -level 2 switch tells wisp to

include any subdirectory in the analysis, up to 2 levels deep. The -all switch means both valid and

invalid (slack) entries will be included in the output. Finally, the output is redirected to a file and the

format is CSV.

The second example uses the same output options as the first, but now targets the ‘c’ partition. Since

there is no -mft or -path options explicitly listed, the implication to wisp is we want to traverse the

entire volume parsing all INDX records associated with the volume.

The third example uses the same output options as the second, but now targets the first physical hard

drive. The hex value 0x100000 is specified as the offset to the volume (or partition) we wish to analyze.

For this example, this happens to be the hidden partition created during a Windows 7 installation. Since

there is no -mft or -path options explicitly listed, the implication to wisp is we want to traverse the

entire volume parsing all INDX records associated with the volume..

3.2 Parsing an Image File off-line

To process an image that has been already acquired and is in the ‘dd’ format, one uses the -image

switch. This option can be used in two flavors. If the image is of an entire drive, then one needs to

explicitly specify the offset of the location of the volume you wish to target. On the other hand, if the

image is only of a volume, then you do not need to specify the offset of the volume (since it is presumed

to be at offset 0).

For the first case, where an offset needs to be explicitly specified, wisp will help the user in locating

where the NTFS volume offsets are. If one just issues the -image command without the offset, and

there is not a NTFS volume at offset 0 (eg. second case mentioned above), wisp will proceed to look at

the master boot record contained in the image, determine where the NTFS partitions are, and report

them to the user. This behavior was meant to be an aid to the user so that one does not need to resort

to other tools to determine where the offsets for the NTFS volumes are in an image. Below is a

screenshot what is displayed to the user in this situation.

Shown in the screenshot is a -image command that is issued without the offset. wisp detects that the

image is of an entire drive vice of a volume and locates one NTFS volume at offset 0x7e00 hex. wisp

then reports to the user a suggested syntax (of the command, if re-issued) to process this volume.

Copyright © TZWorks LLC Apr 15, 2024 Page 8

Another nuance with using images as the source, is that when specifying a path to a directory within the

image to analyze one should use the -path option. Since the image is not mounted as a drive, one

really should not associate it with a drive letter when specifying the path. If one does do this, wisp will

ignore the drive letter and proceed to try to find the path starting at the root directory which is at MFT

entry 5 for NTFS volumes.

Below are two examples of processing ‘dd’ type images: (a) the first analyzes an entire volume at drive

offset 0x100000 hex and (b) the second analyzes an image of a volume starting at the path “Users”.

wisp -image c:\dump\my_image.dd -offset 0x100000 -all -csv > results1.csv

wisp -image c:\dump\vol_image.dd -path “\Users” -level 5 -all -csv > results2.csv

While the first example traverses the entire volume, the second starts at the “Users” directory, and

recursively processes the subdirectories up to 5 levels deep. Notice the second example does not

specify an offset, since the image is of a volume (meaning the volume starts at offset 0) while the first is

an image of a drive and the first NTFS volume starts at offset 0x100000 hex.

Both examples extract valid and invalid index entries as well as redirect their output to a file using CSV

formatting.

3.3 Handling Directories in Volume Shadows

For starters, to access Volume Shadow copies, one needs to be running with administrator privileges.

Also, Volume Shadow copies, as is discussed here, only applies to Windows Vista, Win7, Win8 and

beyond. It does not apply to Windows XP.

To tell wisp to look at a Volume Shadow, one needs to use the -vss <index of volume shadow> option.

This then points wisp at the appropriate Volume Shadow and start processing the desired directory.

Below are 2 examples. The first will traverse the Users directory to level of 4 deep for the Volume

Shadow copy specified by index 1. The second will traverse all the directories in Volume Shadow copy

specified by index 2.

 wisp -vss 1 -path \Users -level 4 -csv > out.csv

 wisp -vss 2 -csv > out.csv

To determine which indexes are available from the various Volume Shadows, one can use the Windows

built-in utility vssadmin, as follows:

 vssadmin list shadows

To filter some of the extraneous detail, type

 vssadmin list shadows | find /i "volume"

While the amount of data can be voluminous from that above command, the keywords one needs to

look for are names that look like this:

 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1

Copyright © TZWorks LLC Apr 15, 2024 Page 9

 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy2

 ...

