

Abstract
usp is a standalone, command-line tool used to extract USB

artifacts from Windows operating system. The sources of

the artifacts include the registry hives, setup API logs and

event logs. It can analyze a live Windows machine or

process discrete artifacts collected from another machine

in an off-line manner

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v0.79 of usp

Updated: Apr 15, 2024

TZWorks® USB Storage Parser
(usp) Users Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 15, 2024 Page 1

Table of Contents

1 Introduction .. 2

2 Which Windows artifacts are used ... 3

2.1 ReadyBoost Log ... 5

2.2 Event Logs ... 5

2.3 Other data that is available ... 7

3 Overview of the options ... 7

3.1 Processing USB Artifacts from a Live Windows System .. 8

3.2 Handling the primary and backup hives ... 10

3.3 Handling Volume Shadows from a Live System .. 10

3.4 Processing USB Artifacts from a ‘dd’ image of an NTFS disk .. 11

3.5 Processing USB Artifacts from a ‘dd’ image of an NTFS volume ... 13

3.6 Processing USB Artifacts off-line from extracted components .. 14

3.6.1 Specifying separate artifacts ... 14

3.6.2 Specifying a folder of artifacts .. 15

3.7 Processing USB Artifacts from an externally mounted drive .. 16

3.8 Pulling USB Artifacts from a Monolithic VMWare NTFS image. ... 16

4 Summary of all Options ... 17

5 Authentication and the License File .. 20

5.1 Limited versus Demo versus Full in the tool’s Output Banner .. 21

6 Conclusions ... 21

7 References .. 21

Copyright © TZWorks LLC Apr 15, 2024 Page 2

TZWorks® USB Storage Parser (usp) Users
Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=13

Contact Information: info@tzworks.com

1 Introduction

usp is short for USB Storage (USBSTOR) Parser. It is a command line tool that can be scripted to work

with other tools. It automates various manual techniques for extracting and analyzing different registry

entries and Windows log files in order to pull together a report that documents the USB activity on a

Windows computer. The report displays a summary of the USB device, timestamps of when the device

was initially plugged, last time the device was plugged in, the serial number of the device, and various

other metadata.

There are a number of use-cases that the Windows version of usp handles. For example, the tool can

process USB artifacts from: (a) a live Windows system, ranging from Windows XP up to Win10, (b) an

image of a Windows hard drive, (c) extracted registry hives and setupapi logs, (d) an external system

drive that was mounted for analysis, and (e) a monolithic VMWare virtual disk file.

usp has been built so that it relies only on the standard operating system libraries. This means it does

not require any extra libraries (DLLs) to be installed on the system for it to run. For any critical parsing,

usp uses its own internal algorithms. For registry reading and traversals, it doesn’t make use of the

Windows API calls. Therefore, if the system you are analyzing has been compromised, usp should be

able to extract what it needs and process the results without losing data. Since there is no installer for

usp, it is easy to run directly from a USB stick or other portable device.

While usp gathers USB device statistics on Windows operating systems, it can be run on other operating

systems in a limited mode. If one wishes to analyze Windows forensic artifacts off-line on Linux or Mac

OS-X, there is a compiled version of usp to handle these operating systems as well.

usp can be downloaded from http://www.tzworks.com/prototype_page.php?proto_id=13. See the

licensing agreement on the website for more details.

http://www.tzworks.net/prototype_page.php?proto_id=13
mailto:info@tzworks.net
http://www.tzworks.net/prototype_page.php?proto_id=13

Copyright © TZWorks LLC Apr 15, 2024 Page 3

2 Which Windows artifacts are used

There are currently five different sources of Windows artifacts that can be used for usp to completely

process USB device statistics. These include: (a) the setupAPI log(s), (b) the system hive, (c) the software

hive, (d) the user registry hives, (e) the AmCache hive and (f) certain event logs.

