

Abstract
yaru is a GUI registry utility that can display the internal

registry hive components and structures. yaru can operate

on a registry hive directly from a live volume, an image of a

volume or a VMWare volume. yaru runs on Windows,

Linux and Mac OS-X.

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v1.90 of yaru

Updated: Apr 15, 2024

TZWorks® Yet Another Registry
Utility (yaru) Users Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 15, 2024 Page 1

Table of Contents

1 Introduction .. 2

2 Registry Hive and Components ... 3

3 Location of Hives ... 4

4 How to Use yaru .. 4

4.1 Reading Registry Hives from Logical Images ... 5

4.2 Parsing Hives from a Live Volume ... 6

4.3 Common Registry Artifacts useful to Forensic Investigators .. 6

4.4 Searching for Text Patterns ... 8

4.5 Searching for Binary Patterns ... 9

4.6 Searching for Entries exceeding some threshold size ... 11

4.7 Searching for High Entropy data ... 11

4.8 Searching for Time Ranges .. 12

5 Unlinked Allocated Chunks ... 13

6 Deleted Registry Keys ... 14

7 Exporting Keys and Data ... 16

8 Brute Force Extraction of Keys – Carving .. 18

9 Validation of Parsed Residuals .. 20

10 Logging of Activities .. 22

11 Creating a “Send To” Shortcut for yaru .. 24

12 Command Line Options ... 24

13 User Defined Templates .. 25

14 Known Issues ... 25

15 X-Window Dependencies .. 25

16 Authentication and the License File .. 25

16.1 Limited versus Demo versus Full in the tool’s Output Banner .. 26

17 References .. 27

Copyright © TZWorks LLC Apr 15, 2024 Page 2

TZWorks® Yet Another Registry Utility
(yaru) Users Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=3

Contact Information: info@tzworks.com

1 Introduction

yaru is a platform independent Windows registry viewer. Inspired by the desire to look into the

Windows registry metadata, so as to better forensically analyze the registry hives, yaru was designed

with a portable and extensible architecture in mind so that it could be compiled to run on various

operating systems. The registry parsing engine is written in standard C/C++ and has no dependencies on

the Windows registry API functions. This means that the parsing may have trouble on certain untested

boundary conditions.

The GUI portion of yaru leverages off the FOX (Free Objects for X) library, which was designed to be

cross platform. The FOX library is freely available and is distributed in source form under Library GNU

Public License (LGPL). Currently, there are compiled versions of yaru that will run on Windows, Linux

and OS-X.

The Windows version of yaru has the ability to take a snapshot of any of the active hives and examine

the internal structure of the hive. Since the Windows operating system locks down the active hives

from other processes reading them, yaru can resort to raw NTFS disk reads to read any of the desired

hives. Consequently, this requires the user to run this tool with administrative privileges. While this

approach adds complexity to yaru, it ensures that all metadata is available for analysis, as well as

ensures that there is no corruption or changes to the active hive during analysis.

Some other rudimentary functionality includes:

• Show allocated (but unused) key value data space [referred to here as cell slack space].

• Show unallocated hive space [referred to here as hive slack space].

• Able to traverse the hive slack space and enumerate deleted keys.

• Report generation capability. For common registry forensics artifacts, a number of options are
available to generate reports from the live hives, copies of hives or hives from unmounted
partition files. The latter requires a bit-for-bit (uncompressed) copy of the partition image.

• Optional logging capability that records the user selections along with data values into a
separate XML file for later review. A separate XML file is created for each session.

• Ability to export any key in the hive under evaluation to a registration (.reg) file to be used for
analysis. The format tries to mimic the version 5.00 of the Windows registry editor, with some
additional metadata in commented form.

mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 15, 2024 Page 3

• Ability to process any hive using user defined templates. These templates allow one to
customize what data is to be extracted. While these templates have a very primitive set of
commands, they can be useful for repetitive tasks.

• Simple search capability: (a) key names, (b) value names, (c) date ranges, and (e) strings (that
greater than 4 characters)

• The ability to verify that all allocated chunks have valid links to the registry. This was discussed
in Timothy Morgan's paper [ref 8] as an anti-forensics technique.

