TZWorks® EVTX Fragment
eXtension (evtfx) Parser Users

Guide

Copyright © TZWorks LLC
WWwWWw.tzworks.com

Contact Info: info@tzworks.com
Document applies to v0.17 of evtfx
Updated: Apr 25, 2025

Abstract
evtfx is a standalone, command-line tool that can extract

and parse EVTX type records from fragmented or corruptec
Eventlog files. The tool can report the results in a CSV type
format or SQLite database. It has compiled version for
Windows, Linux and OS-X.


http://www.tzworks.net/
mailto:info@tzworks.net

Table of Contents

w

© 00 N O u b

[aidgoTe [¥To1dTe] o WU T OO PP R PPPTOUPTROPRINt 2
HOW 10 USE BUL X netiiii ittt ettt et e e et e e et e e e s be e e e s sbte e e s saabaeesensbeeesssbeeesensseaeesnnreens 4
2.1 Processing Multiple Event logs (Or 108 fragments) .......ccueeeeeciiie e 5
2.2 SCANNING |arge dAtASELS ...uviiiiiciiiee ettt e et e e e et e e e e ebte e e e ebteeeeeabteeeesntaeeenanes 5
SQLITE RESUILS....eeneteieiiieiiee ettt ettt ettt et e e st e e s bb e e st e e s bt e e sa bt e eabeeesmbeesabeeesabeesaneeeanteesareeennnes 7
3.1 EXtracting SPeCific EVENT IDS ....uviiiiiiiieciiee ettt e e e e s e e e st e e e s aree e e snbaee s ennneeas 9
YA I Y=Tole] o B =Y o Y o] - SRR 10
CSV Field NAamMES / IMEANING ......vieiiieetie ettt eete et e e tee e et eeeteeestteeebeeestreesabeeeebeeesabeeebeeeesreeeseeennnes 10
LIMIEATIONS. .t e 11
F N Y ] o] [ @14 o] o T3PS 12
Authentication and the LICENSE File.......uiu ettt s 14
REFEIEINCES ..ottt et st e e sa b e e s bt e e s ab e e s bt e s bbeesabeeesabeesabeesasteesabaeenanes 14

Copyright © TZWorks, LLC Apr 17,2025 Page 1



TZWorks® EVTX Fragment eXtension (evtfx)
Parser Users Guide

Copyright © TZWorks LLC
Webpage: http://www.tzworks.com/prototype_page.php?proto_id=53
Contact Information: info@tzworks.com

1 Introduction

The Windows operating system uses binary XML notation to record various events that occur during the
normal course of system usage. In forensics, use of the data recorded in the Window's event log is
extremely useful in determining the changes occurring in a machine over time periods of interest. There
are many utilities that allow one to extract records from these same logs and package them by time or
event to highlight activities that occurred. Occasionally, however, when a parser encounters a corrupted
log file, parsing out records can be problematic at best. Therefore, the objective for evtfx was to focus
on this area; parsing event logs that were either: (a) corrupted internally either intentionally or
accidently by the system (during a crash) or (b) were partially recovered usually from a file carving
operation, but still contained gaps in the data.

In order to design a tool that can parse EVTX type records from corrupted or partial fragments of a log,
one needs to adjust the way a normal EVTX type parser works. As background, EVTX type logs, as part of
their internal design, attempt to minimize the space usage by incorporating a position dependent record
structure. Specifically, one record can rely on another record's definitions of field names or data values.
This allows a reduction of space and acts as a compression technique when storing many similar events;
many of the data labels are the same and will reference a main record containing a shared template
definition. While this is very useful under normal circumstances, unfortunately, when the records
become corrupted or deleted, this position dependence can cause undefined behavior for any parser
relying on traversing the position related pointers. Case in point is the evtwalk tool from TZWorks; it
does an excellent job at parsing uncorrupted records, however, does a best guess type parsing for those
records that are deleted (using the -inc_slack option, which means to include the slack space during the
parsing operation). Furthermore, if for whatever reason, the parser cannot find the template definition,
it won't parse records that rely on the missing definition. By extension, any records that are outside the
log file structures usually get missed as well.

