TZWorks® Chromium SQLite
Parser (csp) Users Guide

Copyright © TZWorks LLC
www.tzworks.com

Contact Info: info@tzworks.com
Document applies to v0.27 of csp
Updated: Apr 25 2025

Abstract
csp is a standalone, command-line tool that parses certai

databases associated with Chromium-based browsers (suc
as the browsers: Chrome, Edge, Opera, Brave and Vivaldi).
This tool incorporates three separate parsing engines to
facilitate operating in varying environments. Two of these
engines can parse both valid and discarded records as well
as parse records from corrupted SQLite databases. One of
the parsing engines allows for parsing records from partial
fragments of a database. This tool has working versions for
Windows, Linux and OS-X.

http://www.tzworks.net/
mailto:info@tzworks.net

Table of Contents

1
2

00 N o U b

INEFOAUCTION ettt ettt et e bt e s bt s ae e et e et e e bt e sbeesaee st e eabeenbe e beeaneesneeennean 3
Databases Targeted by thisS t0O]ooiiiiiiceecee et e e et e e e e eareeas 5
2.1 (I oY VA D | 7] o ¥ < PRSP 5
2.2 COOKIES DAatabase .. .veieeiiieiie ettt ettt s e st e e s bt e e ab e e s abeesneeesreeeaee 6
23 Web Data Databaseeoiiiiiiiei et et saee e b e 7
2.4 LEeT YT D F= 1 =] o T Y RS 8
2.5 SNOFTCULS DAtabase .. .coeueieiieiietieee ettt sttt e b e sae e st e sabe e b e e b e ns 8
2.6 LOZIN Data DAtabasecooeiuiiiiiciiieeccee et e e et e e e e e abr e e e e nbae e e ennreeas 9
2.7 FaVICONS Database.couuiiiiiiiiieeee ettt sttt et e et e s bt e e sab e e st e e snaeesbeeenee 10
2.8 Reporting and NEL DAtabasecc.uiiiiciiiiiieiee sttt sree e e e e e svae e s e e 11
2.9 DIPS Databaseeeeieeeiiieiiee ittt ettt ettt ettt ettt e s e e bt e st e st e e ab e e s be e e sabeesabeeenaeesbeeenne 11
L (0 1TV o T LY=oy 2N 12
3.1 Integrated Parsing AlGOrItNMSooi i e e e e e e e e 13
3.1.1 Algorithms and their ProS/CONS........cccuiiviiiieeiieeiiee ettt ettt ereeeve e beesaaesaaeeveeveeares 14
3.2 MOiIfiEd CSV OUTPUL ..ottt et b e sre e s st eneeneene 15
3.2.1 TYPE DESINATIONS ..vviiiiiiiiiiiiieeee ettt e e e s s s e e e e e e s sssabrbeeeeesssssssssnnaaeesssnnas 15
33 Processing Multiple Databasescoccuiiiiiiiiie et et e e e e e e e e e 16
3.4 Merging of Data betWeen Tables........cuui i e e 17
3.5 Parsing Chromium Artifacts from Memory or a Disk IMageccccveeeecieeiecciee e 18
3.6 Bypassing the Embedded SQLItE [IDraryceeiieiiee it 19
3.7 Verification and Validationcocioieiioiiiieeeeeeee e 19
Use Of the SQLILE LIDIary .ecooeeiiie ettt ettt e e et e e e s eatae e e e eabr e e s esabaee e esabeeeeenareeas 22
Pulling Chromium Artifacts off @ LIVe SYSTEMuiiiiiiiei ettt e 22
FANY Y1 =] o] LI @ o] 4 o L3R SEPROE 22
Authentication and the LICENSE File........cou i 24
REFEIEINCES ..ttt et st sttt b e bt e s be e she e s et e et e et e e sb e e sseesanesanesane e reennes 24

Copyright © TZWorks, LLC Apr 25, 2025 Page 1

Copyright © TZWorks, LLC Apr 25, 2025 Page 2

TZWorks® Chromium SQLite Parser (csp)
Users Guide

Copyright © TZWorks LLC
Webpage: http://www.tzworks.com/prototype_page.php?proto_id=45
Contact Information: info@tzworks.com

1 Introduction

As background, the Blink engine is used in the current Chromium architecture. Other common browser
engines include Gecko and WebKit. Below is a table to showing where the Chromium architecture is
used, and consequently, which browsers and the respective SQLite tables, the csp tool targets.