From the above, notice the number after the word HarddiskvolumeShadowCopy. It is this number that is

passed as an argument to the -vss option.

3.4 Parsing a NTFS Volume Mounted on Linux or Mac OS-X

Sometimes you do not have a ‘dd’ image of the volume or drive, but instead have the physical hard drive

available you wish to analyze. If you are running wisp in Windows, then follow the guidelines in the

earlier section for parsing a live volume. However, if you are running wisp in Linux or Mac OS-X, you

should also be able to mount the target drive as well. Once it is successfully mounted, one uses

the -image <device name of drive or volume> -offset <offset to desired volume, if a drive> option to

access the appropriate NTFS volume. Below is an example of how to do this using a Mac box.

Assuming one has the proper setup with write blocker and hard drive shuttle, after connecting the

Windows drive to the Mac, one can issue the diskutil list command to enumerate all the drives and

volumes mounted on the machine. For the configuration under test, the results showed the following:

The second disk (designated as /dev/disk1) is the external disk that was plugged in, and it consisted of 3

NTFS partitions (disk1s1, disk1s2, disk1s3). Once the device for the disk has been identified, one can

reference the partitions directly with their respective identifiers. If for some reason, the diskutil does

not identify the partitions due to disk corruption, one can also reference the disk directly and explicitly

give the offset of the desired partition one wishes to operate on. Below is how one could use wisp to

help identify the partition offsets.

Copyright © TZWorks LLC Apr 15, 2024 Page 10

Notice, the command that was issued above was just the device name of the disk and wisp looked at the

MBR to determine where NTFS partitions were located relative to the start of the disk. Also notice, the

notation of /dev/rdisk# is used. The ‘r’ (which is unique to Mac, in this case) is used to specify we want

to access the drive as ‘raw’ I/O as opposed to buffered I/O. The buffering is nice for normal

reads/writes, but it is much slower when traversing in chunks aligned on sector boundaries.

Based on the above discussion, below are the possible options to access the first NTFS volume.

sudo wisp -image /dev/rdisk1s1 -all -csv -nodups > out.csv

sudo wisp -image /dev/rdisk1 -offset 0x100000 -all -csv -nodups > out.csv

Notice the ‘sudo’ in front of the wisp command. This will allow wisp to run with administrative

privileges to access the raw drive. Linux is similar to Mac, but instead of using the diskutil tool, one

would use the ‘df’ tool to enumerate the mounted devices.

3.5 Parsing a VMWare Volume

Occasionally it is useful to analyze a VMWare image containing a Windows volume, both from a

forensics standpoint as well as from a testing standpoint. This option is still considered experimental

since it has only been tested on a handful of configurations. Furthermore, this option is limited to

monolithic type VMWare images versus split images. In VMWare, the term split image means the

volume is separated into multiple files, while the term monolithic virtual disk is defined to be a virtual

disk where everything is kept in one file. There may be more than one VMDK file in a monolithic

architecture, where each monolithic VMDK file would represent a separate snapshot. More information

about the monolithic virtual disk architecture can be obtained from the VMWare website [10].

When working with virtual machines, the capability to handle snapshot images is important. Thus, if

processing a VMWare snapshot, one needs to include the desired snapshot/image as well as its

inheritance chain.

wisp can handle multiple VMDK files to accommodate a snapshot and its descendants, by separating

multiple filenames with a pipe delimiter and enclosing the expression in double quotes. In this case,

each filename represents a segment in the inheritance chain of VMDK files (eg. -vmdk "<VMWare NTFS

virtual disk-1> | .. | <VMWare NTFS virtual disk-x>"). To aid the user in figuring out exactly the chain

Copyright © TZWorks LLC Apr 15, 2024 Page 11

of descendant images, wisp can take any VMDK file (presumably the VMDK of the snapshot one wishes

to analyze) and determine what the descendant chain is. Finally, wisp will suggest a chain to use.

Aside from the VMDK inheritance chain, everything else is the same when using this option to that of

normal ‘dd’ type images discussed in the previous section.

