

Abstract
mcp is a standalone, command-line tool that parses cache

files associated with the Mozilla Firefox Browser. The tool

can target various Browser instances of cache and either

report the results in a CSV type format or archive the

results in a SQLite database. This tool has working versions

for Windows, Linux and OS-X.

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v0.21 of mcp

Updated: Apr 15, 2024

TZWorks® Mozilla Cache Parser
(mcp) Users Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 15, 2024 Page 1

Table of Contents

1 Introduction .. 2

1.1 Location of the Cache data ... 3

2 How to Use mcp .. 3

2.1 Targeting Specific Cache files .. 4

2.2 Processing Cache Files in one or more Subdirectories ... 6

2.2.1 Parsing Multiple Mozilla Accounts and/or Instances .. 7

2.2.2 Archiving the Content Data ... 8

2.2.3 Splitting the Mozilla Sessions into Separate Files ... 9

3 CSV Field Names / Meaning .. 10

4 Limitations... 11

5 Available Options .. 11

6 Authentication and the License File .. 12

7 References .. 13

Copyright © TZWorks, LLC Apr 15, 2024 Page 2

TZWorks® Mozilla Cache Parser (mcp) Users
Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=50

Contact Information: info@tzworks.com

1 Introduction

The Mozilla Cache Parser (mcp) targets the Mozilla Firefox cache and extracts useful information for the

examiner. This tool is not unique, in that there are other Mozilla cache parsers available; a few good

ones are even free. This tool was primarily created based on a need to provide more insight into the

association of the cache metadata (eg. timestamps, URL, http request/response, etc) and cache content

data (eg. data for the webpage that is displayed), especially when applied to the earlier versions of the

Mozilla formats. In addition, and from a tool developer's standpoint, the mcp codebase can be used as

framework for future work to evaluate Mozilla cache artifact data that may be corrupted or fragmented.

As background, the Mozilla cache, like any other browser cache, is a repository for web data a user has

viewed or downloaded. In general, the purpose of the cache is to store data locally, to allow the browser

quick access for later requests to that same website. The cache includes: website pages, files, and

images that were viewed by a user. In addition to the raw data that was received from a web server, the

Mozilla cache also contains useful metadata associated with each item. From the point of view of the

forensic examiner the data is interesting, since it contains items such as: the URL of the webpage,

number of times the page was fetched from the cache, filename/type/size, last modified time, last

fetched time, server time, etc. Having a tool available that can take advantage of this artifact data is

necessary to have insights into the user's activity.

Like any other application that stood the test of time, the Mozilla architecture (including cache

structure) has evolved over the years. The older version of the Mozilla cache architecture, consisted of

3 categories of files:

1. The _CACHE_MAP_ which associates the metadata and raw data locations.

2. The _CACHE_001_, _CACHE_002_ and _CACHE_003_ block files. These 3 files contain

predefined chunks (ranging from small chunks to larger chunks) that are used to store the

metadata for the cache as well as some raw data from webpages.

3. The last category are the data files (and metadata) that are too large to fit within one of the

three block files listed in (2) above. If all the files are available, mcp will look at the data in all

the files to generate the results. Using the data in the _CACHE_MAP_, mcp will annotate the

location of the raw cache data in the results. In the absence of the _CACHE_MAP_ file, this

associations will not be present.

mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 15, 2024 Page 3

The newer version of the Mozilla cache uses a separate file per webpage to store both the raw data and

the metadata associated with the webpage.

This section’s purpose is just a surface discussion on the cache formats primarily to set the stage to let

the user know that not all Mozilla cache data is structured the same. Fortunately, the mcp the tool can

handle the above various format nuances without using any special parameters. It was designed to

sense which parsing engine to use and internally adjust the algorithm to appropriately parse any of the

cache formats.

1.1 Location of the Cache data

Mozilla cache artifacts are located in the user’s directory. This varies depending on the operating system

used. Below is a table that breaks out the location by operating system.