2 Registry Hive and Components

When talking about the forensics artifacts in the Windows registry, some discussion on the architecture

of the registry is in order. According to the Windows 2000 server resource kit (12), the registry “is a

hierarchical database that contains the value of variables in Windows … and in the applications and

services that run on Windows… The registry consists of nested containers known as subtrees, keys, and

subkeys. These are like folders. The data is… stored in the registry entries, the lowest element in the

registry. The entries are like files…. An entry consists of a name, a data type, which defines the length

and format of data that the entry can store, and a field known as the value of a registry entry.”

Unfortunately, the Windows registry internals are Microsoft proprietary. Therefore, finding an open

source document that accurately documents the internals without error, is difficult and any data in the

open is most likely derived from empirical results from looking at hexadecimal dumps of raw registry

hives. The first attempt to document the internals of the registry was from a document written many

years ago (circa 1998) that was distributed on the Internet from an author identified with only the

initials ‘BD’ 10. Below is a screen shot of a diagram used in BD’s document. While the figure was titled a

“Greatly Simplified Structure of the NT Registry”, it appeared to have accurately shown the major

key/value/data components and their interrelationships. Along with the diagram contained some

definitions of the structures for each of the blocks.

Copyright © TZWorks LLC Apr 15, 2024 Page 4

BD's diagram refers to registry key name structures as “nk” and key value structures as “vk”. The

security key associated with each registry key is shown as “sk”. This nomenclature was based on each

structure’s respective signature when looking at a binary dump of each type (eg. “nk”, “vk”, “sk”). This is

consistent with what other authors have published nearly a decade later. This included various articles

in the Microsoft Development Network, Harlan Carvey’s section on registry analysis in his book on

Windows Forensic Analysis, and more recently, published papers by Thomassen 11 and Norris12 to name

a few.

Taking the results from all these open sources and arming oneself with a hex editor, one can use the

structures documented thus far to manually walk the entire registry with reasonable accuracy.

3 Location of Hives

The registry hives are in various locations, depending whether they are system related or user account

related. Some of the more common registry hives can be found in the following locations:

Hive Location

Ntuser.dat %userprofile%\ntuser.dat

UsrClass.dat (xp) %userprofile%\Local Settings\Application Data\Microsoft\Windows\UsrClass.dat
(vista and later) %userprofile%\AppData\Local\Microsoft\Windows\UsrClass.dat

System %systemroot%\system32\config\system

Sam %systemroot%\system32\config\sam

Software %systemroot%\system32\config\software

Security %systemroot%\system32\config\Security

Components (vista and later) %systemroot%\system32\config\Components

BCD (vista and later) %systemdrive%\boot\bcd

Syscache.hive (vista and later) System Volume Information\ Syscache.hive

Schema.dat %systemroot%\System32\SMI\Store\Machine\schema.dat

AmCache.hve (win 8 and later) %systemroot%\AppCompat\Programs\AmCache.hve

ELAM (win8 and later) %systemroot%\system32\config\elam

BBI (win8 and later) %systemroot%\system32\config\bbi

DRIVERS (win8 and later) %systemroot%\system32\config\drivers

4 How to Use yaru

When a hive is loaded into yaru, the hive is broken up into 4 main segments: (a) the normal hive data
that is viewable by the normal registry editors, (b) the unallocated space within the hive, (c) any
allocated space that should have a parent key but does not, and (d) any deleted keys and their
associated values that have not been overwritten. The 5 segment shown is for an experimental option
to carve the hive that is invoked via the Options Menu. The carve option will group all the keys it finds

Copyright © TZWorks LLC Apr 15, 2024 Page 5

as a function of their modification date forming a quasi-histogram. The histogram is broken up into valid
and deleted keys giving additional insight to the registry changes on a particular period. The carving
option is discussed in more detail in a later section in this user guide.