3.6 wisp Output

3.6.1 Which Output option yields the most data

The two output options that give all the metadata available are the default (unstructured) output and

the CSV (-csv) output. The other two output options (-csvl2t and -bodyfile) are geared toward

generating cross-artifact timelines. As a result, they are more restrictive in the output fields, and

therefore, the metadata that is parsable from these options have some limitations. Specifically, wisp

makes use of a couple of free-form fields in these last two output options to try to inject as much useful

data as possible, but it makes the data in these fields unstructured, and therefore, difficult to parse if

trying to post process the results. Therefore, the best option for metadata that needs to be parsed from

wisp output comes from the -csv option.

3.6.2 Two Categories of Slack entries

The slack entries in the output have comments associated with them. The comments come in 2

categories: (a) entries that have not been deleted and (b) those that have been deleted. These

categories are best shown with an example. Using the default output option, 2 snapshots are shown

below.

The first snapshot shows a valid index entry as well as an invalid index entry. Both index entries point to

the same file (one can tell this since the MFT entry number and sequence numbers match up). The

difference, aside from the fact one is in slack space, is some of the MACB timestamps are different as

well as the size of the file. wisp annotates the modification with a comment, denoted by [m.c.] and

[size] in the snapshot below. The [m.c.] translates to the modify timestamp and ‘MFT change’

timestamps, respectively, as being different than the valid entry. The [size] notation just means the size

of the file has changed. From this, one can get some past data on a file that has gone through some

revisions.

Copyright © TZWorks LLC Apr 15, 2024 Page 12

For the second case, shown in the below snapshot, wisp just annotates the slack entry as deleted. The

term deleted here is only accurate in the sense that this index entry is no longer part of the directory

containing the INDX record(s). Whether the item was moved to another subdirectory or actually deleted

is unknown from the data presented here.

Finally, looking at the data available in an index entry one can see the MACB timestamps and size, as

well as the MFT entry metadata, flags and source of information. The MACB timestamps should match

the standard information MACB timestamps of the file/subdirectory.

3.6.3 Corruption of the Index Entry

In cases where the slack data is obviously corrupted, wisp will either leave that field blank if using CSV

output or annotate the word <corrupted> if using the default output.

Copyright © TZWorks LLC Apr 15, 2024 Page 13

3.6.4 Looking at the Raw Data for Slack Entries

Occasionally, the examiner wants to see the raw data for an entry. This can be done by using

the -hexdump switch and using the long format option (eg. non-CSV). The output will show each entry

parsed annotated with a hex dump of the raw data. Below is an example of what this output looks like.

Copyright © TZWorks LLC Apr 15, 2024 Page 14

3.7 Extracting Clusters Associated with a Deleted Entry

At this point in the analysis, one may want to go deeper and try to find if the deleted file is still available

by trying to find the ‘cluster run’ data associate with the MFT entry. Since the INDX records do not have

any cluster run data associated with an index entry, one would need to use the MFT entry specified and

then use some other tool to read the file record associated with that MFT entry. One could extract the

data either from the local volume or from the volume shadow copy store. If pulling from the local

volume, one can use the ntfscopy utility [7] from TZWorks. This tool will allow one to (a) input a volume

(live or off-line), (b) specify the desired MFT entry to copy from and (c) output the extract the data

associated with the MFT’s cluster run as well as the metadata associated with that MFT entry. Below is

an example of doing this with ntfscopy using the MFT entry number 645130, which is for the slack entry

shown above.

ntfscopy -mft 645130 -dst c:\dump\645130.bin -partition c: -meta

For details on the ntfscopy syntax, refer to the ntfscopy readme file [7]. Briefly, the -mft option allows

one to specify a source MFT entry to copy from. The -meta option says to create a separate file (in

addition to the copied file) that contains the metadata information about the specified MFT entry. The

metadata file will be created with the same name as the destination file with the appended suffix

meta.txt. Included in the metadata file are many of the NTFS attributes of the target source file (or MFT

entry). This includes, amongst other things, the cluster run and MACB timestamps. From the metadata

one can see if the MFT sequence number is the same or not (which would be the indication whether the

MFT record was assigned to another file or not).