OS Cache location

Win XP %userprofile%\Local Settings\Application Data\Mozilla\Firefox\Profiles\<random
text>.default\Cache

Post Win XP %userprofile%\AppData\Local\Mozilla\Firefox\Profiles\<random text>.default\Cache

OSX /Users/[user acct]/Library/Caches/Firefox/Profiles/<random text>.default/Cache

Linux /home/[user acct]/.mozilla/firefox/<random text>.default/Cache

2 How to Use mcp

The screenshot below shows the options available. The formatting options are similar to the rest of the

TZWorks tools. The output can be rendered in either: delimited text (CSV and Log2Timeline) or SQLite.

The SQLite option was added primarily to allow one to parse the cache records while archiving the

results along with any companion content data. More on these options will be discussed later in this

document.

Copyright © TZWorks, LLC Apr 15, 2024 Page 4

To process cache files, one can either target a folder or individual cache files. The tool will

automatically determine which version of the format the cache files are in and adjust the parsing engine

accordingly. In fact, when parsing many subdirectories of artifacts where each subdirectory is a

different account or machine, the tool will dynamically adjust for the version of the cache being parsed

at that time and keep the mapping of the cache metadata to the cache content data sorted.

If processing a directory of cache files (either by using the -pipe command or the -enumdir command),

the tool will look for the Mozilla directory structure starting with the “Cache” or “Cache2” folder to

indicate when to start parsing. Alternatively, if targeting the older cache format, where you only have a

few files, one can use the option -file <cache file1 | cache file 2 | …> as well.

2.1 Targeting Specific Cache files

As mentioned above, if one wants to target a specific cache file or a couple of cache files, one can use

the -file option. This was included in the options since it was needed during the debugging of the mcp

tool. With this option, it is useful to analyze one file at a time to help debug what is going on within the

parsing engine. In the example below, we are targeting a cache file that uses the older version of the

cache format (eg _CACHE_001_). The results would be rendered in the test1.csv file.

Pipe delimited text is the default output that is rendered by the tool. On the left is the Mozilla version of

the cache format (major and minor version separated by a dot). Many of the other fields are the

metadata associated with Firefox requesting a page/data and the server serving up the webpage/data.

Shown in the screenshot is only the server timestamp, but also in the data (truncated in the screenshot

Copyright © TZWorks, LLC Apr 15, 2024 Page 5

below), is up to 6 – 8 timestamps that range from those associated with the server, browser and file

timestamps.

One should note that even though there is no _CACHE_MAP_ file being used in the above example, the

mcp tool will still try to parse out where the “content data” is located. For the older Mozilla cache

formats (such as in this example), the association between the ‘metadata’ and ‘content data’ is recorded

in the _CACHE_MAP_ file, so without this mapping file being present, the mcp tool needs to use its

internal scanning to try to locate ‘content data’. For this example, content data was located within the

_CACHE_001_ file itself. This content data is then attempted to be matched with the metadata parsed.

On the field labelled ‘cntdata_location_info’ in the above output, this is where mcp will put the guesses

between the metadata and content data associations. Therefore, if the output uses the notation

”rawscan”, then the tool is telling the user, this result is a product of the tools’ heuristics of comparison

and it deems it a match. The heuristics use a number of tests, including: size of the content data,

content data type, etc.

If one inspects the cache file at the offset suggested by the heuristics, one can verify whether this match

has some confidence of being correct, or whether it is just a ‘false positive’. Below is a hex dump for the

first entry above (offset 0x7e00). Those familiar with X509 certificates will recognize this is what the

data is, and it matches the content-type in the metadata which was expecting an “OCSP-Response”.

Copyright © TZWorks, LLC Apr 15, 2024 Page 6

Going another level deeper, if one adds the _CACHE_MAP_ file into the mix during the parse option, the

command will look like this.