Chromium based that urls, visits, keyword_search_terms, visit_source, downloads, The csp tool just targets
use the Blink engine downloads_url_chains, clusters_and_visits, content_annotations, the SQLite data and the
(e.g. Edge, Chrome, context_annotations, cookies, autofill, thumbnails, top_sites, ccp tool is used to parse
Brave, Vivaldi, etc.) omni_box_shortcuts, logins, favicons, favicon_bitmaps, nel_policies, the cache
bounces

msp Mozilla based that use moz_places, moz_origins, moz_bookmarks, moz_historyvisits, The msp tool just targets
the Gecko engine (e.g. moz_inputhistory, moz_keywords, moz_annos, moz_items_annos, the SQLite data and the
Firefox, SeaMonkey, moz_anno_attributes, moz_cookies, moz_downloads, moz_icons, mcp tool is used to parse
Tor Browser, etc.) moz_icons_to_pages, moz_pages_w._icons, moz_favicons, the cache

moz_formhistory

sap WebKit based browsers history_items, history_visits, history_items_to_tags, history_tags, The sap tool also parses
(e.g. Safari) icon_info, page_url, cache_settings, cloud_tabs, cloud_tab_devices, the cache, as well as,
cfurl_cache_blob_data, cfurl_cache_receiver_data, some plists containing
cfurl_cache_response, IltemTable useful data

As shown in the first row above, the Chromium architecture used in many browsers and has many
artifacts available that the forensics examiner can use in identifying a user’s Internet activity. This
includes Chromium’s various databases, local storage, JSON formatted text files, and its cache.

This tool, however, does not target all of Chromium'’s artifacts; it only targets certain SQLite databases
and specific tables within those databases that are used by the Browser that have been deemed useful
by the forensics community. Specifically, this tool targets the following seven databases: (a) History, (b)
Cookies, (c) Web Data, (d) Top Sites, (e) Shortcuts, (f) Login Data, and (g) Favicons. Each of these
databases will be discussed in turn.

The user should be aware that the database schemas (which identifies the fields and their respective
types that comprise of a record) sometime vary across Chromium versions. This is something that
needed to be taken into consideration when designing the csp tool. The solution chosen was to have
the tool dynamically detect and adjust to varying schemas as they are encountered during the parsing
operation. This makes for a more complex algorithm and therefore done on a best effort basis.

Copyright © TZWorks, LLC Apr 25, 2025 Page 3

mailto:info@tzworks.net

In addition to the auto-schema detection, the csp tool offers three ways to parse a target database. (1)
The first way makes use of a standard SQL (Structured Query Language) parse. This is internal to the
tool, so SQL knowledge from the user is not required. For this option, the SQLite library was statically
linked into the tool, so a third-party dynamic library is not required to be present to run the tool. (2) The
second approach tells the tool to traverse the internal SQLite structures and parse out the records as
they are encountered. This option does not use the standard SQLite library, but utilizes the TZWorks’
internally designed libraries. The benefit of ‘rolling your own’ library is multi-faceted; not only does it
allow the tool to extract records from a corrupted database, but one can record the exact offset of the
data where it was found, if desiring to validate it later with a hex-editor. (3) The third, and final
approach, uses a signature-based parse. This turns out to be a unique way in parsing out records and
the beauty of it is that it does not use the internal SQLite table structures. Consequently, this latter
option allows one to parse records from a blob of data whether it be from memory or from a fragment
of a database. All three approaches were left in the tool for the analyst to use since there are benefits,
and disadvantages, for each option depending on the situation. More discussion on these options are
discussed in a later section.

Copyright © TZWorks, LLC Apr 25, 2025 Page 4

2 Databases Targeted by this tool

2.1 History Database

Chromium’s History database has a number of tables of interest to the analyst. Below is a diagram of
these tables and their relationship to each other. The fields listed in the tables below may or may not be
valid on differing versions of Chromium due to varying schemas with later versions.