3.8 Eliminating the Duplicates

For those INDX records that have many slack entries, it is not uncommon for there to be quite a few

duplicate entries that are parsed and displayed in the output. Duplicate here means the filename and

MACB timestamps are the same, however the location of the entry in the INDX record is different. For

every unique location in the INDX record, wisp will happily parse the index entry and report its findings

to the investigator. This can be quite annoying when some entries have more than a few duplicates and

one is trying to wade through a lot of data; especially when carving out entries from slack data on all the

directories in an entire volume.

To get rid of duplicates, one can invoke the -nodups switch. This tells wisp to analyze the data

extracted and only report one instance of the entry. One thing to be aware of when using this option, is

that wisp will internally always analyze valid and slack entries independent of what the user selects as

input options. After all the data is extracted, wisp will start deciding if there are duplicate entries or not.

It does this by looking at comparing all slack entries with valid entries to see if there is a duplicate, and if

not, they are compared to any slack entries that have been marked as non-dups. What this means is, if

Copyright © TZWorks LLC Apr 15, 2024 Page 15

one runs wisp and only wants non-duplicate slack entries, some slack entries will not be reported if

there are valid entries present that are the same.

4 Known Issues

For CSV (comma separated values) output, there are restrictions in the characters that are outputted.

Since commas are used as a separator, any data that had comma in its name are changed to spaces. For

the default (non-csv) output no changes are made to the data.

5 Available Options

The options labeled as 'Extra' require a separate license for them to be unlocked.

Option Description

-path

Analyze the index entries given a path. The syntax is:

-path <directory to analyze>.

-image

Extract artifacts from a volume specified by an image and volume offset. The

syntax is -image <filename> -offset <volume offset>

-partition

Extract artifacts from a mounted Windows volume. The syntax is

-partition <drive letter>.

-drivenum

Extract artifacts from a mounted disk specified by a drive number and

volume offset. The syntax is -drivenum <#> -offset <volume offset>

-vmdk

Extract artifacts from a VMWare monolithic NTFS formatted volume. The

syntax is -vmdk <disk name>. For a collection of VMWare disks that include

snapshots, one can use the following syntax: -vmdk "disk1 | disk2 | ..."

-vss

Experimental. Extract INDX data from Volume Shadow. The syntax is -vss

<index number of shadow copy>. Only applies to Windows Vista, Win7,

Win8 and beyond. Does not apply to Windows XP.

-csv

Outputs the data fields delimited by commas. Since filenames can have

commas, to ensure the fields are uniquely separated, any commas in the

filenames get converted to spaces.

Copyright © TZWorks LLC Apr 15, 2024 Page 16

-csvl2t
Outputs the data fields in accordance with the log2timeline format.

-bodyfile

Outputs the data fields in accordance with the 'body-file' version3 specified

in the SleuthKit. The date/timestamp outputted to the body-file is in terms

of UTC. So if using the body-file in conjunction with the mactime.pl utility,

one needs to set the environment variable TZ=UTC.

-base10

Ensure all size/address output is displayed in base-10 format vice

hexadecimal format. Default is hexadecimal format.

-mft

Extract index metadata given an inode. The syntax is:

-mft <MFT entry to analyze>.

-indxfile

Process INDX data that may be been extracted from another tool. The syntax

is: -indxfile <datafile name;>.

-valid
Extract the metadata from the valid index entries only.

-slack
Extract the metadata from the slack index entries only.

-all

Pull every index entry found. This includes both valid and invalid (slack) index

entries.

-nodups

Output unique entries only. Duplicate entries are flagged if the name and

MACB timestamps are the same.

-username

Option is used to populate the output records with a specified username.

The syntax is -username <name to use>.

-hostname

Option is used to populate the output records with a specified hostname.

The syntax is -hostname <name to use>.

-no_whitespace

Used in conjunction with -csv option to remove any whitespace between the

field value and the CSV separator.

-csv_separator

Used in conjunction with the -csv option to change the CSV separator from

the default comma to something else. Syntax is -csv_separator "|" to

change the CSV separator to the pipe character. To use the tab as a

separator, one can use the -csv_separator "tab" OR -csv_separator "\t"

options.