The setupAPI log can be one or more files that identifies, amongst other things, when a USB device was

initially plugged in. The system hive identifies which USB devices were registered with the Windows

plug and play manager. Windows makes use of a number of registry keys to allow it to identify that

same device quickly the next time it is plugged in. The software hive provides some additional

information for those USB devices identified by the system hive. The user hives are used to associate

which user account was logged on when the USB device was plugged in. This artifact can help identify

when a user last plugged in the device. With the advent of the Windows 10 Creators Update, the

amcache now has additional information when a device was registered, via the InventoryDevicePnp

subkey. Finally, various event logs are also examined for USB artifacts and included in the results. As

more research in Windows USB forensics becomes available, it can easily be incorporated into usp to

enhance its reporting due to the extensible nature of its architecture.

When mapping the output to these artifacts, it can be confusing. Therefore, the following graphic

shows which artifacts are represented in each of the two main output formats: (a) unstructured

(long/verbose) output and (b) CSV output:

Copyright © TZWorks LLC Apr 15, 2024 Page 4

As one can see there are various sources for timestamp data, and some of them are redundant. The

first source, which is common across all versions of the Windows operating systems, are the registry last

modification times for their respective subkey path. One can also use the SetupAPI log(s) to extract

installation time. In Windows 7, the device installation date property identifier should be present as

well as the EMDMgmt timestamp(s). In Windows 8, the device last arrival/removal dates property

identifiers may also be present. While it may seem redundant to display similar ‘event type’

timestamps, the extra data allows the investigator to corroborate when certain actions took place, and

thus, increase the confidence the behavior suggested by the data was not influenced by anti-forensics

techniques. Conversely, if there are inconsistent timestamps, then it tells the investigator that a closer

look is warranted.

Copyright © TZWorks LLC Apr 15, 2024 Page 5

2.1 ReadyBoost Log

In the figure above, item 10 is the ReadyBoost artifact. This data initially became available in Vista. As,

background, whenever a new drive is connected to a windows box, the operating system will test that

drive's read and write speed by creating a file on that drive and then deleting it. This result is logged in

the ReadyBoost log. The timestamp associated with this entry was the time of the last test performed.

In addition, the name of the disk is present and in some cases the size of the disk.

2.2 Event Logs
Added with the version 0.55 of usp is the ability to parse event log data from evtx type logs and

integrate it with the USB results collected from the registry hives and setupapi logs. Since this is a new

feature, it is still experimental in nature. Currently, up to four log files are can be analyzed: (a)

System.evtx, (b) Microsoft-Windows-DriverFrameworks-UserMode%4Operational.evtx, (c) Microsoft-

Windows-Kernel-PnP%4Configuration.evtx, and (d) Microsoft-Windows-Partition%4Diagnostic.evtx.

From the logs listed above, certain events are enumerated and categorized into 3 areas: (a) when the

USB device was inserted, (b) when the USB device was removed, and (c) when the USB device

driver/service was deleted. Additional data can be extracted with the Microsoft-Windows-

Partition%4Diagnostic.evtx log, such as the, partition table and volume boot record of the USB device (if

present).

Since event log data can be noisy, in the sense, that many events can be recorded during one of the

categories above (insert, remove or delete), the usp tool will collate clusters of events within a set

interval and report each cluster as a significant event. Even though this clustering is done for reporting

purposes, the tool provides traceability down to the record numbers used during a cluster operation, so

the analyst can go back to a particular event log and look up the specific event record, if desired.

The following shorthand notation is used when reporting event log artifacts:

a. One of the following prefixes:

• INS (Insert USB device)

• REM (Remove USB device),

• DEL (Delete USB device).

b. The above prefix is then followed by an underscore, followed by a two letter code:

• DF (DriverFrameworks = Microsoft-Windows-DriverFrameworks-UserMode%4Operational.evtx),

• KP (Kernel PnP = Microsoft-Windows-Kernel-PnP%4Configuration.evtx),

• PD (Partition Diags = Microsoft-Windows-Partition%4Diagnostic.evtx),

• SY (System.evtx)

c. Finally the record number is annotated.

