TZWorks® Windows LNK Parser
(Ip) Users Guide

Copyright © TZWorks LLC
www.tzworks.com
Contact Info: info@tzworks.com

Document applies to v1.08 of Ip
Updated: Apr 25, 2025

Abstract

Ip is a standalone, command-line tool used to extract
SHLLINK artifacts from Windows shortcut files. It can
operate on a single shortcut file, a collection of shortcut
files, or on an entire disk image. All artifacts can be
outputted in one of three parsable formats for easy
inclusion with other forensics artifacts. Ip can also parse
unallocated space to extract additional artifacts. Ip runs on
Windows, Linux and Mac OS-X.

http://www.tzworks.net/
mailto:info@tzworks.net

Table of Contents

1 INTEFOUCTION ittt ettt e b e s b e sae e sat e et e et e e bt e beesbeesaeesateenbeebeenneesane e 2
2 SHLLINK Metadata and What /0 EXEraCtS ...ccccuveeeeiiieee ettt etee e e vee e s atre e e savae e e e eavae e e e nraeas 3
2.1 Example of a more common LNK file’s OULPULuveeiiiiiiiiiiecccec et 3
2.2 Example of breaking out more metadata from the ID List.......cccoecveeiiviiieiiniiiee e, 4
2.3 Pulling out Metadata from the Segmented IteMIDS.........cooviiiiiiiiiiee e 6
2.4 Example of an ID List embedded into a VistaAndAbovelDList..........ccccecveeeieciiee e, 6
2.5 Example of a LNK file utilizing a PropertyStore Data BIOCKccccoeeeeeiiiieicciiee e, 7

I = (o 1YV o T U= o RPNt 8
3.1 Parsing an INdividual SNOrtCUL FilE.....ciiuiiiiieiiie ettt 9
3.2 Parsing a Captured Image for SHLLINK metadata......ccccccueeiiiieeiiiiiee et esees e 9
3.2.1 o 177 Yolo gl o] 1 { (0] o TR OO PPP SRR 9
3.2.2 L1 Yol [o] o] 4 [0 o VU 11

33 Parsing Automatic and Custom Destinations files used for Jump Listsccccceeecieeeiccieeeenneen. 12
3.4 Parsing @ Collection Of Fl@Sccocuiiiiiiiiiie et e e e 13
3.5 Parsing an Active Volume [Experimental Option]ccccceeiiecieiiiiiee e 14
3.6 Parsing @ VIVIWAIre VOIUMEccooiuiiiii ittt ettt e sttt e e e ette e s s stee e e s sabae s s e eabaee s s snbeaesenaneeas 15
3.7 Parsing Volume SNAadOWSoooiiiiie ettt et e e ete e e e tae e e e eatae e e e abae e e eeabeeeeennseeas 15
3.8 Parsing NON-ASCI CharaCter SELScccccuiieiicciee ettt e e e etee e e e etae e e e e bee e e e enbeeeeenareeas 16

4 KNOWN ISSUBS ... eiiieiieiee ettt ettt ettt e sttt e e st e e e s st e e e s sb et e e smba e e e s b et e e samna e e e s nbaeeesannnneenan 17
I NV 111 o LI @] o d To] o L3P PUPPPRNt 17
6 Authentication and the LICENSE File......c.eoiiiiiiiiieieeeeeeeese et 20
6.1 Limited versus Demo versus Full in the tool’s Output Banner........cccveeveciieeiecieee e ecieee e 20

T REFEIENCES ..ottt ettt s bt s ht e st st e e b e e bt e bt e sbe e satesabeebeenbeesaeesaneaa 20

Copyright © TZWorks LLC Apr 25, 2025 Page 1

TZWorks® LNK Parser (Ip) Users Guide

Copyright © TZWorks LLC
Webpage: http://www.tzworks.com/prototype_page.php?proto_id=11
Contact Information: info@tzworks.com

1 Introduction

Ip is a command line version of a Windows SHLLINK [2] parser that was designed to operate on shortcut
LNK files, but can parse SHLLINK artifacts from files that generate Jump Lists as well. Originally inspired
by the forensic class taken from the SANS Institute [1] back in Jan 2010, Ip is a useful tool for any
computer forensic toolkit.

While shortcut files can reside in just about any directory, the primary location for many shortcut files is:
%APPDATA%\ Microsoft\ Windows\ Recent\ <shortcut files>, where the $APPDATA% is resolved to
C:\Users\<user account>\AppData\Roaming. This is where the operating system automatically creates a
shortcut based on a user double clicking on an application to launch it.

Of interest to the forensic investigator is the metadata associated with this type of file, since they offer
many useful artifacts when determining activity on a computer. Some of these artifacts include:

e The path to the target file/directory it references along with modify/access/create timestamps

e The size of the target when it was last accessed.

e Serial number of the volume where the target was stored.

o Network volume share name (if applicable).

e Target attributes, such as whether it was 'read only', 'hidden’, 'system’, etc.

e One of the MAC addresses associated with the host computer (available when an Object ID is
present).

When trying to parse out the above artifacts, one can turn to the Microsoft open specification
agreement, where there is a published version of the Windows SHLLINK format. (ref: MS-SHLLINK [2]).
From this specification, one can see many of the details needed to understand the structures of the
format. Prior to Microsoft publishing this specification, there was another source describing the details
of the LNK format. Jesse Hager's paper (ref [3]) discussed his results of reverse engineering the LNK
internals.

The parsing engine of Ip makes use of the Microsoft specification to extract much of the shortcut
internals. Where the specification lacked details, we ended up using empirical data to help understand
some of the more opaque data structure types allowing us to parse the SHLLINK format more fully.

Copyright © TZWorks LLC Apr 25, 2025 Page 2

mailto:info@tzworks.net

2 SHLLINK Metadata and What Ip Extracts

When creating tools that parse artifacts that still have unknowns associated with them, there is a
balance on what data should be presented to the user and which should not. On one hand, we at
TZWorks LLC personally like to see all the data artifacts, complete with file offsets, so we can trace each
artifact in a hex editor. This allows one to hand carve the data and is very important to the reverser.
However, this type of data is most likely to be too noisy for the normal user. Therefore, the version that
is available commercially is a subset of options we consider useful to the general investigator. Some of
these options include: (a) carving SHLLINK metadata from images and live volumes, (b) handling the
nuances of the Destinations files used in the Jump Lists, and (c) additional output format options.

To see Ip’s default output, and hence some of the SHLLINK metadata, below are a series of snapshots
that represent how various data can be embedded into the LNK file. (Note: sample LNK data was
provided by Rob Lee from the SANS Institute as exemplars, which he took from the Donald Blake image
used in the SANS 408 Forensics class).

2.1 Example of a more common LNK file’s output

When analyzing Ip’s output, a number of timestamp data is shown, including shortcut file timestamps as
well as the target (what the shortcut file points to) timestamps. The output should contain the size of
the target, if it is a file versus a directory, and will contain a path to the target. As part of the SHLLINK
specification, there is also what Microsoft calls a TrackerDataBlock. This is what we refer to as the
object identifier (ID), since it is really the object ID of the NTFS MFT record associated with the target file
or directory.