Aside from the URL data, one can associate visit time, whether something was downloaded, its size,
whether it was opened, and the current path where it was stored.

_| clusters_and_visits _| clusters
. cluster_id .6 . cluster_id
4 visits @ . visit_id =) should_show_on_prominent_ui_surfaces
id | SCOTE) label
° ; i - engagement_score |l raw_label
) oo a | url_for_deduping | triggerability_calculated
¢ (88 s) visit time _) normalized_url Le»originatoasache_guid
.) . o o) i - — -
id o =) from_visit > a,f, iy S o N
. = | url _dlgahy e
o) U . transit‘i&u_h..
=) title 4 kauorlicantchiferne _| content_annotations
e Visit_count s EYWOros: —= @ [visit_id
o) rd_i S =
| typed_count o key’_ﬂo d.id) visibility_score
| last_visit_time = “ url_id | floc_protected_score
o mtle] hidgdaos® =) lower_term | categories
= term] page_topics_model_version
] visit_source =) an:‘otanon_ﬂags
/e . . a1 . - entities
| downloads ® |.)id —
.| related_searches
4 id o< jesi SOUrce o=l searchgmedalized yudl
| guid
==/ current_path 4 downloads_url_chains | context_annotations
5 7Y
| target_path Y Jid @ | visit_id
.| start time chain index | context_annotation_flags
3 received_bytes "‘ e = | duration_since_last_visit
= - page_end_reason
| total_bytes =) page_enc
™) | total_foreground_duration
- state
= d ty | browser_type
| danger_type _
it A GO e,

The table relationships shown by the line connectors above will have an effect on the number of records
that will be outputted by the csp tool. For example, the tables urls, visits, and keyword_search_terms
have what is called a ‘one to many’ relationship. The visits and keyword_search_terms tables may have
many linked records to only one entry in the urls table. Therefore, after merging the data in the various
tables together based on their relationship, one may get more records in the output of the report then
the number of records in the urls table. This is because each parsed line in the output has taken the
‘one to many’ relationship and converted it to a ‘one to one’ relationship; where each line in the output
shows one url/ entry and one visit entry. If there was a second visit entry for the same ur/ entry, that
would constitute a separate output line.

For the csp tool, each parsed line in the output shows one url entry and one visit unique entry. This is
because the various timestamps recorded in the visits table can be digested better by other tools when
broken out as a separate line per visit timestamp. Alternatively, the keyword search_terms table also
has a ‘many to zero/one’ relationship with the urls table. However, in this case, since no timestamps are
in the keyword_search_terms records, the keywords from all the matching records can be then merged
into one output for each url entry.

Copyright © TZWorks, LLC Apr 25, 2025 Page 5

2.2 Cookies Database

The Cookies database has some interesting data, including timestamps when it was created, last access

time, and expiration. If the cookie is from Google, the cookie value contains additional timestamps and

other miscellaneous information. The ¢sp tool outputs one parsed line for each record in the cookies

table.

[cookies

%l creation_utc
El host_key

= 3
[=THT)
E

5 A

) path
expires_utc
I5_SEcure
is_httponly

=T
[=1]
9 “+
;3 [=T}
N
= M
S om
oo
]
cC
=
™M

[e

is_persistent

) priority g

\I_

Copyright © TZWorks, LLC

Apr 25, 2025

Page 6

2.3 Web Data Database

The Web Data database has many tables, including autofill, credit cards, phones numbers, names,
keywords, etc. The csp tool currently just parses records from the autofill table. Shown below are two
versions of the autofill schema depending on the version the browser; the older version of Chromium
uses two tables where the fields of both must be merged to get the autofill name/value along with the
timestamp (date created). A later version of Chromium has all the required data to associate the

name/value and timestamps together. The ¢sp tool outputs one parsed line for each record in the
autofill table.