4.1 Reading Registry Hives from Logical Images

Under certain conditions, yaru can read the registry hives directly from a logical image that was saved as

a file (without mounting the image as a file system). There is one basic assumption that yaru makes

when reading the unmounted partition, is that the NTFS unmounted partition is a single file and is a

binary match of the original logical partition. One can do this via the File -> Open Unmounted Image:

The other option is to open the hive via the command line via the following switch:

Copyright © TZWorks LLC Apr 15, 2024 Page 6

 -ntfsimage <unmounted partition> <path\file of the hive>

Here’s an example. Note that since the registry path of the hive is not mounted, it does not have a drive

letter when specifying where the hive file is. Thus the path is relative to root.

 -ntfsimage c:\test\image1.dd \Windows\System32\Config\system

4.2 Parsing Hives from a Live Volume

To load a hive from a system volume one can use the shortcuts in the menu. There are options for each

of hives. For those hives that are in more than one location, such as the user hives, if they are selected a

menu will allow the user to choose which user hive to load.

During the load operation, yaru scans the hive for deleted registry entries as well as indexes the hive for

faster searching. Once the load operation completes one can view any entry or scan for artifacts by

selecting the Reports-> Currently loaded hive.

4.3 Common Registry Artifacts useful to Forensic Investigators

While one can dump the data associated with many keys that are of interest to investigators, it is useful

to know the relationships between certain raw data and how these bits of data can paint a story of a

Copyright © TZWorks LLC Apr 15, 2024 Page 7

sequence of events. yaru groups some of the more common artifacts into canned reports. Shown

below are the current groups for various hives.

Selecting a report from the “Currently loaded hive” will review the current hive loaded in yaru and

generate a report specific for that hive. Selecting a report from the “Live System” will load the proper

hive based on the report selected and then generate a report.

Whichever report is selected, the results that are generated separate each field with a pipe delimiter to

allow for easy viewing as well as inclusion into another tool (such as excel) for analysis. Below is a

portion of a report from a system hive showing the various services. After the report is generated one

can ‘right-click’ on the report output and select the “export text to file” option to copy the data to a file,

which can be used elsewhere.

If one wishes to display the date/time in a different format, one can use the following menu options.

Copyright © TZWorks LLC Apr 15, 2024 Page 8

4.4 Searching for Text Patterns

One can search for partial names using the “Find String pattern” option. The string that is entered will

be interpreted by yaru as ‘case insensitive’ and will scan for both Unicode and ASCII strings that have

this partial string pattern. Note: for case sensitive searches use the “Find Binary Pattern” option.

The output results show (a) the offset of the string found, (b) whether the match was Unicode or ASCII,

(c) the string that caused a hit, as well as (d) the governing path/key that encapsulated the value

containing the data.

For example, if I wanted to find all the keys and values that have the letters “USB”, I would get

something like this.

Copyright © TZWorks LLC Apr 15, 2024 Page 9

As can be seen from the output above, what is different about yaru’s search engine, as opposed to a hex

editor, is when the pattern is found the output displays the governing key that the pattern is in.

4.5 Searching for Binary Patterns

The binary pattern search option is shown below:

To use it properly, input the hex values delimited by spaces.

 If one understands the internals of the registry, various structures can be searched for within the

registry. Below is an example of searching for the ‘db’ type data structure on a system hive along with

the results that are returned:

Copyright © TZWorks LLC Apr 15, 2024 Page 10

Since the ‘db’ structure is 0x10 bytes long with a ‘db’ signature, we crafted the pattern of bytes to be

negative 0x10 bytes, which is 0xfffffff0 or in little endian format, f0 ff ff ff and the signature for ‘d’ is

0x64 and ‘b’ is 0x62. This allows the search to only return those allocated cells chunks that are 0x10

bytes in size and contain the ‘db’ signature following the negative size, which will return all the ‘db’ type

chunks in the hive. The optional offset field is usually 0, but if one wanted to see the preceding bytes,

one can put a negative offset if desired.

From the output above, one can see the governing keys that use this very large datatype

(AppCompatCache, ReadyBoost parameters, etc.).