The object ID is another way to reference the target file/directory and ultimately allows the operating
system a straight forward way to ‘track’ the target file or directory at the lower level NTFS object ID/MFT
entry level. This object ID is part of the target file and moves where the target moves. In the SHLLINK
metadata there are two object IDs: (a) one that is recorded when the shortcut is created, and (b) one
that is the current one. For the most part these two object IDs are the same and will only differ in
certain conditions. Internally, Ip makes note of both object IDs, however, it will only display both if they
are different.

Associated with the object ID is a creation timestamp and media access control (MAC) network interface
identifier that was present during the object ID creation. The format of the object ID follows the Type 1
specification outlined in RFC 4122 (Universally Unique Identifier URN Namespace) [10]. Using this
specification, one can extract the object time and MAC address from the object ID itself. This means
that there is not any object ID timestamp or network interface artifact explicitly present in the SHLLINK
metadata, and any data shown in Ip’s output for these fields is from implicitly inferring it by extracting it
from the object ID itself. When analyzing the below MAC network interface extracted, it identified one
of our VMWare network interfaces and not the primary computer’s network address.

Copyright © TZWorks LLC Apr 25, 2025 Page 3

"emdline: 1p64 e:\testcase\lnk\Asgard.Ink.bin"

source path/filename: e:\testcase\Ink\Asgard. Ink,bin
file modified: 12/11/2013 03:14:28 [UTC] 5 -
file accessed: 10/01/2014 14:05:45 [UTC] LNK file MAC time
file created: 10/01/2014 14:05:45 [UTC]
MFT Entry: 0x0002d2d4 (*References target MFT entry
MFT Sequence#: 0x0004
Target flags: HasLinkTargetIDList, HasLinkInfo, HasRelativePath, HasWorkingDir,
at‘t,r;buges: FILE_ATTRIBUTE_ARCHIVE i)
modified: 09/11/2013 16:19:56.420 [UTC . .
accessgd: 09/11/2013 16:19:56.403 [UTC] LEEEL AT D0l S
created: 2 1

(s)?i iD time: = w Target item ObjID create time and

file size: 0x00009a2f (39471 “bytes] MAC addressdetived from ObilD

ID List: |£CLSID_UsersF1 les}\AppData\Roami r’\Mi crosoft\Signatures\Asgard. htm
Volume Type: ~rxed :
Volume serial num: 7e58-aab0 Target item
Volume label: Windows8_0S
Local base path: C:\Users\Donald\AppData\Roamigg\Microsoft\Signatures\Asgard. htm
Relative path: .. \..\Signatures\Asgard. htm

Working directory: C:\Users\Donald\AppData\Roaging\Microsoft\Signatures

NETBIOS name:
Volume ID:
Object ID: Sael 5 e3-be b6

MAC address: 24 fd 52:56: 6e de *Requires Full version of license

While there are a number of paths to the target, the key one is the one labeled ‘ID List’ shown above. It
is generated from a series of SHITEMID structures [9] embedded in the SHLLINK metadata that is used to
construct the final path of the target. Itis important for any SHLLINK parser to pull this out, since
Windows defaults to the path described in this structure (if it exists) when resolving where the target file
or directory is located.

2.2 Example of breaking out more metadata from the ID List

"cmdline: 1p64 e:\testcase\lnk'\Documents.LNK.bin"

source path/filename: e:\testcase\1nk\Documents.LNK.bin
file modified: 12/18/2013 16:13:03 [UTC]
file accessed: 10/01/2014 14:05:43 [UTC]
file created: 10/01/2014 14:05:43 [UTC]
Target flags: HasLinkTargetIDList, IsUnicode, DisableKnownFolderAlias
Target attributes: not specified
Target modified: not available
Target accessed: not available
Target created: not available
Parsed size: 0x00000b98 [2968 bytes]
Target file size: ?xOOOOOOOO [o ?ytes] Target item
ID List: {CLSID_MyComputer}\Donald's Windows Phone‘\Phone\Documents
Embedded ID List info:
1 }\?\usb#vid_g?n&pjd_O?Sl&n‘i_OO#G&GdOQSdf&O&OOOO# *Some embedded data includes |daf33}
2] {CLSID_PortableDevices ;
[3] SID-{10001,MTP Volume - 65537,31268536320} USB VID/PIDs, serial number, SID,
[4] Generic hierarchical and other portable device
[5] Serial# : MTP Volume - 65537 information
[6] FuncObjId : s10001

£7] {00010000-0514-0000-0000-000000000000} . . .
[8] OhiTd - ol *Requires Full version of license

Copyright © TZWorks LLC Apr 25, 2025 Page 4

If the LNK file references a file from a portable device, more detailed information can be found out
about the portable device that was used. For example, if the portable device interfaced with the
computer as a USB device, the LNK file may have data such as vender ID and product ID of the device
that was used complete with serial number. This would be useful in tracking down that a particular
device was used on that computer while accessing a file on the device. Above is an example
demonstrating this type of information is available in a LNK file and was taken from the SANS 408
Donald Blake Windows 8 image.

Sometimes, certain embedded information may have specific timestamps associated with the target
path and item that the LNK file refers to. Normally, the ID List contains DOS timestamps, which can be
extracted as well. The timestamps shown in the next example, however, represent Windows FILETIME
timestamps pulled from the properties embedded into each of the nodes that make up the ID List.
Below is an example of this.

"emdline: 1p64 'e:\testcase\lnk\Camera Photos.Ink.bin""

source path/filename: e:\testcase\Ink\Camera Photos.Ink.bin
file modified: 12/11/2013 03:14:29 EUTC
file accessed: 10/01/2014 14:05:45 [UTC
file created: 10/01/2014 14:05:45 [UTC]
Target flags: HasLinkTargetIDList, HasLinkInfo, HasRelativePath, IsUnicode, DisableKnown
Target attributes: FILE_ATTRIBUTE_DIRECTORY
Target modified: 10/17/2013 19:27:23.602 [UTC]
Target accessed: 10/17/2013 19:27:23.602 [UTC]
Target created: 10/17/2013 19:25:48.214 [UTC]
Target ObjID time: 10/17/2013 21:03:21.428 [UTC]

size: 0x00001268 E4?12 bytes]

file size: 0x00005000 [20480 bytes]

[SW_SHOWNORMAL]