Below is some output from two reports using a couple of different event logs.

The first example uses the -csvl2t format. In this case, usp breaks out each of the categorized events

(insert, remove, and delete) into clusters and creates a separate row entry for each one. The overall

Copyright © TZWorks LLC Apr 15, 2024 Page 6

output merges the USB event log data with the registry hive and setupapi data. The traceability of

which event record goes with the csv line output is annotated in the ‘extra’ column. The event log data

in the example uses the syntax:

INS_KP#423, for insertion of device taken from record# 423 in the Kernel Pnp (Microsoft-Windows-

Kernel-PnP%4Configuration.evtx) event log,

REM_PD#286813, for removal of device taken from record #286813 in the Partition Diags

(Microsoft-Windows-Partition%4Diagnostic.evtx) event log

Etc.

To see more detail about the device, and only the cluster event log timestamps, one can use the -v (or

verbose) option. This option shows more clearly the other event log data when it comes to the partition

table and volume boot record for the device, if it was available. This data shows the volume offset,

number of bytes in the volume, disk signature, volume signature, and other disk/volume related data.

Copyright © TZWorks LLC Apr 15, 2024 Page 7

2.3 Other data that is available

Aside from the timestamp data, usp displays other metadata about the USB device. Below is an
example of this other data, with the timestamp data removed, to focus on the other output.

The instance ID (or serial number), is one of the main pieces of data that links many of the various

artifacts together. The volume identifier links the data in the system hive to the USB data in the user

hive to correlate which user account mounted the USB device. The parent prefix identifier is more

useful in the pre-Vista operating systems to provide linkages between data. The vendor ID, product ID,

revision and product name are pulled directly from the registry information. Finally, the USB hub/port

combination is extracted to record where the device was plugged into.

3 Overview of the options

There are a number of use-cases that usp was designed for. Below is a breakout listing which binaries

are compatible with each use-case:

• Live Windows processing (Win32/64 binaries)

• Off-line processing of a ‘dd’ image of a disk (Win32/64, Linux32/64 and Mac OS-X 32/64

binaries)

• Off-line processing of extracted registry hives and setupAPI logs (Win32/64, Linux32/64 and

Mac OS-X 32/64 binaries)

• Processing an external mounted drive (Win32/64 binaries)

• Processing a monolithic VMWare NTFS formatted virtual disk (Win32/64, Linux32/64 and

Mac OS-X 32/64 binaries)

The various options above can be seen from the menu below. The rest of this paper discusses each of
the use-cases in more depth and is diagramed with examples.

Copyright © TZWorks LLC Apr 15, 2024 Page 8

3.1 Processing USB Artifacts from a Live Windows System

While the most difficult to implement, this use-case is the easiest to use. To run usp on a live Windows

system, use the -livesys option to tell it to analyze the currently running registry hives and setupAPI logs.

Having administrator’s access is required, since usp will need to take a snapshot of the appropriate hives

on disk and start analyzing them. All output options are text and can be very large, depending on how

many USB devices were plugged into the computer over the life of the system. Therefore, it is

recommended to redirect the output to a file and analyze the output with a text editor.

The -v option is for verbose output, where each device found will contain multiple lines of data found for

that device. The alternative format is one line per device, where the data is more useful to view in a

spreadsheet. The -show_other_times is tells usp to do any translation of timestamps embedded in

various GUID data, as well as any additional timestamps that may have been found.

Copyright © TZWorks LLC Apr 15, 2024 Page 9

The -show_files_used identifies which artifact contributed data to the device. The -inc_regback tells usp to

also include the backup registry hives in the analysis.

If desiring to add event log files to the usp results, one would need to add the option -use_eventlogs. This

will cause usp to look for and parse the following logs: (a) System.evtx, (b) Microsoft-Windows-

DriverFrameworks-UserMode%4Operational.evtx, (c) Microsoft-Windows-Kernel-

PnP%4Configuration.evtx, and (d) Microsoft-Windows-Partition%4Diagnostic.evtx.