4 || autofill :
B name Older version

—| value

value_lower 4 ||| autofill_dates

2 pair_id @€ ® | pairid

| count Q date_created

Do

| autofill
L__: name
L__} value

_| value_lower Newer version

date_created

) date_last_used

DD

count

Copyright © TZWorks, LLC Apr 25, 2025 Page 7

2.4 Top Sites Database

The Top Sites database has a table called thumbnails. This table includes the URL of the thumbnail, any

URL redirects, and timestamps. The csp tool outputs one parsed line for each record in the thumbnails
table for the older versions or top_sites in the newer versions.

|| thumbnails

1
[E:,- url

=) url_rank | o der version _| top_sites
E\l title E url

_ _ =

_Q thumbnail le) url_rank
| redirects [;’. title

|| boring_score | redirects

good_clipping
at_top
last_updated
load_completed

e Lol sl o b

Newer Version

Do)

i

2.5 Shortcuts Database

The Shortcuts database has a table called omni_box_shortcuts. It has the URL of the site, last access
time, and other metadata. Shown below are two versions of the omni_box_shortcuts schema
depending on the version of Chromium/browser (note: there are other versions in between the two
shown below). The csp tool outputs one parsed line for each record in the omni_box_shortcuts table.

| omni_box_shortcuts | | omni_box_shortcuts
=2 id . o id .
D tet Older version D ted Newer version
=) url I fill_into_edit
oy =
|| contents | wrl
|E\i contents_class I__J contents
[] description | contents_class
|;ﬁ: description_class |=:| description
=] last_access_time || description_class
[.] number_of_hits |] transition
=l type
EI keyword
|) last_access_time
|| Nnumber_of _hits

Copyright © TZWorks, LLC Apr 25, 2025 Page 8

2.6 Login Data Database

The Login Data database has the logins table. This contains the URL of the site, date created, the
username and password (encrypted) and other information. This database Shown below are two

variants of the table used in different versions of Chromium browsers. The ¢sp tool outputs one parsed

line for each record in the logins table.

| logins
(=) origin_url
4 ||| logins l==| action_url
| origin_url [=) username_element
i action_url [=) username_value

[=) password_element
|=) password_value
[=) submit_element
|;] signon_realm

[=) date_created

[=) blacklisted_by_user

Q username_element
Q username_value
E._J password_element
Q password_value
|;] submit_element

[) signon_realm

[2) ssl_valid [2) scheme
| preferred @ password_type
[=) times_used

I;l date_created

Q blacklisted_by_user l?l fc‘>rm_data
I;l r— I_=| display_name
= |=) icon_url

[=] password_type

|_:_l possible_usernames M federation. url

Q times_used l;] skip_zer_o__click
|=) generation_upload_status
2 possible_username_pairs
Couple of the variants L) id
of this table. There =) date_last_used
are many in between. =) moving_blocked_for

[=) date_password_modified

Copyright © TZWorks, LLC Apr 25, 2025

Page 9

2.7 Favicons Database

The Favicons database contains a number of tables (shown below). The ones of interest are the
favicons, favicons_bitmap, and the icon_mapping tables. From this data one can see the ur/ (URL of the
favicon), the last updated timestamp, and the url_page (URL of the page visited). Shown below are two
versions of the favicon_bitmaps schema depending on the version of Chromium; the older version of
Chromium uses two subordinate tables to merge the fields to that of favicons data. The second one has
one subordinate table that is merged with the favicon data.

Aside from the versioning differences, there is also a ‘one to many’ relationship between these tables
that needs to be addressed. For example, the favicon_bitmaps table can have multiple records for one
favicon table entry (specifically the favicon bitmaps will have a separate record for each resolution of
the icon associated with the favicon table entry). Since each favicon_bitmaps entry has its own
timestamp, these are looked at separately.

In addition, there is a ‘one to many’ relationship when it comes to the favicon to icon_mapping tables.
This means there can be many icon_mapping entries for each favicon entry.

For parsing to be successful, merging is required for at least the favicon_bitmaps to the favicons to get
both the URL and the associated last updated timestamp. The additional parsing step is added to
associate the page url to the results. The csp tool converts all the ‘one to many’ or ‘many to one’
relationships by converting them to all ‘one to one’ relationships in the output. Unfortunately, this
makes for some verbose output. For traceability purposes, each line in the results is annotated with
where the source data (by table) originated. This will help the analyst identify where all the data came
from if validation is needed later on.