Path®* : C: \Users\Donald\P1ctures
Created : 08/10/2013 03:03:24.000 [UTC]
Modified : 10/17/2013 19:05:48.231 [UTC]
Name : Pictures
Embedded Path : {CLSID_MyComputer}\{CLSID_Pictures}
Created [guess]: 08/10/2013 03:03:23.667 [UTC] Target item
Modified [guess]: 10/17/2013 19:05:48.231 [UTC]
Path* : C:\Users\Donald\Pictures\iCloud Photos
] Created : 10/17/2013 19:05:50.000 [UTC]
] Modified : 10/17/2013 19:05:48.241 [UTC]
Accessed : 10/17/2013 19:05:50.000 [UTC] *Some embedded data
Name : iCloud Photos | includes timestamps that are
Embedded Path : {CLSID_MyComputer}\C: \Users\Dcna1d\P1ctures
Mod'i';::ed :1%0/17/2013 19:05:50.000 [UTC] not the normal IDItem DOS
@shell32.d -21813 i i
eshell32. 11’ 31779 tlmestamp.s, but Windows
Pagh; :dC:\Usgrs\Dona1d\Pictures\iCEoudIPhotos\Shared FILETIME timestamps. If found,
Modified : 10/18/2013 01:38:50.358 [UTC
Accessed : 10/18/2013 01:38:52.000 [UTC] they are shown here
Name : Shared
Embedded Path {CLSID_MyComputer}\C:\Users\Donald\Picturesf§iCloud Photos\Shared
Modified : 10/13/2013 01:38:52.000 [UTC]
Path® : C:\Users\Donald\Pictures\iCloud Photos\Shared\Camegh Photos
Name : Camera Photos . . .
Created : 10/17/2013 19:25:50.000 [UTC] *Requires Full version of license
Modified : 10/17/2013 19:27:23.602 [UTC]
Accessed : 10/1?/2013 19:27:24.000 [UTC]
Embedded Path {CLSID_MyComputer}\C:\Users\Donald\Pictures\iCloud Photos\Shared\Camera Photos
Mnd1f1ed H 10/1?/2013 19:27:24.000 [UTC]
Tixed
VO1ume ser1a1 num: 7e58-aab0
Volume label: Windows8_05
Network name: \\BIFROST\Users
Local base path: C:\Users\,
Common path: Donald\Pictures\iCloud Photos'\Shared\Camera Photos
Relative path: e\ L \Pictures\iCloud Photos\Shared\Camera Photos
NETBIOS name: bifrost
Volume ID: 6bc0ab92-f111-496F-9067-ec5c94ffasfs
Object ID: 8dfc97c1-376f-11e3-be88-24fd52566ede
MAC address: 24:fd:52:56:6e:de

Copyright © TZWorks LLC Apr 25, 2025 Page 5

2.3 Pulling out Metadata from the Segmented ItemIDs

As stated earlier, Windows uses the Shell ItemID to build the path of the file specified for the link. Each
ItemID can contain other information beside the segment of the path. This other information can
include: (a) MAC times, MFT entry of the segment, and MFT sequence number. To pull out this
additional metadata, use the -idltimes switch. Below is an example of performing this on the Asgard.Ink
parsed earlier. The additional data outputted is highlighted below.

"emdline: 1p64 e:\testcase\lnk\Asgard.Ink.bin -iditimes”

source path/filename: e:\testcase\Ink\Asgard. Ink.bin

file modified: 12/11/2013 03:14:28 [UTC]

file accessed: 10/01/2014 14:05:45 [UTC]

file created: 10/01/2014 14:05:45 [UTC]

MFT Entry: 0x0002d2d4

MFT Sequence#: 0x0004
flags: HasLinkTargetIDList, HasLinkInfo, HasRelativePath, HasWorkingDir, Is
attributes: FILE_ATTRIBUTE_ARCHIVE
modified: 09/11/2013 16:19:56.420 EUTC]
accessed: 09/11/2013 16:19:56.403 [UTC]
created: 09/11/2013 16:18:15.661 EUTC
ObjID time: 09/04/2013 17:22:08.941 [UTC
size: 0x000003e9 [1001 bytes]
file size: 0x00009a2f [39471 bytes]

: [SW_SHOWNORMAL]
§LS£D_UsersFi1es}\AppData\Roaming\Microsoft\Signatures\Asgard.htm
ixe

Volume serial num: 7e58-aab0
Volume label: Windows8_0S

Local base path: C:\Users\Donald\AppData\Roaming\Microsoft\Signatures\Asgard. htm
Relative path: ..\..\Signatures\Asgard. htm
Working directory: C:\Users\Donald\AppData\Roaming\Microsoft\Signatures

NETBIOS name: bifrost

6bc0ab92-f111-496f-9067-ec5c94ffasfs
87349aeb-1586-11e3-be7d-24fd52566ede
z 24:fd:52:56:6e:de

IDList subpath breakout -
segment: {CLSID_UsersFiles}
segment: AppData

modify [UTC]: 08/10/2013 03:03:24
access EUTC}: 08/10/2013 03:03:24
create [UTC]: 08/10/2013 03:03:24
mft entry#: 0x00000fb3 [4019]
mft seq#: 0x0002 [2]

segment: Roaming

modify EUTC]: 09/03/2013 02:12:48
access [UTC]: 09/03/2013 02:12:48
create [UTC]: 08/10/2013 03:03:24
mft entry#: 0x000013e5 [5093]
mft seq#: 0:0008 [8]

segment: Microsoft e

modsfy [UTC1: 09/10/2013 o1:30:00 L Additional metadata broken
access EUTC]: 09/10/2013 01:30:00
create [UTC]: 08/10/2013 03:03:24 out by ItemID segment
mft entry#: 0x000013e6 [5094]
mft seq#: 0x0008 [8]
segment: Signatures

modify EUTC}: 0951152013 16:19:58
access [UTC]: 09/11/2013 16:19:58 * H : :
create [UTC]: 08/12/2013 02:39:44 Requires Full version of license
mft entry#: 0x0002e0b3 [188595]
mft seq#: 0x0005 [5]

segment: Asgard.htm

modify [UTC]: 09/11/2013 16:18:16
access [UTC]: 09/11/2013 16:18:16
create [UTC]: 09/11/2013 16:18:16
mft entry#: 0x0002d2d4 [185044]
mft seq#: 0x0004 [4]

2.4 Example of an ID List embedded into a VistaAndAbovelDList

Copyright © TZWorks LLC Apr 25, 2025 Page 6

For some LNK files, the ID List is stored within the VistaAndAbovelDList data block. This, like the ID List
examples previously, can have extra metadata which may provide additional insight to the target file. In
some cases, the data is just redundant.

"emdline: 1p64 'e:\testcase'\Ink\DECISION MAKING CONTINGENCIES.Ink.bin""

source path/filename:
file modified:

file accessed:

file created:

Target flags:

Target attributes:
Target modified:
Target accessed:
Target created:
Target ObjID time:

Parsed size:
Target file size:

Show cmd:

Network name:

Common path:
Environment DataBlk:
NETBIOS name:

lyea T0-

e:\testcase'\ Ink\DECISION MAKING CONTINGENCIES. Ink.bin
12/11/2013 03:14:30 EUTC
10/01/2014 14:05:45 [UTC

10/01/2014 14:05:45 [UTC]

HasLinkInfo, IsUnicode, HasExpString

FILE_ATTRIBUTE_ARCHIVE

10/21/2013 19:46:54.626 [UTC]

10/21/2013 19:46:54.425

10/21/2013 19:46:54.425

10/20/2013 13:27:24.505

0x00000727 [1831 bytes]

0x00025200 [154112 bytes]

[SW_SHOWNORMAL]

\\VALHALLA\USERS

Public\Documents\Articles\DECISION MAKING CONTINGENCIES. doc
YWWWVALHALLAWUsers'\Public\Documents'\Articles\DECISION MAKING CONTINGENCIES. doc

valhalla
24

VistaAndAboveIDList:
VistaAndAboveIDList-info:
EI] \\VALHALLA\Users
2] Microsoft Network
3] @shel132.d11,-21816
4] @shell132.d11,-21801

20381 8.02d7 . 4236.08c0.70a322£24205
{CLSID_ComputersAndDevices} \VALHALLA\Users'\Public\Documents\Articles\DECISIO

}

00:0a:f7:04:83:53

*Can include embedded as well Target item

MAC addreés: . . .
*Requires Full version of license

2.5 Example of a LNK file utilizing a PropertyStore Data Block

In some cases, the LNK file will make use of what is called a PropertyStore data block. This block
encapsulates much metadata that could be useful in an analysis. Below is an example. For this example,
this particular LNK file did not record a target file’s dates or other stats common to LNK files. In this case,
most of the data about the target file was started in the PropertyStore data block.