When opening the results file in notepad, a summary of the devices are listed with: device name,

various timestamps, various identifiers, volume name, account name that mounted the device, and

other miscellaneous data. The truncated diagram shows the output of the first USB device, which is

labeled an “Imation Pivot USB Device”. The key timestamps are the original install date and the account

that mounted the device, which should be the last time that user account plugged in the device. Other

useful data includes the Instance ID/serial number, which should be unique for that device. I say should,

since some vendors do not supply a unique number. However, from the empirical data, most vendors

do try to honor the USB specification and embed this data into the device’s firmware.

The second way one can output the data is to display each USB device on its own row with the various

metadata for that device as columns. To do so, one would use one of the field separated values,

whether it is -csv, for Comma Separated Values, or some other delimiter. To use a different character

for the delimiter, one can append the -csv_separator <character to use > option to the command,

where one can force the delimiter to be a pipe character, comma character or tab. Since there is an

issue that some USB device names may have a comma embedded into their name, usp tries to

substitute any commas it sees in the names to spaces. Below is an example of the default -csv option:

Copyright © TZWorks LLC Apr 15, 2024 Page 10

Using the CSV option with -csv_separator “|” syntax, one can output the data in CSV format using a pipe

delimiter. The advantage of using the pipes as a delimiter is that pipes do not conflict with the USB

names.

3.2 Handling the primary and backup hives

When running usp to look at a system volume, one can specify the -inc_regback option, to have usp

process both the primary and backup hives in one report. This will result in usp trying to merge device

artifacts with the same serial numbers and identifiable data.

3.3 Handling Volume Shadows from a Live System

Volume Shadow Copies of the system drive also contain artifacts necessary to perform USB analysis

from a historical standpoint. By using the option -vss <index of the volume shadow copy>, usp can

automatically pull the required hives and log data to generate a report on USB historical activity.

Volume Shadow copies, as is discussed here, only applies to Windows Vista up to Win10. It does not

apply to Windows XP.

To determine which indexes are available from the various Volume Shadows, one can use the Windows

built-in utility vssadmin, as follows:

Copyright © TZWorks LLC Apr 15, 2024 Page 11

 vssadmin list shadows

To filter much of the unnecessary data to get to the index numbers, one can do the following:

 vssadmin list shadows | find /i "volumeshadowcopy"

This filters only the pertinent data needed to tell one which indexes are available for Volume Shadow

copies. The number after the word HarddiskvolumeShadowCopy is the index that is used to pass as an

argument into the -vss option.

3.4 Processing USB Artifacts from a ‘dd’ image of an NTFS disk

This use-case is broken up into 2 sections. The first addresses the situation if one acquires an image of

an entire hard drive. The second addresses the situation if one images only a volume within a disk. Both

Copyright © TZWorks LLC Apr 15, 2024 Page 12

cases assume the acquisition of the image was a bit-for-bit copy, without using compression or some

other proprietary format to store the final image.

For the first situation, one needs to find where the system volume starts. Specifically, one needs to

identify to the usp tool what offset in bytes, from the start of the image, is the location of the system

volume. The options that are used in usp are –image <filename of image> and –offset <numeric value

of start of volume>. Both options need to be supplied for this to work.

To aid the user in doing this quickly, one can use usp in a two-step procedure. For the first step, usp will

accept just the first option –image <filename of image> by itself, and then will analyze the image to see

if there are any NTFS volumes on it. If it finds one or more, it will list their respective offsets. An

example is shown below. The image is from a 40G drive that has one volume formatted as NTFS. By

supplying just the image filename, usp displays to the user the offset of the NTFS volume it found, and

then suggests what options to plug into the command line.

After the volume offset has been discovered, one can then proceed to the second step and supply this

offset into the option –offset <numerical value of start of volume> to get usp to start scanning for the

proper files it needs and outputting any USB statistics. Below is the final command based on the data

provided by usp for the volume’s offset. The output is redirected to a file, and the file is then opened in

notepad.