If desiring to see the raw data at one of the locations, one can select the “Dump Hex” choice from the

“Options” menu, and the following dialog will pop up. After entering the offset to view, size to dump

and whether you want the hex dump to be appended to the current output, one can see the desired

data at the specified offset. For this example we just selected the first returned offset from the ‘db’

structure.

The result will show 0x40 bytes at offset 0xc2eb0 appended to data in the current view. In this case we

were only interested in the first 0x10 bytes and added a few more to see the data that followed the

Copyright © TZWorks LLC Apr 15, 2024 Page 11

structure. This approach to reviewing the internal data is quick and provides immediate context of what

subkeys the data is associated with.

4.6 Searching for Entries exceeding some threshold size
In one is concerned about searching on large registry values, one can use the “Find Large entries (in

bytes)” option. This is shown below.

When this option is selected one will be able to specify the number of bytes that is the threshold. The

operation will search all the values in the registry returning those at or above the number specified.

4.7 Searching for High Entropy data
High entropy is another way to specify randomness in the data. Randomness is one of the artifacts in a

dataset whenever it is encrypted or compressed, so computing the entropy of dataset is one of the ways

to find encrypted values. In yaru, the option is “Find High entropy entries” and is shown below.

Copyright © TZWorks LLC Apr 15, 2024 Page 12

When this option is selected one will be able to specify the percent entropy desired to be the threshold

as well as how many bytes to examine. The operation will search all the values in the registry returning

those at or above the percent entropy specified. Other statistics will also be displayed such as the mean

and standard deviation of the dataset. The data will be ordered with the highest entropy values first.

4.8 Searching for Time Ranges

yaru has two options for searching for timestamp ranges. The first is to scan through all the key/subkey

timestamps. The second is to scan through all the binary data looking for timestamp signatures and

displaying the governing key for the binary data. The governing key would include child values that have

timestamps embedded into their data. The date range that is inputted by the user is in terms of UTC

(prior versions to v1.39, used local time).

Copyright © TZWorks LLC Apr 15, 2024 Page 13

If using the first option, then the output will include only timestamp and path of the key. If using the

second option, “Find Date in Range anywhere in the data”, then the output will include the raw offset of

the data along with timestamp and path of the governing key. The first option will only show one

timestamp per key, which is what you would expect. The second option may show many timestamps

per key. Below is some sample output for a sample query.

5 Unlinked Allocated Chunks

For certain malware, there is a technique to hide data in a hive by taking an unallocated chunk of the

space and changing the metadata to make it an allocated chunk. This in effect allows the chunk of space

from being reused by the registry, however it is difficult to find these chunks and identify them as

Copyright © TZWorks LLC Apr 15, 2024 Page 14

‘unlinked’ to the hive tree. The older versions of yaru had an option to scan for these unlinked

allocated chunks via the menu entry and the resulting output would show the offset and size of the

chunk.

Starting with version 1.39, this menu option is deprecated and any unlinked ‘allocated’ chunks found

during the initial load get reported as part of the hive tree. Since having unlinked ‘allocated’ chunks is

not a normal occurrence, we needed to create a contrived example to show how yaru reports these

artifacts. For this example, we took one of our hives and created various blocks of different sizes and

then we just simply unlinked them by deleting all references to them. yaru easily finds them and

reports them as follows:.

6 Deleted Registry Keys

yaru only pulls out deleted key names and any data associated with those keys as opposed to blindly

pulling out all signatured components (eg. deleted values, security keys, etc) without having an

association to a parent key name.

After selecting which file/hive to analyze, yaru traverses the hive for both allocated and unallocated

space. Of the allocated space identified, yaru reconstructs the registry hive within a tree view structure

similar to how Microsoft's regedit displays a registry hive. For the unallocated space identified, yaru

categorizes each of the chunks into one of three bins: (i) chunks between 0x08 and 0x10 bytes, (ii)

chunks between 0x18 and 0x50 bytes and (iii) chunks greater than 0x50 bytes. One can view each

unallocated chunk in the form of a hex dump by selecting the desired chunk. The latter bin is the most

important for carving out deleted keys, since registry key chunks require at least 0x50 bytes of space to

store the common key header information (more if there is a name for the key).