"emdline: Tp64 e:\testcase\lInk\com.amazon.kindle.Ink.bin"

source path/filename:
file modified:
file accessed:
file created:
Target flags:
Target attributes:
Target modified:
Target accessed:
Target created:
size:
f1]e size:

e:\testcase'\ Ink'\com.amazon. kindle.Ink.bin
12/11/2013 03:14:29 [UTC]
10/01/2014 14:05:45 [UTC]
10/01/2014 14:05:45 [UTC]
IsUnicode

not specified

not available

not available

not available

0x00000513 [1299 bytes]
0x00000000 [0 bytes]

ropertyStoreDataBlk: ormat gui [vaJue]

[1] 9f4c2855-9f79- 4b39 a8d0-eld42deld5f3/Family=
9f4c2855-9f79-4b39-a8d0-eld42delds5f3 /Name=
9f4c2855-9f79-4b39-a8d0-eld42del1d5f3/Id
9f4c2855-9f79-4b39-a8d0-eld42deld5f3/Instal 1Path=
86d40b4d-9069-443¢c-819a-2a54090dccec/Icon™
86d40b4d-9069-443¢c-819a-2a54090dccec/Icon®
86d40b4d-9069-443¢c-819a-2a54090dccec/Icon™
86d40b4d-9069-443¢c-819a-2a54090dccec/Type*

[9] b725f130-47ef-101a-a5f1-02608c9eebac/Name

[10] 841e4f90-ff59-4d16-8947-e81bbffab36d/Publisher=

[AMZNMobileLLC. KindleforWindows8_stfe6vwadjnbp]

[AMZNMobi leLLC. KindleforWindows8_2.1.0.1_neutral__stfeévwadjn
[AMZNMobileLLC. KindleforWindows8_stfe6vwadjnbp! com. amazon.kin
[C:\Program Files\WindowsApps\AMZNMobiTleLLC.Kindleforwindowss.
[images\logo\metro-regular-logo.png]

[images‘ logo\metro-small-Tlogo.pngl
[images\logo\metro-start-menu-wide. png]

[Kindle]

[Kindle]

[AMZN Mobile LLC]

l *Requires Full version of license

Copyright © TZWorks LLC Apr 25, 2025 Page 7

3 HowtoUselp

For starters, Ip is a console application. Therefore, to be able to access, and thus parse, shortcut files
across all computer accounts, one will need to open the command prompt with administrator privileges
first. Without administrator privileges, one will be restricted to only accessing your account’s shortcut
files or those common to the operating system.

One can display the menu options by typing in the executable name without parameters. A screen shot
of the menu is shown below. By using the options in various ways, one can process SHLLINK metadata
with six general ‘use-cases” (1) processing an individual shortcut file, (2) carving from a captured
image, (3) extracting from Jump List files, (4) processing a collection of files, (5) carving from a mounted
volume, and (6) carving from a VMWare volume.

These ‘use-cases’ are annotated in the screen shot below.

2. Select Administrator: Windows PowerShell

Usage Process one Shortcut file
1p <filename> 4%_,_,_—————————,——"—— Process an image
lp <dd image> —scan [-offset <vol>] | -rawscan] [-outdir <dir>]

lp -partition <drv letter> [-ntfs_scan|-rawscan] = mounted volume
1p -vss <index> [-ntfs_scan|-rawscan] = *** Volume Shadow
1p -vmdk "<filel>|..." [-ntfs_scan|-rawscan] [-offset <vol>]= VMWare image

lp <jmplist file> -deepscan L

dir C:\Users*.1nk /b /s | 1p Spipe T-csvy— Process one Jump List file

dir "C:\Documents and Settings*.1lnk" /b /s | lp -pipe [-csv]

lp -enumdir <location 1lnk files> -num_subdirs <#> -filter "*.1lnk" [-csv]

€———— ___ Process a collection of files

output is comma separated value format
log2timeline output
sleuthkit output

Basic options
-CcsvV
-csvl2t
-bodyfile

Additional options
-username <name>
-hostname <name>
-basel®
-pipe
-ntfs_scan

output will contain this username

output will contain this hostname

use basel® for [jile size instead of std::hex
pipe files into app for processing

scans volume or image using MFT [default]
-rawscan scans file, carving LNK metadata

-deepscan for JumplLists or packed LNK metadata
-dateformat mm/dd/yyyy = "yyyy-mm-dd" is the default

-timeformat hh:mm:ss "hh:mm:ss.xxx" is the default
-pair_datetime *** combine date/time into 1 field for csv
-no_whitespace only available for csv option
-csv_separator "|" use a pipe char for csv separator

-filter <*partial*|*.ext> *** filters stdin data from -pipe option
-out <results file> output result to a specified file

nowonnnnn

L LI L L L)

Experimental options
-idltimes *** add IDList embedded data [default|-csv]
-include_unalloc_clusters *** incl unalloc clusters [regs -ntfs_scan]
-include_vss_clusters *** incl vol shadow clusters [reqs -ntfs_scan]

For output options, there are four possible formats to choose from: (1) default output, which is
unstructured output. The screenshot in the previous section above is an example of what this output
looks like. This information is useful if not trying to parse the artifacts into a database. (2) —csv (comma
separated value) option will render the output so that all the metadata is rendered with one record per

Copyright © TZWorks LLC Apr 25, 2025 Page 8

line which each field separated with a comma. The last two are: (3) —csvI2t and (4) -bodyfile. Each will
attempt to conform to either the log2timeline utility or the SleuthKit’s bodyfile format, as appropriate.

3.1 Parsing an Individual Shortcut File

The most basic option is to parse an individual shortcut file. To do so, just pass the name as the
parameter to Ip, as shown below, and the output will default to the long form shown in Section 2 above.

Ip <shortcut filename>

3.2 Parsing a Captured Image for SHLLINK metadata

To parse an entire image of a drive that is contained in a file (eg. a ‘dd’ type image), one can either use
the -rawscan or the -nfts_scan option. The first option ignores volume boundaries and file system
internals and does a brute force scan, by looking for any SHLLINK signatures. For each signature found,
Ip will attempt to carve out any SHLLINK metadata. This type of scan will carve out signatures from
allocated, unallocated or slack space. The second option assumes the image contains an NTFS volume,
and uses the file system internals to find LNK and/or Jump List files that contain SHLLINK data.

Ip is able to scan very large files by reading a manageable chunk from the file at a time and output the
results as they are generated. So if your image is many gigabytes in size, Ip should be able to process
the entire image without using too much memory or system resources.

3.2.1 rawscan option

If using the -rawscan option, Ip is agnostic as to the file system type, as it treats all formats the same.
While this is good news in that it can work on any file system, it is also bad, in that it does not try to
reconstruct files that are fragmented across non-contiguous clusters. Empirical results show, however,
that since the SHLLINK metadata is relatively small, the fragmentation of these files is close to nil. Thus,
this type of scanning/carving/parsing shows a high success rate in gathering the artifacts.