.| icon_mapping
) id

;, page_url _| favicon_bitmaps
le) icon_id @= © ezt id
o —I- ® |_) icon_id
4 favicons || last_updated
>0 [id 9<€ [2) imama—s=s
2 ut A | wid{ Older version
|e=) icon_typ |==/ heignt [

| favicon_bitmaps
.y id

| icon_id

| last_updated
| image_data
| width
| height
| last_requested I

Later version

Copyright © TZWorks, LLC Apr 25, 2025 Page 10

2.8 Reporting and NEL Database

NEL is short for Network Error Logging. This is a mechanism for collecting client-side network errors. The
nel_policies table have some interesting artifacts, including: a last access timestamp, an expires
timestamp, host URL, port number and received IP address.

_| nel_policies
[=) nik TEXT
|=) origin_scheme TEXT
[=) origin_host TEXT
|==| OFigin_port INTEGER
[=) received_ip_address TEXT
|=/ group_name TEXT
| expires_us_since_epoch INTEGER
|| success_fraction REAL
[2) failure_fraction REAL
|l is_include_subdomains INTEGER
|| last_access_us_since_epoch INTEGER

2.9 DIPS Database

The DIPS database is short for “Detect Incidental Party State”. This is to track sites without any
meaningful user interactions, such as bounce trackers. It does this by storing metrics in a “bounce”
table which has been used as way for server-side websites to have a way to track browser activity
without using Cookies.

_| bounces

|- site TEXT

[2) first_site_storage_time INTEGER
|) last_site_storage_time INTEGER
| first_user_interaction_time INTEGER
__;\ last_user_interaction_time INTEGER
| first_stateful_bounce_time INTEGER
[=) last_stateful_bounce_time INTEGER
|) first_bounce_time INTEGER
[=) last_bounce_time INTEGER
|) first_web_authn_assertion_time INTEGER
|| last_web_authn_assertion_time INTEGER

The 2 main categories of data include the: (a) site and (b) the various timestamps. The timestamps
include when the user first/last interacted time, as well as other time data.

Copyright © TZWorks, LLC Apr 25, 2025 Page 11

3 How to Use csp

Chromium artifacts are located in the user’s directory. This varies depending on the operating system
used. Below is a table that breaks out the location by OS.

(01 Path

Win XP %userprofile%\Local Settings\Application Data\Google\Chrome\User Data\Default

Post Win XP %userprofile%\AppData\Local\Google\Chrome\User Data\Default
%userprofile%\AppData\Local\Microsoft\Edge\User Data\Default
%userprofile%\AppData\Local\BraveSoftware\Brave-Browser\User Data\Default
%userprofile%\AppData\Local\Vivaldi\User Data\Default
%userprofile%\AppData\Local\Opera Software\Opera Stable

OSX /Users/{user}/Library/Application Support/Google/Chrome/Default
/Users/{user}/Library/Application Support/Microsoft Edge/Default
/Users/{user}/Library/Application Support/BraveSoftware/Brave-Browser/Default
/Users/{user}/Library/Application Support/com.operasoftware.Opera/
/Users/{user}/Library/Application Support/Vivaldi/Default

Linux /home/{user}/.config/google-chrome/Default
/home/{user}/.config/Microsoft-edge/Default
/home/{user}/.config/BraveSoftware/Brave-Browser/Default
/home/{user}/snap/brave/[#]/.config/BraveBrowser/Brave-Browser/Default
/home/{user}/snap/opera/[#]/.config/opera
/home/{user}/.config/Vivaldi/Default

The semantics to run this tool simply requires one to use the -db option and pass in the path/file of the
SQLite database to parse. The screenshot shows all the options available.

Copyright © TZWorks, LLC Apr 25, 2025 Page 12

2. Administrator: Windows PowerShell

Usage

csp -db <Chrome db> [options]
dir <location chrome db> /b /s | csp -pipe [options]
csp -enumdir <location chrome dbs> -num_subdirs <#> [options]

Basic options
-CSV output in CSV format
-csvl2t log2timeline output
-bodyfile sleuthkit output

Additional options
-username <name>
-hostname <name>
-csv_separator "|"
-dateformat mm/dd/yyyy
-timeformat hh:mm:ss
-no_whitespace
-pipe
-quiet

for -csvl2t output

for -csvl2t output

use a pipe char for csv separator
"yyyy-mm-dd" is the default

"hh:mm:ss" is the default

remove whitespace around csv delimiter
pipe db's into tool for processing

no progress shown

Experimental options
-carve [-incl_slack] *** pypass SQLite 1lib during parse
-parse_chunk *** requires at least 1 db page

Testing options
-no_table_merge *** output without merging tables
-verify [-add_comments] generate stats on parsing [temporary]

Below is an example of running the tool in its simplest form. Without explicitly setting any options, the
tool will default to the SQL Select-type parser. The parsed output will dump to the screen, unless one
redirects the output to a file.