Copyright © TZWorks LLC Apr 15, 2024 Page 15

yaru traverses all the unallocated chunks of greater than 0x50 bytes and looks for the ‘nk’ magic

signature which denotes the chunk may have contained a registry key prior to being unallocated. Of

those keys determined to be possible deleted keys, a number of boundary condition tests are performed

to minimize the number of false positives. Tests such as date range checking, size checking, and

whether valid offsets specified in the header are conducted. If the boundary checks are passed, yaru

then proceeds to see if it can enumerate any values for the deleted key as well as try to locate the

parent key. If a parent key is found, yaru recursively traverses up the parent hierarchy to find the entire

path up to the root.

Once completed, yaru outputs the resulting deleted keys in the form of a tree view. If it was possible for

yaru to reconstruct the parent hierarchy from a deleted key, then the hierarchy is shown for that key as

part of the tree. To visually delineate between deleted and undeleted keys, a red x is overlaid over the

folder or file icon for deleted keys/values. For those keys where the parent could not be determined,

they are collected in a catchall tree node titled “unk_path”.

Copyright © TZWorks LLC Apr 15, 2024 Page 16

On the left pane is an expand view of one section of the deleted keys. Notice there are combinations of

folder icons that do not have a red x with those overlaid with a red x. This representation was meant to

help show the context of where a deleted key might have been deleted from. Also keep in mind, yaru

generates these results from a deterministic, best guess standpoint. Thus, for example, if the ‘nk’

signature was deleted from the chunk, the key will not be found using this algorithm. On the right pane,

the details about a selected deleted key along with the relevant hex dump of the key header are shown.

7 Exporting Keys and Data

Occasionally one will need to pull information from the key or value for offline analysis. There are

various modes one can pull data from yaru. The two main ones are: (a) extracting the binary data and

(b) extracting the subkey hierarchy in a useable format.

If needing to extract the raw data, one just navigates to the subkey/value that is of interest and then

right clicks on the data window, whereupon a pop-up menu will allow on to export the data as text or

binary to a desired file. Below is an example of exporting the BootPlan from the ReadyBoost services

key. The BootPlan data can get very large and thus to analyze this data, it would be best to export the

data and view it in your favorite hex editor.

Copyright © TZWorks LLC Apr 15, 2024 Page 17

If one needs to recursively extract the subkey’s and values starting with a parent and including all the

children, the option to do this is available by right clicking on the parent subkey in the tree view and

selecting the various Export Keys options. In this example, we are pulling all the subkeys associated with

the “deleted keys” and exporting them to a file. The format will use the standard Windows Registry

Editor Version 5.00 format. The file just needs to be renamed with a .reg extension, if one wishes to

import the same data back into a registry. This, by the way, is not recommended unless you make a

backup of your original registry hive. Anytime you add entries in this way can cause your registry to

become unstable and hence the reason we put a .txt extension on the exported file.

When viewing a portion of the output, one will see both keys that were not deleted as well as keys and

values that were deleted. This is purposely done so that the deleted keys/values have some context

when viewing the hierarchy and their parent timestamps. Also it is useful when recreating the portion

of the hive from scratch when renaming the file to .reg. Below is a sample output.

Copyright © TZWorks LLC Apr 15, 2024 Page 18

8 Brute Force Extraction of Keys – Carving

Included with version 1.45 of yaru is the added ability to carve out keys and values from hives that are

only partial. This option is considered prototype. The key extraction is comprehensive in the sense that

it will carve out keys that are valid, deleted or in slack space. The value extraction is more limited in the

sense it will truncated long runs of binary data.

The purpose of adding in this functionality was specifically to pull artifacts from the registry

transactional logs; however, it can be used to carve any hive. As background, the registry transactional

logs have the same name as the hive counterparts, but have the extension logX where the X is a number

of the log, since there can be more than one. The transactional logs have a valid hive header, but only

have a small subset of the hive data; essentially the required data that was used to handle a registry

transaction.