When parsing a large image, there will presumably be many SHLLINK entries carved out, thus it is
recommended to: (a) use the —csv option to place one record per line, and (b) redirect the output into a
separate file. Below is an example:

Ip c:\temp\dd_imagefile.bin -rawscan -csv > results.csv

There are some caveats to be aware of when using this option, since the algorithm for locating LNK files
relies on a LNK file residing on a sector boundary in the image (or volume) and tries on a best effort
basis to locate LNK files embedded in certain files or file structures.

Copyright © TZWorks LLC Apr 25, 2025 Page 9

For example, there are cases in the NTFS file system where the file data may not start on a sector
boundary. This happens when the NTFS File Record has enough space to house the data from the LNK
file. Thisis best shown with some snapshots. For this example, we located a file that had this
condition. The LNK file is called “Dear Carol.LNK”. When looking the right side of the snapshot, the Data
Attribute is highlighted to show that the data is labeled as “Resident Data” (vice “Nonresident Data”).
“Resident Data” means the data explorer sees for the file is located within the File Record itself. Starting
with version 0.62, the —rawscan option will extract these embedded LNK files from NTFS File Records.

(0 LocalLow (48058)
=123 Roaming (47727) File Record:
__"_:3 Adobe (52542) MFT entry: @xeeeeb9l4 [4738@]

: Seq Num: exeeeb [11
%[Google (50824) Type: file [11]

i-':l Identities (48013) Ref Count: 2

+(L] Macromedia (45852) ’
= X Standard Info Attrib: (ARCHIVE, CONTENT_MNY
SE3 M , |
-\ Mierosoft (47728) modified: ©6/16/2009 ©5:51:38.237

+ D Addins (50501) . 287

® (0 Credentials (47965) Example of file that has its data g?;

@@ Crypto 47292) as a “Resident Data” attribute |’

[+ Document Buiding Blocks (54435) .
#2 Excel (50502) vice on separate clusters

(] Internet Explorer (47904)
Filename Attrib: Dear Carol.LNK
MMC (47438
+_D ¢) parnt mft: @x2@eedses [54536]
® (0 Network (46882) modified: ©6/16/2009 85:51:30.

=3 Office (48165) accessed: ©6/16/2009 ©5:51:30.
=13 Becen mft mod: 86/16/20609 85:51:30.

D) Dear(;aro;.LNK(d?asa) created: ©6/16/2009 05:50:24.
3 Heed {] SO0 2L

= Filename Attrifj: DEARCA~1.LNK

Path: [root]\Users\Susan Storm Richards\A

8]

B index.dat (54540) parnt mft: ejeeeedses [54536]

. . modified: ©l}/16/2009 ©5:51:30.
B Re Your StJohn Fight Confirmat accessed: ©f}/16/2009 @5:51:30.

B) SUSANSTORM (E).LNK (46757) mft mod: /16/2009 85:51:30.
a Templates.LNK (54569) created: 16/2089 85:58:24.

B) To-Do.LNK (46837) Data Atteib: ("

. ata rip: unname
B Your order nas been received by resident data used: @x@13@
B ‘vour St John Fiight Confirmation.|

If one looks at the raw File Record for the entry, one will see how the File Record attributes are packed
including, in this case, the data for the file. In the snapshot below, is highlighted the actual LNK file data.

Copyright © TZWorks LLC Apr 25, 2025 Page 10

22e4 Se08:
02e4 Sele:
e2ed Se2e:
22e4 Se3e:
2284 Sesl:
e2e4 Se5e:
02e4 Se68:
@2e4 Seve:
22e4 Sese:
22e4 Segse:
e2e4 Seal:
82e4 sebe:
@2e4 Sece:
e2es4 Sede:
82e4 Seed:
@2es sefe:
02e4 Slee:
@2e4 511@:
e2e4 5128:
22e4 S13e:
e2e4 51s8:
e2e4 5158:
@2e4 Slg@:
e2e4 517e:
22e4 Sige:
e2e4 51%8:
22e4 Slad:
@2e4 Sibe:
22e4 Slce:
22e4 side:
@2e4 Sled:
e2esq s1fe: &
@2e4 5200 1
e2e4 5210 24
02e4 5220: 24

e

2

w
-
-
o

3888 E
3E3BA
3833 &
ER

29 @3
ee 21
28 88
29 28
ea e

238888

n

29 ab 57 46 ee 9
99 fc 7e 456 ee ¢9 01
28 22 208 22 22 ee ee

e
AN 2888

l%ﬂ&%3%8833883%5388%353?88
PREIBRAEITIIBRABIBBIRABBTRS

File Record data for
“Dear Carol.LNK” file

PANEEEBNSURBE 22202 R8R384
3
3

SRR
PE2BBL023R 880

PELSBRARRASSR
Pe3EpREIERREIEERR

PR FRE R
2ehepesssiyesssesy
PENREESR8EER

@2e4 5238
22e4 52483
@82e4 5258 =]
e2e4 5260 =]
02e4 527e: ea
@2ed 5288 =]

28

=]

a

3EBENBES
288388
FRESBRTEB8E

o

w
o

82e4 5298
@2e4 5238
82es s2be:fl 4 53 54
@2e4 S2ce:
@2ed 52de:| ff ff 8.

B

ANSTORM.E:\Dear
Carol.docx

PERERRERRE
CR3LBBTLEIR
BT3B ER 8
BREEI2A088

23138338388
EFRIE S A e e
E A
EE2UGRRAEE
EENREIT IR
BEBUEIT2GE

4
()
o
5
o

ra A

3.2.2 ntfs_scan option

The -nfts_scan option targets a specified mounted NTFS volume or an image with an NTFS volume. This
option starts by scanning the SMFT data looking for certain files (LNK file and JumplList files) and extracts
their data so it can parse the SHLLINK internals. This is more reliable than using the -rawscan option
discussed earlier, since this option allows the data to be fully reconstructed prior to parsing it. This
gives the Ip tool an advantage when encountering Jump Lists, since it now can pull out the LNK chunk of
data associated with the Jump List (either automatic or custom type).

If the image one want to analyze is a disk containing multiple volumes, one needs to specify the offset of
the volume that will be scanned. This is done via the optional parameter -offset <disk offset of
volume>.

The -ntfs_scan option also allows for two sub-options to allow one to analyze the unallocated clusters
associated with the volume as well as any Volume Shadow clusters. These sub-options

are: -include_unalloc_clusters and -include_vss_clustsers. Using these options together will yield
the maximum number of SHLLINK data parsed.

Copyright © TZWorks LLC Apr 25, 2025 Page 11

3.3 Parsing Automatic and Custom Destinations files used for Jump Lists

Jump Lists are a new feature, starting with Windows 7. They are similar to shortcuts files in that they
take one directly to the files that are used on a regular basis. They are different than the normal
shortcut files in that they are more extensible in what information they display. For example, in Internet
Explorer, the Jump Lists will display websites frequently visited; for Microsoft Office products like Excel,
PowerPoint and Word, they will show most recently opened documents.

From a user’s standpoint, Jump Lists increase one’s productivity by providing quick access to the files
and tasks associated with one’s applications. From a forensics standpoint, Jump Lists are a good
indicator of which files were recently opened or which websites were visited frequently.