Since the mapfile was added during the parsing operation, the mcp tool will make use of the

_CACHE_MAP_ file to associate all the metadata records to the content data. The companion output is

shown below. The output is truncated to just show the right side of the formatted data so one can see

how this compares to the previous example. One can see the mapfile associations allowing the mcp

tool to populate the content data with a higher confidence. For the most part most of the entries agree

with the heuristics done previously. Finally, one should note, that even though the _CACHE_003_ file

was not parsed, it shows up as a source of the content data, since that was identified with the

_CACHE_MAP_ entry.

The above discussion focused on the older Mozilla cache format (version 1.x format). The later cache

formats overcome this mapping issue by integrating the cache’s metadata within the same file as the

content data. This eases the parsing logic since only one file needs to be analyzed for both the

metadata and content data.

2.2 Processing Cache Files in one or more Subdirectories

If desiring to process many Mozilla cache files in one pass, one can make use of mcp’s piping option

(-pipe) or the folder enumeration option (-enumdir). Either of these options allow one to target

multiple subdirectories during the parsing operation. Below is a simple way to target the cache files in a

Mozilla account.

If one is uncertain where exactly the Mozilla cache files are located, then the following works as well,

but is a little slower since the command will enumerate many other ‘non-cache’ files. The results,

however, should be the same.

Copyright © TZWorks, LLC Apr 15, 2024 Page 7

If desiring more control on the number of subdirectories to traverse, one can use the -enumdir option

along with the -num_subdirs sub-option. It would look like this for the above example:

For any of the above options to work with this tool, the Mozilla folder structure must be preserved after

the random session text string and before the ‘Cache’ or ‘Cache2’ folder. Why? It was a design choice

to allow the tool to easily tell the ‘type’ a file the tool was examining to assist in parsing; this assists the

tool to determine the version of the format of the cache being used (due to the naming convention).

Furthermore, the naming convention also allows the tool whether it should switch modes to handle

multiple Mozilla accounts during one session run.

2.2.1 Parsing Multiple Mozilla Accounts and/or Instances

Since mcp makes uses of the Mozilla directory structure, one can pass in a number of accounts for the

tool to process in one session. Internally, the mcp tool will detect the change in Mozilla instance and/or

account and flush the current instance/account prior to processing the next instance/account. In this

way, the tool to conserves memory usage on the host machine. This is useful if trying to parse many

Mozilla cache collections at one time.

When outputting the results, the tool defaults by integrating the output into one file. For testing

purposes, this technique allows one to run the tool against many different versions of the Mozilla cache

and verify its accuracy and performance. Below is an example of one of the testcase setups that is used

internally to test out the tool. (Note: if the reader has a collection of other testcases that they are

willing to share, please contact TZWorks so they can be added to the current test suite). The collection

of data is taken from Mozilla versions 3 to 77.

Copyright © TZWorks, LLC Apr 15, 2024 Page 8

When running the mcp tool against the root folder, in this case “sqlite\Mozilla”, it will traverse each of

the subfolders and try to target each cache file it finds.

When done, the results will be integrated into a very large results file. The context of the metadata is

preserved in the output, since there is a delimited field that includes the source cache path/filename.

2.2.2 Archiving the Content Data

With the default option, the tool sends the parsed output to delimited text. This is fine when only

wanting the results associated with the metadata and pointers to the content data. If desiring to archive

the content data as well, mcp has an option to create and output the results into a SQLite database.

To invoke this option, use the -sqlite <db_name> in your command. All parsed results will include both

the record metadata and its associated content data. To view the results, one will need to be familiar

with the SQL syntax to query the database, or alternatively, will need a separate SQLite viewer to look at

the data. A good SQLite viewer is the “DB Browser for SQLite” and a reference is located at the end of

this document.

The database schema created by mcp consists of 4 tables: (a) cache_metadata_entries, (b)

cache_ctxdata_entries, (c) metadata and (d) ref. Only the first two tables have the records from the

parsed metadata and content data, respectively. The metadata table is used to record the session

parameters used when running the parser. The last table (ref), is not shown in the diagram, and is used

internally by mcp for bookkeeping only. The fields for the first three tables and their relationship are

shown below.