The purpose of evtfx is to address the shortfalls of EVTX parsers when it comes to corrupted or partial
event logs. As part of its architecture, it is designed to be somewhat independent over the state of the
previous records. This, in turn, allows adds robustness for handling missing/corrupted records.

The downside to the evtfx tool, is it is slower in actual parsing time when compared to evtwalk. In some
cases, the evtfx tool misses some of the content of the data. In general, the accuracy of the results

Copyright © TZWorks, LLC Apr 17,2025 Page 2


mailto:info@tzworks.net

of evtfx comes close to that evtwalk. Therefore, if the event log is normal and intact, the evtwalk tool
should be the tool of choice. If, however, one wishes to extract corrupted or deleted records from an
event log, the evtfx tool is good choice.

Taken to the extreme, the evtfx tool can be used to pull out EVTX type records from any blob of data,
assuming the data is uncompressed and unencrypted. The latter condition is very important, since
Windows may incorporate NTFS file compression for the event log in question, in which case,

the evtfx tool may fail to parse the compressed data. While evtfx makes some attempts to try to
perform NTFS file decompression, the results are much more reliable if the raw cluster data is
uncompressed.

Copyright © TZWorks, LLC Apr 17,2025 Page 3



2 How to Use evifx

One can display the menu options by typing in the executable’s name without parameters. Below is the
menu with the various options.

2 Administrator Windows PowerShell

Usage:

n parser
aining e
-out <results

QLite db
file

t output
char for csv separator
iz the default

-quiet
Folder Trawversing Options
-pipe
-enumdir <dir» -num_subdirs <#> pull from files from folder

tract specific records]
-eventi d2, .." -db <name> -out

Experimental optio
-partition <1
-image <fil
-ymdk <vmdk file image>

To process a file with EVTX type event log records, use the -log <file> notation. If sending the output to a
file, use the -out <results> option along with the type of desired delimited format (-csv, -csvi2t

or -bodyfile). Alternatively, one can send the data to a SQLite database; to do this, use the

notation -sqlite -db <database to store results>.

The other options shown above (under Additional options) are the standard ones used in many of the
TZWorks tools and contain the same behavior as the other tools. Details about these options are
contained in the section on “Available Options”.

The delimited output formats (with the exception of -csvi2t) generate one record per log entry. The
delimiter for all the output file formats can be specified by the user. Some of the more common ones
include either a comma character, pipe character or a tab character. If one tells evtfx to send the results
to a SQLite database, then the tool will either create a new database if none exists, or, if one exists with
the same name, the results will be appended to the existing one. Later on, one can query the database
and extract desired records either by using another tool, such as the “DB Browser for SQLite” or using

Copyright © TZWorks, LLC Apr 17,2025 Page 4



standard SQL commands. There is a rudimentary query option built into evtfx to extract specific event
identifiers using the -eventid <#1, #2, ...> option which is discussed in more detail in the section of
Extracting Specific Event IDs.

2.1 Processing Multiple Event logs (or log fragments)

If desiring to process many log files in one pass, one can put the artifact logs/fragments into separate a
subdirectory and use the -pipe option like so:

»dir c:\dump\eventlogs /b /s /z evtfx64 -pipe -out results.csv

Alternatively, if not wishing to use the piping option, one can use the -enumdir option along with the
sub options -num_subdirs and -filter. This allows one to target a certain level of subdirectories and
only files with the desired extension.

>evtfx64 -enumdir c:\dump\logfrags -num_subdirs 2 -filter "*.bin" -out results.csv

The above command will process all the logs and/or fragments contained in the c:\dump\logfrags folder
and subfolders down to two subdirectories with the filename extension “.bin”. The output will be
stored in the result.csv file.

2.2 Scanning large datasets

Internally, evtfx will try to scan log files by looking for common EVTX log magic signatures. These magic

signatures can either be the start of a log file (ElfFile) or a chunk at one of the internal sections (EIfChnk).
This approach allows the evtfx to scan the data more quickly than the alternative of looking for a record
signature from unrelated data areas. The tool will automatically shift to record signature scans for each
internal EIfChnk signature found, or if the fragment being analyzed is less than the size of the ElfChnk.