Copyright © TZWorks LLC Apr 15, 2024 Page 17

-dateformat

Output the date using the specified format. Default behavior is -dateformat

"yyyy-mm-dd". Using this option allows one to adjust the format to

mm/dd/yy, dd/mm/yy, etc. The restriction with this option is the forward

slash (/) or dash (-) symbol needs to separate month, day and year and the

month is in digit (1-12) form versus abbreviated name form.

-timeformat

Output the time using the specified format. Default behavior is

-timeformat "hh:mm:ss.xxx" One can adjust the format to microseconds, via

"hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no

fractional seconds, via "hh:mm:ss". The restrictions with this option is a

colon (:) symbol needs to separate hours, minutes and seconds, a period (.)

symbol needs to separate the seconds and fractional seconds, and the

repeating symbol 'x' is used to represent number of fractional seconds.

(Note: the fractional seconds applies only to those time formats that have

the appropriate precision available. The Windows internal filetime has, for

example, 100 nsec unit precision available. The DOS time format and the

UNIX 'time_t' format, however, have no fractional seconds). Some of the

times represented by this tool may use a time format without fractional

seconds, and therefore, will not show a greater precision beyond seconds

when using this option.

-pair_datetime
Output the date/time as 1 field vice 2 for csv option

-quiet
This option suppresses status output during processing.

-hexdump

This option dovetails hex output after parsed data. Useful for verification of

parsed data. Only available for unstructured default output (eg. not for -csv,

-csvl2t or -bodyfile outputs).

-utf8_bom

All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8

byte order mark to the CSV output using this option.

6 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital
X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools
(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

Copyright © TZWorks LLC Apr 15, 2024 Page 18

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any
modification to the license, either to its name or contents, will invalidate the license.

6.1 Limited versus Demo versus Full in the tool’s Output Banner

The tools from TZWorks will output header information about the tool's version and whether it is

running in limited, demo or full mode. This is directly related to what version of a license the tool

authenticates with. The limited and demo keywords indicates some functionality of the tool is not

available, and the full keyword indicates all the functionality is available. The lacking functionality in the

limited or demo versions may mean one or all of the following: (a) certain options may not be available,

(b) certain data may not be outputted in the parsed results, and (c) the license has a finite lifetime

before expiring.

7 References

1. http://www.ntfs.com website.
2. http://en.wikipedia.org/wiki/NTFS website

3. Brian Carrier's book, File System Forensic Analysis, sections on NTFS

4. Willi Ballenthin article on NTFS INDX parsing.
5. Getting to know your NTFS INDX Records presented May 3, 2012 on DFIRonline by Willi

Ballenthin

6. ntfswalk tool. http://tzworks.com/prototype_page.php?proto_id=12, TZWorks LLC.

7. ntfscopy tool. http://tzworks.com/prototype_page.php?proto_id=9, TZWorks LLC.

8. SleuthKit Body-file format, http://wki.sleuthkit.org
9. Log2timeline CSV format, http://log2timeline.net/

10. VMWare Virtual Disk Format 1.1 Technical Note, http://www.vmware.com

http://www.ntfs.com/
http://en.wikipedia.org/wiki/NTFS
http://www.williballenthin.com/forensics/indx/index.html
http://writeblocked.org/dfironline.html
http://tzworks.net/prototype_page.php?proto_id=12
http://tzworks.net/prototype_page.php?proto_id=9
http://wiki.sleuthkit.org/index.php?title=Body_file
http://log2timeline.net/
http://www.vmware.com/

	1 Introduction
	2 INDX Attributes (Format/Internals)
	3 How to Use wisp
	3.1 Parsing a Live Volume
	3.2 Parsing an Image File off-line
	3.3 Handling Directories in Volume Shadows
	3.4 Parsing a NTFS Volume Mounted on Linux or Mac OS-X
	3.5 Parsing a VMWare Volume
	3.6 wisp Output
	3.6.1 Which Output option yields the most data
	3.6.2 Two Categories of Slack entries
	3.6.3 Corruption of the Index Entry
	3.6.4 Looking at the Raw Data for Slack Entries

	3.7 Extracting Clusters Associated with a Deleted Entry
	3.8 Eliminating the Duplicates

	4 Known Issues
	5 Available Options
	6 Authentication and the License File
	6.1 Limited versus Demo versus Full in the tool’s Output Banner

	7 References