Copyright © TZWorks, LLC Apr 15, 2024 Page 9

The records in the cache_metadata_entries table are similar to the information rendered in the CSV

output. The actual content data is stored in the cache_ctxdata_entries table under the field name

“ctxdata_raw”. This is a ‘blob’ type since the data can be either text or binary.

2.2.3 Splitting the Mozilla Sessions into Separate Files

One can take the discussion in the previous sections and modify the output so that the data is broken

out into separate files per Mozilla session. This applies to both the CSV and the SQLite output variants.

The syntax is the same as before, however, one just appends the sub-option -split_sessions to the

command. This tells the mcp tool to take whatever was specified as the output file to be appended with

a session number along with the random string used by the Mozilla folder name. Below is an example

using this syntax.

When the processing is done, one will have a number of files (one per Mozilla session). The output

notation will be something like what is shown below. The output name specified (in this case “test6”)

will be the part of the name with an incremented number along with the folder name used by Mozilla

for that session.

Copyright © TZWorks, LLC Apr 15, 2024 Page 10

3 CSV Field Names / Meaning

Below is a refence of all the CSV fields used and their meanings.

CSV Field Definition

type Cache version number

url_hash SHA1 hash of the URL contained in the metadata. This is a computed
value by mcp. This hash should be equivalent to the filename for those
cache versions that show a SHA1 hash for the name.

url_etag The HTTP etag that was present in the HTTP response

request_type_reply_status HTTP request type (eg. GET, POST), and reply status (eg. HTTP/1.1 200 OK)

serv_name Server name recorded in the HTTP Response

serv_timezone Server time zone

serv_date Server timestamp included in the HTTP Response

serv_modify_date Server modify timestamp included in the HTTP Response

serv_expires_date Server expire timestamp included in the HTTP Response

browser_fetch_utc Browser - last time the cache was fetched

browser_modify_utc Browser modify timestamp associated with the cache

browser_expires_utc Browser expire timestamp associated with the cache

content_create_utc Actual content data file create timestamp. This is only present if the
content file is a separate file. For Linux and OSX, this is the status change
timestamp

content_modify_utc Actual content data file modify timestamp. This is only present if the
content file is a separate file.

Copyright © TZWorks, LLC Apr 15, 2024 Page 11

fetch_count Number of times the cache was fetched

url URL of the webpage visited

url_params Any URL parameters used. This is formatted as JSON.

content_type The content data type (eg. GIF, JPEG, text, etc) extracted from the HTTP
response

content_filename Last part of the URL prior to the URL parameters extracted from the HTTP
response

content_encoding The encoding used on the content data (eg. gzip, br, etc) extracted from
the HTTP response

content_size Size of the content data extracted from the HTTP response

content_location_info The file and offset (if not zero) within the file where the content data is
located. This is formatted as JSON.

extra_fields The key/value pairs extracted from the HTTP response. This is formatted
as JSON.

file The original path/file containing the metadata

4 Limitations

This version of the tool has a number of limitations. They are listed below.

• The tool is still prototype in nature being that this is the first version released. It still needs to

be tested against various types of files, corrupted files, etc. to ensure the tool can perform

consistently.

• The earliest version of the Mozilla cache this tool has been tested on is v3.0.1. Therefore, prior

versions may or may not work; and if they seem to work, may or may not yield accurate results.

• The folder enumeration of the cache file option relies on the Mozilla directory structure as well

as the naming convention used by Mozilla. Therefore, if either of these things are changed by

Mozilla or if changed by a user, the parsing engine will have unpredictable results or no results

at all.

• There are a couple of parsing engines within this tool; which engine is used is a function of the

Mozilla naming convention used for the cache file.

5 Available Options

Option Description

-csv

Outputs the data fields delimited by commas. Since filenames can have
commas, to ensure the fields are uniquely separated, any commas in the

filenames get converted to spaces.