The tool has had some limited testing against partitions and memory dumps. These options are
considered experimental, but can be invoked via the -partition <letter>, or just -image <memory dump>. In
cases where the data analyzed is not compressed or encrypted, evtfx does a relatively good job at
extracting complete event log records. In some cases, when the evtfx cannot recognize the template
used in the record, it will try to translate the fields either using the slot/index notation or pattern-match
the sequence into another template with the same pattern. While the translation is usually correct,
occasionally, the template names chosen for the fields are incorrect. This happens infrequently; as
more testing is done the algorithm can be improved to try to eliminate the false-positives. For those
cases, where evtfx cannot determine the template translation at all, it will resort to using field names

Copyright © TZWorks, LLC Apr 17,2025 Page 5



like “slot_00, slot_01, ..., slot_xx” and leave it up to the analyst to determine the translation of the data
fields.

The other point to make is that evtfx, when parsing data from raw clusters from a partition or memory
dump, does not try to reconstruct the cluster run for the event log file. Instead, it just traverses one
cluster, sequentially, when it looks for EVTX records. It is an enhancement that can be added later, if
required. The primary intent of these two options (-partition and -image) was a way to stress the tool so
it could encounter differing levels of corruption in the records during the parsing operation. The idea
was to force evtfx to encounter as many boundary conditions as possible so they could be addressed
during testing prior to release. These options were left in so the analyst could play with them as well
(and hence the reason they are labelled experimental).

Finally, when processing large datasets, whether it be from many event log files in one session or
targeting an entire volume that is large, the results produced can potentially create a very large results
file (or database, if using the SQLite option). Keep this in mind with processing many files at once, since
handling a very large CSV may not be something that is desirable. For this reason, the SQLite option
was added, to make it more extensible for the user to query the final results relatively quickly.

Copyright © TZWorks, LLC Apr 17,2025 Page 6



3 SQLite Results

If one chooses to output the parsed data into a SQLite database, the two tables of interest are the
_genesis and the _evtfx_data tables. The first table (_genesis) stores the command line parameters
used when running evtfx along with some other metadata about the system when generating the
results in the _evfx data table. The second table (_evfx_data) contains a record for each event that was
parsed. The fields for each of these tables are shown below:

| _genesis
) timestamp integer
Jéi run integer
|| tracking varchar
| target_os varchar
Jé\ cmdline varchar
) evtfx varchar
le=/ @dmin varchar
) result varchar
| _evtfx_data
) metaref integer
J;I record integer
les) event_id integer
Jé] create_time_raw integer
|| create_time varchar
| level varchar
|=] computer varchar
\=) provider varchar
j%\ channel varchar
| slot_data varchar
| slot_extra varchar
|==| notes varchar
|| filename varchar

For each event record that is parsed, there are some fixed value fields and there are some variable
fields. The fixed value fields are ones that are common across many events (eg. record, event_id,
create_time, etc.), while the variable ones are unique to the specific event identifier/type. Unique data
occurs in the slot values of the record, where each value can have a context specific name and is
dictated by the template definition referenced by the event. Since JSON is just a set of key/value pairs,
it offers the flexibility to capture all the event log data independent to place into these variable fields.
The slot_data, slot_extra, and notes are the variable type fields and have key/value pairing of data.

Below is an example of parsing a System.evtx log and how the records get translated into the SQLite
database schema. To start the example, a normal view of the data in XML format is shown for reference
purposes. Then, a screenshot of how this same data is translated into the _evtfx_data table as a record.