Looking at the output, one can see that there is a Parent ID Prefix present. This means that the

operating system of the volume analyzed is pre-Vista, and in this case happens to be Windows XP. The

first device listed is a ‘SanDisk U3 Cruzer Micro USB’ device, and from the data, was initially plugged in

on 5/09/08. There were three user accounts that used this same device, as shown below. From the

data, the last account to use the device was ‘normaluser’ on 07/01/09.

Copyright © TZWorks LLC Apr 15, 2024 Page 13

3.5 Processing USB Artifacts from a ‘dd’ image of an NTFS volume

This is the second type of situation that can be encountered with a ‘dd’ image. This is when the image

is just of a volume versus the entire disk. For this case, the –offset <#> option does not need to be

supplied and is assumed to be zero. Therefore, only the –image <filename of image> needs to be

supplied. Below is usp processing an image taken from a Windows XP volume supplied by the SANS

forensics 408 course. The example below is running usp in Ubuntu Linux. Again, one sees the Parent

Prefix ID is present, confirming it is a pre-Vista image. The install timestamp, serial number of the device

as well as the user account/time stamp that plugged the device into the computer is present.

Copyright © TZWorks LLC Apr 15, 2024 Page 14

3.6 Processing USB Artifacts off-line from extracted components

This is a situation where you have acquired a number of artifacts extracted from a Windows system, but

don’t have an image of the drive or volume. usp can handle this, if the user explicitly identifies which

artifact is a system hive, which is a user hive, etc.

3.6.1 Specifying separate artifacts

If you only want to process a few artifacts and not an entire folder of files, one can invoke usp with

the -sys <system hive> -user “<user1 hive> | <user2 hive> | … | <user# hive>” -setupapi <setupAPI

log>, etc, options. The syntax allows for one to include multiple hives of the same type by separating

each similar hive with a pipe character. Below is an example of specifying discrete files and redirecting

the report to the file named ‘usp.txt’

Copyright © TZWorks LLC Apr 15, 2024 Page 15

3.6.2 Specifying a folder of artifacts

Since usp can process many artifact files related to a USB devices used on a computer, sometimes it is

just easier to put all the files require analyzing into a separate subdirectory and scripting the use of usp

to process these files. Below is an example of one way to do this.

To collect the requisite files, one can use the dup utility from our website

(https://tzworks.com/prototype_page.php?proto_id=37). This utility allows one to copy any file, or

group of files from a live box or ‘dd’ image. This is especially handy for copying files when the operating

system locks down the files, disallowing one to have even read access. Below we use dup to copy a

group of files, including the registry hives, setupapi logs, and event logs.

The copied files are placed in the testcase1 subdirectory. The dup -copygroup option allows one to pull

all the registry hives, including the user hives and system hives, as well as all the event logs. While it

pulls more data than we need, it allows one to quickly grab the requisite artifact files needed for usp to

process the USB devices that were plugged into this machine.

Now that the files are collected into a separate folder (testcase1), one can process all the artifact files

using the -pipe command, like so:

The above will look at all the files starting from the subdirectory testcase1 and all subsequent

subdirectories passing each file found into usp, for analysis. Even though there are files that are not

pertinent for USB device data, usp will look at all files passed in and if it recognizes the file, it will then

Copyright © TZWorks LLC Apr 15, 2024 Page 16

try to parse it and merge any USB device data found into an overall report. In this case, we are

formatting the report to be a Log2timeline CSV report named ‘out.csv’.

If one cannot use the -pipe option, one can use the experimental -enumdir option, which has similar
functionality with more control. The -enumdir option takes as its parameter the folder to start with. It
also allows one to specify the number of subdirectories to evaluate using the -num_subdirs <#> sub-
option.

3.7 Processing USB Artifacts from an externally mounted drive

This option is for the cases where you have an external hard drive and you want to analyze it without

imaging it. In this case, one can put the hard drive under analysis in an external hard drive docking

station with an interface to a write blocker and mount it as a separate volume. The syntax available

allows one to access the drive in one of two ways, either as a mounted volume or as a mounted drive.