-csvl2t Outputs the data fields in accordance with the log2timeline format.

Copyright © TZWorks, LLC Apr 15, 2024 Page 12

-sqlite
Outputs the data into a SQLite database. The syntax is:
-sqlite <db name to create or use>.

-pipe
Used to pipe files into the tool via STDIN (standard input). Each file passed in is

parsed in sequence.

-enumdir
Experimental. Used to process files within a folder and/or subfolders. Each file
is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs <#>.

-filter
Filters data passed in via STDIN via the -pipe option. The syntax is -filter <"*.ext
| *partialname* | ...">. The wildcard character '*' is restricted to either before
the name or after the name.

-no_whitespace
Only applies to -csv and -csvl2t options. Used in conjunction with -csv option to
remove any whitespace between the field value and the CSV separator.

-csv_separator

Only applies to -csv and -csvl2t options. Used in conjunction with the -csv
option to change the CSV separator from the default comma to something
else. Syntax is -csv_separator "|" to change the CSV separator to the pipe
character. To use the tab as a separator, one can use the -csv_separator "tab"
OR -csv_separator "\t" options.

-dateformat

Output the date using the specified format. Default behavior is -dateformat
"yyyy-mm-dd". Using this option allows one to adjust the format to mm/dd/yy,
dd/mm/yy, etc. The restriction with this option is the forward slash (/) or dash
(-) symbol needs to separate month, day and year and the month is in digit (1-
12) form versus abbreviated name form.

-timeformat

Output the time using the specified format. Default behavior is -timeformat

"hh:mm:ss.xxx". One can adjust the format to microseconds, via

"hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no

fractional seconds, via "hh:mm:ss". The restrictions with this option is a colon

(:) symbol needs to separate hours, minutes and seconds, a period (.) symbol

needs to separate the seconds and fractional seconds, and the repeating

symbol 'x' is used to represent number of fractional seconds.

-quiet Show no progress during the parsing operation.

-split_sessions Split the Mozilla sessions into separate files.

-utf8_bom
All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8 byte
order mark to the output using this option.

6 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

Copyright © TZWorks, LLC Apr 15, 2024 Page 13

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

7 References

1. Mozilla-central [https://hg.mozilla.org/mozilla-
central/annotate/80eff2b52d14/netwerk/cache2/CacheFileMetadata.h#l54]

2. Mozilla-central [https://dxr.mozilla.org/mozilla-central/source/netwerk/cache2/CacheIndex.h]
3. firefox-cache-forensics -FfFormat.wiki [https://code.google.com/archive/p/firefox-cache-

forensics/wikis/FfFormat.wiki]
4. Joachim Metz. Firefox cache file format

[https://github.com/libyal/dtformats/blob/master/documentation/Firefox%20cache%20file%20
format.asciidoc].

5. Endpoint Protection / Web Browser Forensics part 2
[https://community.broadcom.com/symantecenterprise/communities/community-
home/librarydocuments/viewdocument?DocumentKey=30e9590f-e848-4857-8bd1-
adf70638af36&CommunityKey=1ecf5f55-9545-44d6-b0f4-
4e4a7f5f5e68&tab=librarydocuments]

6. SQLite library statically linked into tool [Amalgamation of many separate C source files from

SQLite version 3.32.3].

7. SQLite documentation [http://www.sqlite.org].

8. DB Browser for SQLite [http://sqlitebrowser.org/]

http://sqlitebrowser.org/

	1 Introduction
	1.1 Location of the Cache data

	2 How to Use mcp
	2.1 Targeting Specific Cache files
	2.2 Processing Cache Files in one or more Subdirectories
	2.2.1 Parsing Multiple Mozilla Accounts and/or Instances
	2.2.2 Archiving the Content Data
	2.2.3 Splitting the Mozilla Sessions into Separate Files

	3 CSV Field Names / Meaning
	4 Limitations
	5 Available Options
	6 Authentication and the License File
	7 References