Copyright © TZWorks, LLC Apr 17,2025 Page 7



<Event xmlns="http://schemas.microsoft.com/win/2@@4/088/events/event">
<System>

<Provider Name="Microsoft-Windows-Hyper-V-VmSwitch" Guid="67dc@d66-3695-47c0@-9642-33f76f7bd7ad"/>
<EventID Qualifiers="@">232</EventID>

<Version>@</Version>

<Level>4</Level>

<Task>@</Task>

<Opcode>@</Opcode>

<Keywords>@x3000000000000080</Keywords>

<TimeCreated SystemTime="08/31/2021 23:52:35.632485900"/>
<EventRecordID>1950@0</EventRecordID>

<Correlation ActivityID="@" RelatedActivityID="@"/>

<Execution ProcessID="4812" ThreadID="16340"/>
<Channel>System</Channel>

<Computer>"DESKTOP-M8BOQQP"</Computer>

<Security UserID="S-1-5-18"/></System></Event>

<EventData>

<Data Name="NicNamelLen">36</Data>

<Data Name="NicName">@A@20D2D-CDC4-497@-99D7-CAD925753001</Data>
<Data Name="NicFNamelLen">14</Data>

<Data Name="NicFName">Default Switch</Data>

<Data Name="PortNamelen">36</Data>

<Data Name="PortName">A4B870BC-0078-4B4D-9ABC-20A72E6@6ACS</Data>
<Data Name="PortFNamelen">22</Data>

<Data Name="PortFName">Container NIC 9734c3f8</Data>

<Data Name="SwitchNamelLen">36</Data>

<Data Name="SwitchName">C@8CB7B8-9B3C-4@8E-B8E30-SE16A3AEB444</Data>
<Data Name="SwitchFNamelen">14</Data>

<Data Name="SwitchFName">Default Switch</Data></EventData>

-
metaref  record event_id create_time level computer provider channel slot_data slot_extra notes filename
1 1328224... 195000 232 08/31/2021 23:52:35.632 info DESKTOP-M8BO... Microsoft-Windo... System {"Channel":"sy.‘.I{"NicNameLen... k"uf‘fset":"um... .I\..\test\syaem.evtx
2 1328224... 195001 16 08/31/2021 23:52:42.434 info DESKTOP-M8BO... Microsoft-Windo... System {"Chanrel":"Sy... {"offset"F0x0... ..\..\test\System.evix
{"Channel":"System";"Computer":"DESKTOP-M8BOQQP";"Correlation_ActivityID":"0";"Correlation_RelatedActivityID":"0";"Event
xmins":"http://schemas.microsoft.com/win/2004/08/events/
event";"EventID_Qualifiers”:"0"; "EventRecordID":"195000"; "Execution_ProcessID":"4812";"Execution_ThreadID":"16340"; "Keyword | g
s":"0x8000000000000080";"Opcode":"0"; "Provider_Guid":"67dc0d66-3695-47c0-9642-33f76f7bd7ad";"Security_UserID":"S-1-5-18
";"Task":"0"; " TimeCreated_SystemTime":"08/31/2021 23:52:35.632405900";"Version":"0"}
{"NicNameLen":"36";"MicName":"0A020D2D-CDC4-4970-99D7-CADI25753001";"NicFNameLen":"14";"NicFName":"Default
Switch”;"PortNamelLen":"36";"PortName";"A4B870BC-0078-4B4D-9A0C-20A72E606ACS"; "PortFameLen":"22"; "PortFName":"Container NIC | 4
9734¢3f8";"SwitchNamelen":"36";"SwitchName":"C08CB788-9B3C-408E-8E30- SE16A3AEB444";"SwitchFNamelLen":"14"; "SwitchFName":"De| ™
fault Switch™}
{"offset":"0x01091200";"slot_id":"0x48f26af4";"bxml_id":"0xfebb3605"; "type": "recovered”} ::
W

The slot_data field contains the normal (non-binary XML) slot data found in the record. The slot_extra
field contains the binary XML stream that may or may not be embedded into one of the normal slots,
and it contains its own set of slot data (along with its own template reference). These are broken out as
two separate fields primarily for debugging purposes. The last variable field is for general notes, which is
used to assist in validation of the parsed record. It contains the offset the record found along with the
template identifiers for the normal slot data and the binary XML slot data (if it exists).