The syntax for a mounted volume is: -partition <volume letter>. The syntax for a mounted drive

is -drivenum <drive #> -offset <system volume offset>. The first is the easiest to use while the second

forces the USB analysis to be directed to a particular volume offset. The output options are the same as

in the previous use-cases.

3.8 Pulling USB Artifacts from a Monolithic VMWare NTFS image.

Occasionally, it is useful to analyze a VMWare image, both from a forensics standpoint as well as from a

testing standpoint. When analyzing different operating systems, and different configurations, a virtual

machine is extremely useful in testing out different boundary conditions. This option is still considered

experimental since it has only been tested on a handful of configurations. Furthermore, this option is

limited to monolithic type VMWare images versus split images. In VMWare, the term split image means

the volume is separated into multiple files, while the term monolithic virtual disk is defined to be a

virtual disk where everything is kept in one file. There may be more than one VMDK file in a monolithic

architecture, where each monolithic VMDK file would represent a separate snapshot. More information

about the monolithic virtual disk architecture can be obtained from the VMWare website

(www.vmware.com).

When working with virtual machines, the capability to handle snapshot images is important. When

processing a VMWare snapshot, one needs to include the parent snapshot/image as well as any

descendants.

usp can handle multiple VMDK files to accommodate a snapshot and its descendants, by separating

multiple filenames with a pipe delimiter and enclosing the expression in double quotes. In this case,

each filename represents a segment in the inheritance chain of VMDK files (eg. –vmdk "<VMWare NTFS

virtual disk-1> | .. | <VMWare NTFS virtual disk-x>"). To aid the user in figuring out exactly the chain of

descendant images, usp can take any VMDK file (presumably the VMDK of the snapshot one wishes to

analyze) and determine what the descendant chain is. Finally, usp will suggest a chain to use.

http://www.vmware.com/

Copyright © TZWorks LLC Apr 15, 2024 Page 17

Below is an example of selecting the VMDK snapshot image file of Win7Ultx64-000002.vmdk (yellow

box). Since the chain is incomplete, usp responds with what the dependencies are (shown in the red

box), and then gives the user a suggested syntax to use for the command line to process this snapshot.

Repeating the command using the suggested chain of VMDK files, usp analyzes the chain, verifies it is

valid, and if successful, outputs the results of the USB statistics for this snapshot of the NTFS volume.

4 Summary of all Options

The options labeled as 'Extra' require a separate license for them to be unlocked.

Option Description

-csv

Outputs the data fields delimited by commas. Since filenames can have

commas, to ensure the fields are uniquely separated, any commas in the

filenames get converted to spaces.

-csvl2t
Outputs the data fields in accordance with the log2timeline format.

-v
Verbose output. This option will output the parsed data as multiple lines for

one record inputted.

-sys

Use the specified system hive during the parsing. Syntax is

-sys <system hive>. To specify multiple system hives, use the syntax:

-sys "<hive1> | < hive2> | ...”.

-sw

Use the specified software hive during the parsing. Syntax is

-sw <software hive>. To specify multiple software hives, use the syntax:

-sw "<hive1> | < hive2> | ...".

Copyright © TZWorks LLC Apr 15, 2024 Page 18

-user

Use the specified user hive(s) during the parsing. Syntax is

 -user <user hive>. To specify multiple user hives, use the syntax:

-user "<user hive1> | <user hive2> | ..."

-setupapi

Use the specified setup API log during the parsing. Syntax is

-setupapi <logfile>. To specify multiple user setup API logs, use the

syntax: -setupapi "<log1> | <log2> | ..."

-amcache

Use the specified AmCache hive during the parsing. Syntax is -amcache

<hive>.

-evtx

Use the specified event log(s) during the parsing. Syntax is -evtx <log>. To

specify multiple evtx logs, use the syntax: -evtx "<log1> | <log2> | ...".