In the past, if you tried to open a transactional log with yaru it would have trouble parsing it. With this

version it will automatically detect whether it is a transactional log and revert to carving the keys and

based on the available data in the log, try to reconstruct each of the key’s paths.

If you open a normal hive, then the behavior is the same as it was in the past. The registry will be

parsed; any slack or unallocated space identified as well as any deleted keys. If one wishes to also carve

the keys from this hive one can explicitly invoke it via the menu, under Options -> Carve.

Copyright © TZWorks LLC Apr 15, 2024 Page 19

After a carving operation, the tree-view pane on the left will create a root entry called “Carved (by

week)” and with child entries that form a sort of histogram. Each of the child entries will group keys by

date in increments of 1 week per entry. Gaps in time between entries imply there were no keys

modified during that week in time. Clicking on any of the entries will list the keys for that time period.

The entries also show after each of the annotated dates, the number of valid keys and the number of

deleted keys found during that period. This is useful for a quick triage to see what period of time keys

were deleted. Once a time period is selected the keys modified during that time period are displayed on

the right window. Not shown in the screenshot above, but if one scrolls to the right, if the full path was

able to be constructed, it is displayed as well.

If we pick an entry with many deleted entries and truncate some of the output, to show how the one

can use this technique to locate some critical USB entries that were deleted, it would look something

like the screenshot below. The entry shows that during the week of 22 July 2013, 29358 keys were

modified and 560 keys were deleted.

Copyright © TZWorks LLC Apr 15, 2024 Page 20

For similar functionality, but with much more flexibility in output options, one can use the cafae tool. It

also has the carving functionality but can be scripted and the output easily sent to a post processer or

database.

9 Validation of Parsed Residuals

For any tool to be used in forensics, one must ensure the output generated is representative of the true

output of the underlying data. All tools that extract data will ultimately format the data from some

internal representation into a user readable form. This requires the tool to (a) parse the data accurately

and (b) ensure that the data presented to the user is formatted correctly to minimize any

misinterpretation of the output generated. When dealing with the Window registry hives, this is no

small feat. There are numerous boundary conditions that need to be taken into account. If one did this

type of validation manually it would be close to impossible to compare entries in some of the larger

hives, such as the software hive which can easily be larger than 25 MB in size.

To automate this verification process as much as possible, yaru has the capability to output its data in

the Microsoft registration file format (.reg format). This is done on a best effort basis and as problems

in the output are encountered, bug fixes are applied. Nonetheless, the .reg format offers a way to test

the output of yaru to that of the Microsoft regedit tool. Consider the simple scenario of making a copy

of a hive and then importing that hive into the Microsoft regedit utility for the sole purpose of exporting

the hive data into a .reg file. Repeating this process with yaru gives the user two representations of .reg

files of the same hive generated by two different parsers. The beauty of this approach is it will validate

not only the keys and value names but the underlying data as well. To get a complete list of the

key/values in the regedit tool, one must have system level permissions. For Windows XP, this is as

simple as using the 'at' command to spawn a command prompt and then invoking regedit from the

newly spawned command prompt.

Once two .reg files are generated from different parsing tools, one needs a tool to compare the files

easily. Simple differencing of the files using one's favorite differencing tool will not work as expected.

There are a number of reasons for this: (a) the order of the data in the .reg files cannot be guaranteed to

be the same, (b) the naming convention is affected when importing a hive into regedit, since it takes a

new unique name which gets imprinted on the resulting data in the .reg file generated, and (c)

miscellaneous artifacts that are added by one registry parser are not necessarily accounted for in

another registry parser. To help with some of the issues, yaru incorporates an option that can take two

.reg files, parse each of them, reorder the keys so they are suitable for comparison, remove any

Copyright © TZWorks LLC Apr 15, 2024 Page 21

commented fields and display the differences. One caution to keep in mind is that the .reg file uses

Unicode as the native file format. Therefore if manually editing a .reg file, do not resave it into an 8 bit

ASCII format due to the risk of losing data.