The other table that is of use is the _genesis table. It describes the metadata associated with the
specific running of the evtfx tool. Below is an example of the output.

timestamp run tracking target_os cmdline evifx admin result

1 13282251... 1 0x1d6... Windows;DESKTOP-MBBOQQP;10.0.-;10.0.1;64 evtfx64 -log ..\..\test\System.evtx -sqlite ..\..\test\system_test.db  ver: 0.01-64 n 0

Copyright © TZWorks, LLC Apr 17, 2025 Page 8



If one runs evtfx multiple times, sending the output to the same SQLite database, the tool will append
new records to the _genesis and _evtfx data tables. The genesis table will record each time the tool
ran, and the _evtfx_data will store each parsed event log record. The timestamp field in _genesis uses
the Windows filetime epoch. Likewise, the metaref field in _evtfx_data also uses the Windows filetime
epoch with some additional ticks to avoid collisions between entries (since sending the output to the
database is done in bulk and results in each entry being submitted faster than the resolution of the
timestamp). Using these two fields from their respective tables, one can synchronize on time, to
separate which records were parsed for each instance that was run by the tool, if that was of interest.

3.1 Extracting Specific Event IDs

If a SQLite database was created to store evtfx results, then one can go back and either query the
database using a SQL statement or using the build-in -eventid command. A typical SQL statement to
extract a specific event identifier could be:

.SELECT * FROM _evtfx_data WHERE event_id IN (4614, 4

The example above assumes one is in a SQL shell and loaded the database that was generated by evtfx.
The following entries in the above command mean:

e evtfx _data = table name

e event id = field name within the table to filter on

o 4614,4723,4724,4738 = event id’s that relate to records where the password changes in the
security log. These are the ones we would like to extract.

Alternatively, one could use the -eventid command built into evtfx, and accomplish a similar result:

.bin -out rest

The advantage of this last option is one does not need a SQL shell, but can run the extraction directly
using the evtfx tool and output the results into an output file with CSV formatting.

To see other categories of event ID combinations associated with system changes, see the section on
“Event Category Reports” in the evtwalk user’s guide.

Copyright © TZWorks, LLC Apr 17,2025 Page 9



4 EVTX Record Templates

Many EVTX records, with some exceptions, make common use of template definitions to specify how to
interpret the field labels associated with the value data. During the parsing process a normal EVTX
parser would look for the template definitions within each EIfChnk data section. This works fine if all the
data is in order and the position of the records relative to the start of the template definition are
preserved. This type of parsing relies on position dependent translation of the data field. However,
when considering the case where the data may not be contiguous, or if the template definition is
corrupted, then the problem becomes more difficult and the position dependent parsing fails.

The parsing engine in evtfx uses a couple of techniques to get around the position dependent parsing.
Since each record contains a pattern that is associated with a template definition, in combination with a
template identifier that is embedded into each record, the tool then can simply do a lookup on these
parameters to derive which field names are associated with the values when doing the translation.
However, this requires one to store the template definitions within the tool. Unfortunately, there are
literally thousands of template definitions, therefore, storing them all is not an acceptable option.
Alternatively, what evtfx does is store some of the more common template definitions to handle the
general cases. To handle all the rest of the template definitions, evtfx dynamically builds a template
database on the fly when it encounters any record that contains a template definition. It stores this in
an internal, dynamically built database that resides in memory, and accesses it during the
parsing/translation process. While testing is still being done, empirical testing suggests, that just by
using this approach, one can achieve very accurate results.

In conclusion, evtfx has a use-case that allows it to fit in to the EVTX set of parsing tools. With that in
mind, the tool is still doing something non-standard, as far as the parsing process. This means it can
result in errors in the translation process and the results produced by the tool should be considered
experimental. For those wanting a more reliable event log parser than what evtfx offers, then one
should consider using evtwalk tool, and limit usage of the evtfx tool for those cases where the log file
cannot be parsed by other log parsing tools.

5 CSV Field Names / Meaning

Below is a refence of all the CSV fields used and their meanings.