-pipe

This is an experimental option. Used to pipe files into the tool via STDIN

(standard input). Tool will pull in all files first and begin parsing after last file

is inputted. The set of files will be processed in one session. There are

naming restrictions for the files that are processed. Specifically: (a) System

hives must have the sequence of letters "system" in the name to be

recognized as a system hive. (b) Software hives must have the sequence of

letters "software" in the name to be recognized as a software hive. (c)

ntuser.dat hives must have the sequence of letters “user" in the name to be

recognized as a ntuser.dat hive; and (d) setupapi.[dev].log files must have

the sequence of letters "setup" in the name to be recognized as a log file.

As long as the each of the respective artifact files has the requisite

sequence of letters, then any other letters can go before or after the

sequence.

-enumdir
Experimental. Used to process files within a folder and/or subfolders. Each
file is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs
<#>.

-livesys Pull USB stats on the current system

-inc_regback

Tells usp to also look at the backup system and software hives as well as the

primary system and software hives. The output will merge the data

appropriately.

-partition

Extract artifacts from a mounted Windows volume. The syntax is

-partition <drive letter>.

-vmdk Extract artifacts from a VMWare monolithic NTFS formatted volume. The

Copyright © TZWorks LLC Apr 15, 2024 Page 19

syntax is -vmdk <disk name>. For a collection of VMWare disks that include

snapshots, one can use the following syntax:

-vmdk "<disk1> | <disk2> | ..."

-drivenum

Extract artifacts from a mounted disk specified by a drive number and

volume offset. The syntax is -drivenum <#> -offset <volume offset>

-image

Extract USB artifacts from a volume specified by an image and volume

offset. The syntax is -image <filename> -offset <volume offset>

-vss

Experimental. Extract USB data from Volume Shadow to use for usp to

parse into a report. The syntax is -vss <index number of shadow copy>. Only

applies to Windows Vista, Win7, Win8 and beyond. Does not apply to

Windows XP.

-no_whitespace

Used in conjunction with -csv option to remove any whitespace between

the field value and the CSV separator.

-csv_separator

Used in conjunction with the -csv option to change the CSV separator from

the default comma to something else. Syntax is -csv_separator "|" to change

the CSV separator to the pipe character. To use the tab as a separator, one

can use the -csv_separator "tab" OR -csv_separator "\t" options.

-dateformat

Output the date using the specified format. Default behavior is -dateformat

"yyyy-mm-dd". Using this option allows one to adjust the format to

mm/dd/yy, dd/mm/yy, etc. The restriction with this option is the forward

slash (/) or dash (-) symbol needs to separate month, day and year and the

month is in digit (1-12) form versus abbreviated name form.

-timeformat

Output the time using the specified format. Default behavior is

-timeformat "hh:mm:ss.xxx" One can adjust the format to microseconds,

via "hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no

fractional seconds, via "hh:mm:ss". The restrictions with this option is a

colon (:) symbol needs to separate hours, minutes and seconds, a period (.)

symbol needs to separate the seconds and fractional seconds, and the

repeating symbol 'x' is used to represent number of fractional seconds.

(Note: the fractional seconds applies only to those time formats that have

the appropriate precision available. The Windows internal filetime has, for

example, 100 nsec unit precision available. The DOS time format and the

UNIX 'time_t' format, however, have no fractional seconds). Some of the

times represented by this tool may use a time format without fractional

seconds, and therefore, will not show a greater precision beyond seconds

Copyright © TZWorks LLC Apr 15, 2024 Page 20

when using this option.

-pair_datetime
Output the date/time as 1 field vice 2 for csv option

-all_usb_devices

The default behavior of usp is to try to pull data on those USB devices that

store data. Typically, this are labeled as USBSTOR devices. If one wants to

expand the data returned to be all USB devices, use this switch. Keep in

mind every USB device that was connected to the computer will be

displayed, including: HID (human interface devices, like mice and

keyboards), USBHUBs, and other non-USBSTOR devices.