Per Troy Larson [5], Windows derives the Jump List content from two sets of Destination files:

a. %APPDATA%\Microsoft\Windows\Recent\AutomaticDestinations\[App/D].automaticDestinations-ms
b. %APPDATA%\Microsoft\Windows\Recent\CustomDestinations\[App/D].customDestinations-ms

%APPDATA% is resolved to C:\Users\<user account>\AppData\Roaming. One can see that each user
account (or profile) has its own set of Destination files.

For most automatic Destinations type files, Ip can find and parse the SHLLINK metadata with no special
command line options (eg. using just the default settings). This is because the automatic Destinations
type files have a compound file signature, which is built into the Ip scanning engine. Ip will recognize
this signature, reconstruct the allocated/unallocated sectors within the compound file and scan the
chunks appropriately. On the other hand, the custom Destination type files only have SHLLINK
signatures which do not necessarily occur on sector boundaries. Therefore, to assist Ip, to parse this
type of file, one invokes the —deepscan switch. This tells Ip to scan in a mode that is in-between a
normal LNK file scan and a captured image type scan. This switch has no effect on normal shortcut files,
so it can be used to handle both shortcut files as well as automatic/custom Destinations files.

While Ip does a good job at pulling out the SHLLINK metadata from both automatic and custom
Destination type files, it does not attempt to parse the MRU/MFU data from the automatic Destinations
files. To parse these files in a complete fashion, one can use the jmp tool from TZWorks. The jmp tool
understands how to parse the both types of Destinations files in a manner to extract all pertinent
metadata for the investigator.

Below is a comparison of the outputs of running the Ip tool and the jmp tool against the same automatic
Destinations file. This output is representative of the differences between the two tools. For more
information about the jmp tool, one can download and review the readme file for the tool.

Copyright © TZWorks LLC Apr 25, 2025 Page 12

Differences of Ip and jmp outputs after
parsing the same automaticDestinations File

Ip (Ink parser) - limited version 0.49; Copyright (¢) TZWoi
cmdline: [06/25/12 01:48:31.981 UTC] : Ip "12dcleaBe34

target target
mdate mtime [UTC]

1/1/2012 04:16:31.114
1/1/2012 04:14:57.875
1/1/2012 04:07:59.633
1/1/2012 03:39:48.225

source type

JMPLIST (carved allocated)
JMPLIST (carved allocated)
JMPLIST (carved allocated)
JMPLIST (carved allocated)

Ip results

52 {CLSID_MyComputer\C:\dump\test\7f000001_2012_01_01_0416_31_052_410d352968a838a88d5d2aba05ffbed7_sq
0 {CLSID_MyComputerN\C:\dump\test\7f000001_2012_01_01_0414_S7_672_b57108d145771223c050ec610cad657b_s¢

{CLSID_MyComputer}\C:\dump\test\2130706433_2012_01_01_0407_59_633_screen_dump.bmp
0 {CLSID_MyComputer}\C:\dump\test2.bmp

JMPLIST (carved allocated
JMPLIST (carved allocated

jmp (jmplist parser) - limited version ver: 0.10; Copyright (c) TZWorks LLC

1. Strickly carves the data based on SHLLNK signature
JMPLIST (carved allocated] 2. No MRU/MFU metadata extracted

cmdline: [06/25/12 01:48:17.535 UTC] : jmp "12dcleaB8e34b5a6.automaticDestinations-ms" -csv

MRU/MFU stream MRU/MFU MRU/MFU
index # date time [UTC]
1/2/2012 01:27:43.073

1/2/2012 01:21:27.708

1/1/2012 04:18:33.122

source type appid

12dclea8e34b5aé
12dclea8e34b5a6

12dcleade34b5ab
12dcl

IMPLIST (automatic)
JMPLIST (automatic)
JMPLIST (automatic)
JMPLIST (automatic)

2a34hE5

112012 041515 736

target target

mdate mtime [UTC
1/2/2012 01:27:29.30
1/2/2012 01:21:14.57;
1/1/2012 04:16:31.114

0 NA-1A-

jmp results

target name

{CLSID_MyComputer}\F:\test\demo\scrdmp\Debug\test2.4
{CLSID_MyComputer}\F:\test\demo\scrdmp\Debug\test.b
2 {CLSID_MyComputer}\C:\dump'\test\7f000001_2012_01_01
D MuCamnitarc:\dumaltact\ 7000001 2012 01 01

1. Parses the data based on MRU/MFU metadata and then on SHLLNK signature [130706433_2012 01

2. Aside from MRU/MFU metadata, rest of the data should be the same as Ip

JMPLIST (automatic) 12dc
JMPLIST (automatic) 12dc

JMPLIST (automatic) 12dc pw.image.bmp

3.4 Parsing a Collection of Files

Sometimes one just wants to parse a bunch of shortcut files that are in a directory or a collection of
subdirectories. Compared to the partition scan discussed above, this option is much faster. The
disadvantage with this approach over the partition scan, is that one does not get artifacts that have
been deleted and are still in unallocated or slack space.

To use this option, one will make use of the operating systems ability to pipe data from one application’s
output to another application’s input. In this case, the source of the data will be the Windows shell
command dir. By adding some special options to the dir command, one can output only the
path/filename without any extra data. This result will be consumed by Ip, and each path/filename
passed in will be analyzed. To invoke this behavior in Ip, one will use the —pipe switch. The annotated
figure below explains how the syntax of the command is composed.

Copyright © TZWorks LLC Apr 25, 2025 Page 13

4)

Pipe symbol = says to take Greater than symbol = says to
output from the expression take output from the
Piping filenames on the left side of the pipe expression on the left side of
into Ip symbol and make it as the symbol and redirect it to

input to the expression on the file named on the right
the right side of the pipe side of the symbol

dir c:\users*.Ink /b /s | Ip —pipe —csv > results.csv

| J \)

T T

This portion says: starting in the c:\users directory,
recursive scan [/s option] each subdirectory for files
containing the pattern [*.Ink]. Since shortcut files
have the extension Ink, the [*.Ink] filter should find all
these files. The [/b] option along with the [/s] option
will ensure the output is in the path/filename format
ithout any extra information.
\\mt /

The -pipe switch says tolp to
expect input to be from STDIN
and the —csv switch says to
format all data in CSV format

If one cannot use the -pipe option, one can use the experimental -enumdir option, which has similar
functionality with more control. The -enumdir option takes as its parameter the folder to start with. It
also allows one to specify the number of subdirectories to evaluate using the -num_subdirs <#> sub-
option.

3.5 Parsing an Active Volume [Experimental Option]

A variant of parsing a captured image is to parse an active Windows partition or a mounted volume on
Linux. The Windows version is invoked by using the -partition <drive letter> option. On Linux, this is
handled by passing in the device name of the disk and/or volume as the filename without the use of the
—partition keyword. The other option that needs to be set is to identify whether to use the —rawscan
or -ntfs_scan option.

Below is an example of Ip carving out SHLLINK signatures from a USB drive mounted as drive H for
Windows and /dev/sbd1 on Linux.

Ip -partition H [-nfts_scan | -rawscan] -csv > results.csv [Windows version]

Ip /dev/sdbl —csv [-nfts_scan | -rawscan] > results.csv [Linux version]
To find where the drive is mounted on Linux or Mac, one can use the built-in tool df to enumerate what
devices are used for the mount. While the df command is to display free disk space, it does this by
displaying all the devices mounted followed by their statistics. For the Mac OS-X case, one could also
use the diskutil list to enumerate all drives and volumes mounted.