Below is an output of analyzing two .reg files from the software hive on a Windows 7 box. One of the

.reg files was created with the Microsoft regedit utility and the other was created with yaru. For this

example, the user only logged on to regedit with Administrative privileges (as opposed to System

privileges) so some of the keys/values will not be accessible from the regedit tool. These differences will

be clearly shown is the comparison.

Copyright © TZWorks LLC Apr 15, 2024 Page 22

While this technique is great for validating the results of yaru, it is can also be used for comparing a

before and after hive to see the new and deleted keys/values. The only pre-requisite is one must export

the keys/values from the same parent key to do a valid comparison.

10 Logging of Activities

To review one's past steps, it is useful to be able to refer to a log file that records all the steps one took

during an analysis of a hive. This is also useful for debugging purposes when discovering some new

registry key or trying to analyze some new registry format. For this reason, yaru incorporates a logging

capability. To minimize the cluttering of log files, yaru starts off with logging turned off by default.

However, when turned on, yaru will record all the users’ activity, including what selections were made.

To keep the log file manageable in size, any output that is sent to a file is not logged.

Copyright © TZWorks LLC Apr 15, 2024 Page 23

To make the format as extensible as possible, yaru incorporates XML as the file format. The date and

time of creation is appended to the log file name to ensure uniqueness. Each log entry is also time

stamped. Unfortunately there are no configuration settings to identify where the log file is archived or

under what conditions to log data. For now, yaru generates a log file in the directory that yaru starts

in. When logging is stopped, an XSL file will be created that will allow the resulting log file to be

rendered in any web based browser. Adhoc comments can be injected into the log at any time by right

clicking and selecting "Put comment in Log File".

To view the log file when finished and it the logging is turned off, just open the XML file that was created

in your favorite browser. Below is an example of the XML output rendered in Internet Explorer. The log

includes timestamps and what action transpired. Any comments added are included as well.

Copyright © TZWorks LLC Apr 15, 2024 Page 24

11 Creating a “Send To” Shortcut for yaru

A useful shortcut to use yaru in a fast seamless way is to create a “Send To” option. This allows ones to

right click on any hive in Windows, from the Explorer menu and open the hive in yaru. For a typical

Windows 7 system, one would create a normal yaru shortcut in the following directory:

C:\Users\[desired user acct]\AppData\Roaming\Microsoft\Windows\SendTo. After this is done, edit the

properties of the shortcut target to include the option -hivefile. This option is required for yaru to pull

the hive you selected.

12 Command Line Options

When running in Windows, yaru cannot output to the console, but one can redirect the standard

output (stdout) to a file. This is not a limitation with Linux or Mac. One can use this approach

when using commands that do not invoke the GUI.

 Commands to use with GUI [opens the GUI with the hive specified]

 -hivefile <filename>

 -ntfsimage <unmounted partition> <path\file of the hive>

 Commands that do not invoke the GUI

 -cmdfile <filename> = run yaru from a cmdfile with a list of !cmds

 -cmd <options> = run a command using the yaru registry engine.

Copyright © TZWorks LLC Apr 15, 2024 Page 25

13 User Defined Templates

These are text files that allow one to automate key/value extraction. The parsing rules for these

templates are discussed in more detail in the cafae user’s guide. The cafae user’s guide can be

downloaded from this URL: https://tzworks.com/prototypes/cafae/cafae.users.guide.pdf.

14 Known Issues

1. When running under Vista or Windows 7, any network shares established prior as a regular

(non-admin) user, will be isolated from other accounts (including the admin account). This

problem occurs because User Account Control (UAC) treats members of the Administrators

group as standard users. Therefore, network shares that are mapped by logon scripts are shared

with the standard user access token instead of with the full administrator access token.

2. yaru may run out of memory processing some very large registry hives with many deleted files.

To address this issue, use the 64-bit version of yaru.