-base10
Added for the evtx logs. The default behavior is to use hex for numbers.
This says to use base10 for evtx records numbers and other related data in
the Eventlogs.

-show_other_times

Experimental Option. This switch will display any additional timestamps

found or derived. This option will also force the -pair_datetime option to

allow rendering of multiple timestamps within a CSV field. Multiple

timestamps in a field are delimited by semicolons.

-show_files_used
Experimental Option. This switch will display which artifact files

contributed to a specific device report data.

-use_eventlogs

Experimental Option. Tells the tool to evaluate USB artifacts in the evtx

type logs. This option is implied when using the -evtx or -pipe options.

-event_res

Experimental Option. When looking at evtx logs, group events into intervals

separated byte # seconds. The default is 2 seconds. This option also affects

the SetupAPI.log data similarly. Syntax is: -event_res <# secs>

-utf8_bom

All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8

byte order mark to the output using this option.

5 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

Copyright © TZWorks LLC Apr 15, 2024 Page 21

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

5.1 Limited versus Demo versus Full in the tool’s Output Banner

The tools from TZWorks will output header information about the tool's version and whether it is

running in limited, demo or full mode. This is directly related to what version of a license the tool

authenticates with. The limited and demo keywords indicates some functionality of the tool is not

available, and the full keyword indicates all the functionality is available. The lacking functionality in the

limited or demo versions may mean one or all of the following: (a) certain options may not be available,

(b) certain data may not be outputted in the parsed results, and (c) the license has a finite lifetime

before expiring.

6 Conclusions

usp is an example of a command line tool used to automate gathering and reporting on USB device

statistics for Windows operating systems. The tool can be run on either a live Windows system or in an

off-line mode. The off-line mode has binaries that can run on Windows, Linux or Mac OS-X. As new

Windows artifacts are discovered for USB statistics, they can be easily incorporated into usp’s existing,

extensible architecture.

7 References

1. Windows Forensic Analysis DVD Toolkit, Harlan Carvey
2. Various forensic artifacts discussed in Computer Forensic Essentials from SANS Institute,

http://forensics.sans.org
3. TZWorks LLC software libraries to parse various Windows’ internals. www.tzworks.com
4. Various Microsoft Technet articles
5. VMWare Virtual Disk Format 1.1 Technical Note, www.vmware.com
6. SetupAPI logs examined include: setupapi.dev.log, setupapi.dev.yyymmdd_hhmmss.log,

setupapi.upgrade.log, and setupapi.setup.log.
7. Eventlogs examined include: Microsoft-Windows-DriverFrameworks-

UserMode%4Operational.evtx, Microsoft-Windows-Kernel-PnP%4Configuration.evtx, and
Microsoft-Windows-Partition%4-Diagnostic.evtx.

http://forensics.sans.org/
file:///F:/workarea/class_v2/win32_projects/usbscan/tzbundle/www.tzworks.net
http://www.vmware.com/

	1 Introduction
	2 Which Windows artifacts are used
	2.1 ReadyBoost Log
	2.2 Event Logs
	2.3 Other data that is available

	3 Overview of the options
	3.1 Processing USB Artifacts from a Live Windows System
	3.2 Handling the primary and backup hives
	3.3 Handling Volume Shadows from a Live System
	3.4 Processing USB Artifacts from a ‘dd’ image of an NTFS disk
	3.5 Processing USB Artifacts from a ‘dd’ image of an NTFS volume
	3.6 Processing USB Artifacts off-line from extracted components
	3.6.1 Specifying separate artifacts
	3.6.2 Specifying a folder of artifacts

	3.7 Processing USB Artifacts from an externally mounted drive
	3.8 Pulling USB Artifacts from a Monolithic VMWare NTFS image.

	4 Summary of all Options
	5 Authentication and the License File
	5.1 Limited versus Demo versus Full in the tool’s Output Banner

	6 Conclusions
	7 References