Copyright © TZWorks LLC Apr 25, 2025 Page 14

The Mac 0S-X has an additional nuance in that one needs to specify raw 1/0 vice the standard buffered
I/0. So for the example above, if /dev/sdb1 was specified as the device for the drive, then one would
issue /dev/rsdb1.

3.6 Parsing a VMWare volume

Occasionally, it is useful to analyze a VMWare image, both from a forensics standpoint, as well as, from
a testing standpoint. When analyzing different operating systems, and different configurations, a virtual
machine is extremely useful in testing out different boundary conditions. This option is still considered
experimental since it has only been tested on a handful of VMDK configurations. Furthermore, this
option is limited to monolithic type VMWare images versus split images. In VMWare, the term split
image means the volume is separated into multiple files, while the term monolithic virtual disk is defined
to be a virtual disk where everything is kept in one file. There may be more than one VMDK file in a
monolithic architecture, where each monolithic VMDK file would represent a separate snapshot. More
information about the monolithic virtual disk architecture can be obtained from the VMWare website
[8].

When working with virtual machines, the capability to handle snapshot images is important. When
processing a VMWare snapshot, one needs to include the parent snapshot/image as well as any
descendants.

Ip can handle multiple VMDK files to accommodate a snapshot and its descendants, by separating
multiple filenames with a pipe delimiter and enclosing the expression in double quotes. In this case,
each filename represents a segment in the inheritance chain of VMDK files (eg. -vmdk "<VMWare
NTFS virtual disk-1> | .. | <VMWare NTFS virtual disk-x>" —offset <volume offset>). To aid the user
in figuring out exactly the chain of descendant images, Ip can take any VMDK file (presumably the VMDK
of the snapshot one wishes to analyze) and determine what the descendant chain is. Finally, Ip will
suggest a chain to use. In the syntax above there is also the -offset parameter. Without specifying the
volume offset, the -vmdk option will try to find the first NTFS volume and analyze that one. Therefore, if
your VMDK volume has multiple NTFS volumes and you wish to look at something other than the first
one, you would need to explicitly tell Ip to do that by specifying the -offset parameter.

3.7 Parsing Volume Shadows

For starters, to access Volume Shadow copies, one needs to be running with administrator privileges.
Also, Volume Shadow copies as discussed here, only applies to Windows Vista, Win7, Win8, and beyond.
It does not apply to Windows XP.

To tell Ip to look at a Volume Shadow, one needs to use the -vss <index of volume shadow> option.
This points Ip at the appropriate Volume Shadow and it starts analyzing the various user directories for
LNK files, and if any are found, parses them. Below is an example of traversing Volume Shadow Copy #1
and rendering the CSV results to a file called vss1_out.csv.

Copyright © TZWorks LLC Apr 25, 2025 Page 15

Ip -vss 1[-ntfs_scan | -rawscan] -csv >vssl out.csv

If one only wants to look for a particular LNK file in a particular Volume Shadow, one can use the
keyword %vss% . Below is an example of telling Ip to parse the LNK file at Volume Shadow Copy #1.

Ip %vss%l\users\testuser\AppData\Roaming\Microsoft\Windows\Recent\out.txt.Ink

The %vss% keyword, in combination with the number that follows the keyword, is expanded internally
to point to the proper Volume Shadow.

To determine which indexes are available from the various Volume Shadows, one can use the Windows
built-in utility vssadmin, as follows:

vssadmin list shadows

To filter some of the extraneous detail, type

vssadmin list shadows | find /i "volume"

While the amount of data can be voluminous from that above command, the keywords one needs to
look for are names that look like this:

Shadow Copy Volume: WW\GLOBALROOT\Device\HarddiskVolumeShadowCopy1
Shadow Copy Volume: WW\GLOBALROOT\Device\HarddiskVolumeShadowCopy?2

From the above, notice the number after the word HarddiskvolumeShadowCopy. It is this number that is
passed as an argument to the -vss option.

3.8 Parsing non-ASCII character sets

Since Ip was built to use UTF-8 internally, it can handle non-ASCII character sets without any
modifications. However, when dealing with LNK files, there are instances that reading in a non-ASCI|
character filename can be problematic from the command prompt. This section discussion some of the
non-ASCII character options available to Windows users running Ip.

When using the —pipe option with Windows, one can tell the data that is inputted into an application
(such as Ip) to be UTF-8 by changing the active code page from the default one to UTF-8. This can be
done via the command, chcp 65001, and then one can pipe in a directory of files into Ip and standard
input will yield the path/filename to display Unicode (UTF-8) format. Below is a screen shot of using the
chcp command in Windows.

Copyright © TZWorks LLC Apr 25, 2025 Page 16

= il rs

MS-DOS character set (OEM US)

C:Ndump>chcp
a7 ¥

Active code page:

C:Ndump>chcp 656001

3 1 COC age: 650¢ .
fictive code page: 656001 Unicode (UTF-8)

4 Known Issues

Ip doesn't parse some of the SHLLINK structures documented in the Microsoft specification. As
time permits, future versions will incorporate incremental capabilities to handle these
structures.

For csv (comma separated values) output, there are restrictions in the characters that are
outputted. Since commas are used as a separator, any data that had commas in its name are
changed to semicolons. For the default (non-csv) output, no changes are made to the data.

For carving options from an image or a volume, Ip can encounter boundary conditions that we
did not experience during our testing phase. For these cases, Ip will most likely crash. As we
discover new untested boundary conditions new updates will be rolled out.

[Note: this issue does not apply to -ntfs_scan option] For Linux and Mac builds, the file cdate &
time reported in the output is the date and time of the metadata change of the file (not the
creation time of the file). This behavior is different in Windows, where the file cdate & time
reported in the output is the date and time of the creation of the file.

(Windows only) When processing filenames with characters that are not ASCII, one option is to
change the code page of the command window from the default code page to UTF-8. This can
be done at the command window via the command: chcp 65001

5 Available Options

Option Description

Outputs the data fields delimited by commas. Since filenames can have
commas, to ensure the fields are uniquely separated, any commas in the

-Csv

filenames get converted to spaces.
_csvI2t Outputs the data fields in accordance with the log2timeline format.

Outputs the data fields in accordance with the 'body-file' version3 specified in
-bodyfile the SleuthKit. The date/timestamp outputted to the body-file is in terms of

UTC. So if using the body-file in conjunction with the mactime.pl utility, one

Copyright © TZWorks LLC Apr 25, 2025 Page 17

-basel0

-username

-hostname

-pipe

-enumdir

-filter

-rawscan

-outdir

-deepscan

-ntfs_scan

-partition

Copyright © TZWorks LLC

needs to set the environment variable TZ=UTC.

Ensure all size/address output is displayed in base-10 format vice
hexadecimal format. Default is hexadecimal format

Option is used to populate the output records with a specified username. The
syntax is -username <name to use>.

Option is used to populate the output records with a specified hostname. The
syntax is -hostname <name to use>.

Used to pipe files into the tool via STDIN (standard input). Each file passed in
is parsed in sequence.