3. When using yaru to compare .reg files from two different snapshots in time where the

snapshots are generated from tools other than yaru (eg. from regedit.exe) one needs to ensure

the .reg file is saved in the old NT4 format (which is text based) versus the default format (which

is binary based). yaru's comparison option only works with text based .reg files.

15 X-Window Dependencies

For this tool to work, the X Window System libraries are required for both Linux and

macOS (they are not required for Windows). These libraries use the X11 protocol and

graphics primitives to render the graphical user interface components. These libraries

are common on Unix-like OS's.

If one is unfamiliar with X Windows or the libraries associated with it, one can

download an installer package from XQuartz.org, which is an open-source effort to

develop a version of the X Windows System that runs on Linux and macOS.

After the X11 libraries are installed, one needs to ensure they are running prior to

running this tool.

16 Authentication and the License File

Copyright © TZWorks LLC Apr 15, 2024 Page 26

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication validates that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

16.1 Limited versus Demo versus Full in the tool’s Output Banner

The tools from TZWorks will output header information about the tool's version and whether it is

running in limited, demo or full mode. This is directly related to what version of a license the tool

authenticates with. The limited and demo keywords indicates some functionality of the tool is not

available, and the full keyword indicates all the functionality is available. The lacking functionality in the

limited or demo versions may mean one or all of the following: (a) certain options may not be available,

(b) certain data may not be outputted in the parsed results, and (c) the license has a finite lifetime

before expiring.

Copyright © TZWorks LLC Apr 15, 2024 Page 27

17 References

1 Document on various Internet sites titled "WinReg.txt" by B.D.
2 Various articles in MSDN.
3 Windows Forensic Analysis DVD Toolkit, Harlan Carvey
4 Wikipedia, the free encyclopedia section on Windows Registry.
5 Various forensic artifacts discussed in Computer Forensic Essentials from SANS Institute.
6 Forensic Analysis of Unallocated Space in Windows Registry Hive Files, by Jolanta Thomassen,

Dissertation for Master of Science submitted to The University of Liverpool, dated 04 Nov 2008.
7 The Internal Structure of the Windows Registry, by Peter Norris, MSc Thesis submitted Defence

College of Management and Technology, Dept of Informatics and Sensors, Cranfield University.
Feb 2009.

8 Recovering Deleted Data from the Windows Registry, by Timothy D. Morgan, Digital
Investigation 5 (2008) S33-S41.

9 FOX-toolkit version 1.6.47.
10 B.D. WinReg.txt. http://home.eunet.no/pnordahl/ntpasswd/WinReg.txt, 1998.
11 Thomassen, Jolanta. Forensic Analysis of Unallocated Space in Windows Registry Hive Files.

Dissertation for Master of Science submitted to The University of Liverpool, 2008.
12 Norris, Peter. The Internal Structure of the Windows Registry. Defence College of Management

and Technology, Dept of Informatics and Sensors, Cranfield University, 2009.
13 X Window System Libraries by XQuartz.org.

http://en.wikipedia.org/wiki/Windows_Registry
http://forensics.sans.org/
http://www.fox-toolkit.org/
http://xquartz.org/

	1 Introduction
	2 Registry Hive and Components
	3 Location of Hives
	4 How to Use yaru
	4.1 Reading Registry Hives from Logical Images
	4.2 Parsing Hives from a Live Volume
	4.3 Common Registry Artifacts useful to Forensic Investigators
	4.4 Searching for Text Patterns
	4.5 Searching for Binary Patterns
	4.6 Searching for Entries exceeding some threshold size
	4.7 Searching for High Entropy data
	4.8 Searching for Time Ranges

	5 Unlinked Allocated Chunks
	6 Deleted Registry Keys
	7 Exporting Keys and Data
	8 Brute Force Extraction of Keys – Carving
	9 Validation of Parsed Residuals
	10 Logging of Activities
	11 Creating a “Send To” Shortcut for yaru
	12 Command Line Options
	13 User Defined Templates
	14 Known Issues
	15 X-Window Dependencies
	16 Authentication and the License File
	16.1 Limited versus Demo versus Full in the tool’s Output Banner

	17 References