CSV Field SQLlite Field Definition
metaref Timestamp (using filetime epoch) with tick to ensure
no aliasing of time
Record# record Record number in the event log
EventID event_id Event ID for the record
- create_time_raw Filetime (in epoch format) of the event
Create Time [UTC] create_time Date/Time in UTC format of the event
Level level Severity level of the event
Computer computer Computer name where the event occurred

Copyright © TZWorks, LLC Apr 17,2025 Page 10



ProviderName provider Event type provider
channel

SlotData slot_data Pairs of key/value name data associated with the
event

SlotExtraData slot_extra Translation addition binary XML data embedded as a
slot as pairs of key/value name data.

Notes notes Addition metadata, offset of the record and template
identifiers

Filename filename Filename of the event log or fragment of logged

parsed

6 Limitations

This version of the tool has a number of limitations. They are listed below.

e Itis still prototype in nature being that this is the first version released. It still needs to be
tested against various types of files, corrupted files, etc. to ensure the tool can perform

consistently.

e Only parses records in event logs that are not compressed or encrypted

e Only works on EVTX type logs. Does not currently support the older WinXP logs.

e |norder to translate an event log record, the template definition associated with that record
needs to be located. If the template cannot be found, it needs to be derived. Sometimes this
can cause errors in the translation of the output. For those cases, where evtfx cannot come up
with anything, it will resort to using labels like (slot_00, slot_01, ..., slot_xx).

e When parsing fragment files with corrupted records sometimes the parsing engine will
encounter a boundary condition in the code logic and come to an abrupt stop. As evtfx
matures, these boundary conditions are eliminated one by one.

Copyright © TZWorks, LLC

Apr 17, 2025 Page 11



7 Available Options

Option Description
Identify which event log(s) to operate on. The syntax is: -log <eventlog to
-log analyze>. To operate on more than one event log at a time, use: -log

"<eventlogl> | <eventlog2>]..."

Specifies which SQL ite database to create or to act on. The format is:

-db <name>. During creation, one uses the -sqlite command in conjunction
with the -db <name>. During query, one uses the -eventid <ids>in
conjunction with the -db <name>

Outputs the data fields delimited by commas. Since filenames can have
-CSVv commas, to ensure the fields are uniquely separated, any commas in the
filenames get converted to spaces.

-csvl2t Outputs the data fields in accordance with the log2timeline format.

Outputs the data fields in accordance with the 'body-file' version3 specified in
the SleuthKit. The date/timestamp outputted to the body-file is in terms of

-bodyfile
y UTC. If using the body-file in conjunction with the mactime.pl utility, one
needs to set the environment variable TZ=UTC.
_sqlite Outputs the results into a SQLite database. Requires the -db <name>

specifier. The format is: -sglite -db <name>

Option is used to populate the output records with a specified username. This

-username only applies to the -csvI2t option. The format is:
-username <name to use>.

Option is used to populate the output records with a specified hostname. This
-hostname only applies to the -csvI2t option. The format is:
-hostname <name to use>.

_pipe Used to pipe files into the tool via STDIN (standard input). Each file passed in
is parsed in sequence.
Experimental. Used to process files within a folder and/or subfolders. Each

-enumdir
file is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs <#>.

Filters data passed in via STDIN via the -pipe option. The syntax is -filter
-filter <"*.ext | *partialname* [ ...">. The wildcard character '*' is restricted to
either before the name or after the name.

Output the date using the specified format. Default behavior is -dateformat
"mmy/dd/yyyy". This allows more flexibility for a desired format. For example,
one can use this to show year first, via "yyyy/mm/dd" or day first, via
"dd/mm/yyyy", or only show 2 digit years, via the "mm/dd/yy". The restriction
with this option is the forward slash (/) symbol needs to separate month, day
and year and the month is in digit (1-12) form versus abbreviated name form.