Experimental. Used to process files within a folder and/or subfolders. Each
file is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs <#>.
Filters data passed in via STDIN via the -pipe option. The syntax is -filter

<"* ext | *partialname* | ...">. The wildcard character '*' is restricted to
either before the name or after the name.

Scan a large file or captured image looking for SHLLINK signatures and when
found parse them. This option is not meant to be used for individual shortcut
files

Used in conjunction with the -rawscan option to store carved LNK files to the
specified directory. The syntax is -rawscan -outdir <directory>.

Added just for Destinations files used for Jump Lists. Since Destinations can
have many SHLLINK signatures embedded into one file, this option handles
parsing these types of files correctly. Note: the -deepscan option and the -
rawscan option cannot be used together.

Scan a NTFS volume looking for SHLLINK signatures and when found parse
them. The basic option scans the SMFT data. There are sub-options to do a
more extensive scan: (a) -include_unalloc_clusters and

(b) -include_vss_clusters. The first will scan the unallocated clusters and
carve out any LNK data and the second will scan the Volume shadow clusters
and carve out any LNK data.

Used to scan a mounted Windows volume for SHLLINK signatures and parse
them. When this option in invoked, the option -rawscan is implicitly invoked.

Apr 25, 2025

-vmdk

-VSS

-idltimes

-no_whitespace

-CsV_separator

-dateformat

-timeformat

Since this option is traversing a mounted volume at the cluster level, it
requires the tool to be running at administrative privileges. The syntax is
-partition <drive letter>.

Extract artifacts from a VMWare monolithic NTFS formatted volume. The
syntax is -vmdk "disk". When this option in invoked, the -rawscan option is
implicitly invoked. For a collection of VMWare disks that include snapshots,
one can use the following syntax: -vmdk "disk1 | disk2 | ..."

Experimental. Parse LNK data from Volume Shadow. The syntax is -vss
<index number of shadow copy>. Only applies to Windows Vista, Win7, Win8
and beyond. Does not apply to Windows XP.

Experimental. Shell item identifiers are grouped together to form a path. Each
Item ID can have embedded in it an associated MAC timestamps as well as
MFT entry number for the segment of the path that creates the final path.
Using this option will display any additional metadata associated with each
segment (or Item ID) in the list

Used in conjunction with -csv option to remove any whitespace between the
field value and the CSV separator.

Used in conjunction with the -csv option, change the CSV separator from the
default comma to something else. Syntax is -csv_separator "[" to change the
CSV separator to the pipe character. To use the tab as a separator, one can
use the -csv_separator "tab" OR -csv_separator "\t" options.

Output the date using the specified format. Default behavior is -dateformat
"yyyy-mm-dd". Using this option allows one to adjust the format to
mm/dd/yy, dd/mm/yy, etc. The restriction with this option is the forward
slash (/) or dash (-) symbol needs to separate month, day and year and the
month is in digit (1-12) form versus abbreviated name form.

Output the time using the specified format. Default behavior is

-timeformat "hh:mm:ss.xxx" One can adjust the format to microseconds, via
"hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no
fractional seconds, via "hh:mm:ss". The restrictions with this option is a colon
(:) symbol needs to separate hours, minutes and seconds, a period (.) symbol
needs to separate the seconds and fractional seconds, and the repeating
symbol 'x' is used to represent number of fractional seconds. (Note: the
fractional seconds applies only to those time formats that have the
appropriate precision available. The Windows internal filetime has, for

Copyright © TZWorks LLC Apr 25, 2025 Page 19

example, 100 nsec unit precision available. The DOS time format and the
UNIX 'time_t' format, however, have no fractional seconds). Some of the
times represented by this tool may use a time format without fractional
seconds, and therefore, will not show a greater precision beyond seconds
when using this option.

_pair_datetime Output the date/time as 1 field vice 2 for csv option

_out Output the data to the specified file. The syntax is -out <results file>.
All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8
-utf8_bom byte order mark to the output using this option.

6 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital
X509 code signing certificate embedded into the binary (Windows and macQOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools
(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The
license needs to be in the same directory of the tool for it to authenticate. Furthermore, any
modification to the license, either to its name or contents, will invalidate the license.

6.1 Limited versus Demo versus Full in the tool’s Output Banner

The tools from TZWorks will output header information about the tool's version and whether it is
running in limited, demo or full mode. This is directly related to what version of a license the tool
authenticates with. The limited and demo keywords indicates some functionality of the tool is not
available, and the full keyword indicates all the functionality is available. The lacking functionality in the
limited or demo versions may mean one or all of the following: (a) certain options may not be available,
(b) certain data may not be outputted in the parsed results, and (c) the license has a finite lifetime
before expiring.

7 References

1. SANS Institute. Forensics 408 course (taken in Jan 2010)

2. [MS-SHLLINK]: Shell Link (.LNK) Binary File Format, 11/12/2010, sourced from Microsoft Corporation.
http://msdn.microsoft.com/en-us/library/dd871305(v=prot.13).aspx

3. Jesse Hager "The Windows Shortcut File Format", Available at
http://www.i2slab.com/Papers/The_Windows_Shortcut_File_Format.pdf.

Copyright © TZWorks LLC Apr 25, 2025 Page 20

http://msdn.microsoft.com/en-us/library/dd871305(v=prot.13).aspx

4. http://www.forensicswiki.org/wiki/LNK

Windows 7 Jump Lists, windows7forensics-jumplists-rv3-public-110606164708-phpapp01.pptx, Troy
Larson PowerPoint charts.

SleuthKit Body-file format, http://wki.sleuthkit.org

Log2timeline CSV format, http://log2timeline.net/

VMWare Virtual Disk Format 1.1 Technical Note, www.vmware.com

SHITEMID structure. http://msdn.microsoft.com/en-
us/library/windows/desktop/bb759800(v=vs.85).aspx

10. RFC 4122, A Universally Unique Identifier (UUID) URN Namespace, published July
2005.

o

© N

Copyright © TZWorks LLC Apr 25, 2025 Page 21

http://www.forensicswiki.org/wiki/LNK
http://wiki.sleuthkit.org/index.php?title=Body_file
http://log2timeline.net/
http://www.vmware.com/
http://msdn.microsoft.com/en-us/library/windows/desktop/bb759800(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb759800(v=vs.85).aspx

	1 Introduction
	2 SHLLINK Metadata and What lp Extracts
	2.1 Example of a more common LNK file’s output
	2.2 Example of breaking out more metadata from the ID List
	2.3 Pulling out Metadata from the Segmented ItemIDs
	2.4 Example of an ID List embedded into a VistaAndAboveIDList
	2.5 Example of a LNK file utilizing a PropertyStore Data Block

	3 How to Use lp
	3.1 Parsing an Individual Shortcut File
	3.2 Parsing a Captured Image for SHLLINK metadata
	3.2.1 rawscan option
	3.2.2 ntfs_scan option

	3.3 Parsing Automatic and Custom Destinations files used for Jump Lists
	3.4 Parsing a Collection of Files
	3.5 Parsing an Active Volume [Experimental Option]
	3.6 Parsing a VMWare volume
	3.7 Parsing Volume Shadows
	3.8 Parsing non-ASCII character sets

	4 Known Issues
	5 Available Options
	6 Authentication and the License File
	6.1 Limited versus Demo versus Full in the tool’s Output Banner

	7 References