-no_whitespace

Only applies to -csv and -csvi2t options. Used in conjunction with the -csv
-csv_separator . .
option to change the CSV separator from the default comma to something

Copyright © TZWorks, LLC Apr 17,2025 Page 12



-dateformat

-timeformat

-quiet

-eventid

-partition

-image

-vmdk

-offset

-size

-basel0

-utf8_bom

else. Syntax is -csv_separator "|" to change the CSV separator to the pipe
character. To use the tab as a separator, one can use the -csv_separator "tab"
OR -csv_separator "\t" options.

Output the date using the specified format. Default behavior is -dateformat
"yyyy-mm-dd". Using this option allows one to adjust the format to
mm/dd/yy, dd/mm/yy, etc. The restriction with this option is the forward
slash (/) or dash (-) symbol needs to separate month, day and year and the
month is in digit (1-12) form versus abbreviated name form.

Output the time using the specified format. Default behavior is -timeformat
"hh:mm:ss.xxx". One can adjust the format to microseconds, via
"hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no
fractional seconds, via "hh:mm:ss". The restriction with this option is the
colon (:) symbol needs to separate hours, minutes and seconds, a period {(.)
symbol needs to separate the seconds and fractional seconds; the repeating
symbol 'x' is used to represent number of fractional seconds.

Show no progress during the parsing operation.

Extract the specified event IDs from the SQLite database (use -db <name>).
If more than one ID is specified, one needs to delimit each ID with a comma.
The syntax is -eventid "id1, id2, ...".

Experimental. Extract EVTX records from the specified volume. The format is:
-partition <volume letter>.

Experimental. Extract EVTX records from the specified file image. This could
be a ‘dd’ image of a volume or a memory dump. As long as the EVTX logs are
stored without any compression or encryption, the tool should be able to pull
out and parse EVTX records. The format is: -image <file>. If the file is a ‘dd’
image of a disk one can add the offset/size within the image of the volume to
analyze, using the sub options: -offset <#> -size <#>.

Experimental. Extract EVTX records from the specified VMDK disk image. The
format is: -vmdk <disk image>. One can add the offset/size within the image
of the volume to analyze, using the sub options: -offset <#> -size <#>.

Used to specify a starting offset to look at EVTX records. The format
is: -offset <#>

Used to specify a size to look at EVTX records. The size is relative to the
starting offset. The format is: -size <#>.

Ensure number for sizes and addresses are displayed as base-10 format
versus hexadecimal format. Default is hexadecimal format.

All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8 byte
order mark to the CSV output using this option.

Copyright © TZWorks, LLC Apr 17,2025 Page 13



8 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital
X509 code signing certificate embedded into the binary (Windows and macQOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools
(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The
license needs to be in the same directory of the tool for it to authenticate. Furthermore, any
modification to the license, either to its name or contents, will invalidate the license.

9 References

Introducing the Microsoft Vista event log format, by Andreas Schuster, 2007

Wikipedia, the free encyclopedia. Event Viewer topic

TechNet, New Tools for Event Management in Windows Vista

Randy Franklin Smith's online encyclopedia.

Windows Event Log Viewer, evtx_view, https.//tzworks.com/prototype_page.php?proto_id=4
SleuthKit Body-file format, http.//wki.sleuthkit.org/

Log2timeline CSV format, http://log2timeline.net/

SQlite library statically linked into tool [Amalgamation of many separate C source files from
SQlite version 3.32.3].

9. SQlite documentation [http://www.sqlite.org].

10. DB Browser for SQLite [http://sqlitebrowser.org/]

O NS A WLDNR

Copyright © TZWorks, LLC Apr 17,2025 Page 14


http://en.wikipedia.org/wiki/Event_Viewer
http://technet.microsoft.com/en-us/magazine/2006.11.eventmanagement.aspx?pr=blog
http://www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx
http://log2timeline.net/
http://sqlitebrowser.org/

	1 Introduction
	2 How to Use evtfx
	2.1 Processing Multiple Event logs (or log fragments)
	2.2 Scanning large datasets

	3 SQLite Results
	3.1 Extracting Specific Event IDs

	4 EVTX Record Templates
	5 CSV Field Names / Meaning
	6 Limitations
	7 Available Options
	8 Authentication and the License File
	9 References