©s.) Command Prompt

3.1 Integrated Parsing Algorithms

The csp tool offers three possible parsing algorithms to choose from; these are detailed below:

1. Default option. This option uses the internal SQLite library that is statically linked into the tool
to perform a SQL-Select statement on the database under analysis. It is sensitive to corrupt
databases and will not parse out records from unused or slack space.

2. Carve option. (-carve). This option uses a TZWorks based set of algorithms to traverse the
SQLite data structures to parse the records in the database. It relies on the database’s schema
and internal tree-based structures to find the data. This option appears to work fine even if the
database cannot be opened via the standard SQLite library. When corruption is present, this
option will skip bad records and attempts to go to the next one. It also looks at unused space
for any records that may be present using the -incl_slack option.

Copyright © TZWorks, LLC Apr 25, 2025 Page 13

3. Signature-base option. (-parse_chunk). This option does not make use of the SQLite schema or
tree-based structures in the database to locate records. Instead, it looks for certain signatures in
order to locate records and parse them. Empirical testing has shown this approach works from
either a good database, corrupted database or a partial blob of a database. While this option
can pull valid records, it truncates the data when a record spans multiple SQLite-pages. For any
records that are truncated, the output will be annotated with a flag identifying it as such.

3.1.1 Algorithms and their Pros/Cons

The benefit of the default option is its usefulness for verification and validation purposes. Given that the
tool can produce the same output for any of the three available parsing options, one can use the default
option as the base option to compare other parsing algorithm results. In this way, one can easily verify
whether the carve option and/or signature-based option works, simply by comparing the results to that
of the default SQL-Select option. More details about this verification are discussed later in a separate
section (see section on Verification and Validation).

In most cases, the carve option (-carve) is a better choice over the default option, simply because is it
returns the same, if not more, results. If invoking the sub-option -incl_slack, the tool has the ability to
sense unused space and switches to a signature-based scan for those areas.

Surprisingly, the signature-base option (-parse_chunk) competes very well with the other two options.
Keep in mind, this option relies strictly on unique signatures being accurate for its success. While the
other two options can dynamically adjust their parsing engine based on the schema identified in the
database, the signature-based option cannot. Depending on the number of recoverable records in the
database, it is possible for signature-based option to extract more records than the other options,
however, the user is cautioned, that more records do not necessarily mean accurate data. For example,
if one passes in a file that contains the contents of a disk volume, with the intent of extracting all the
Chromium artifacts from that image, then the user may get multiple false positives on certain table
records. The csp tool does a good job of statistically pulling out table entries that have many fields
versus those tables that only have a few fields. Therefore, certain table entries will have less false
positives than others.

The other issue to consider with the signature-base option is the merging operation from data in one
table to another table (based on some relationship between the tables) may or may not make sense.
For example, if a timestamp from one table is merged with data from another table, and the data is not
in sync (from a chronological point of view), then the resulting merged record will mislead the
investigator of an event’s occurrence time-wise. The other pitfall with the signature-based scans, which
was mentioned earlier, is that approach will truncate the data if a record overflows into multiple
databases pages; the signature-based scan will only report on data found in the initial page.

To handle the data accuracy issue, refer to the section on “Merging of Data between Tables”. In
conclusion, despite the negatives for the signature-based parse, it is the only choice if analyzing partial
chunks of database fragments, whether from memory or disk images.

Copyright © TZWorks, LLC Apr 25, 2025 Page 14

3.2 Modified CSV Output

When parsing various databases, where a database type can have differing tables and each table

translates to differing schemas or fields, one of the challenges in report generation is how can one get

all the varying data fields into a common CSV format.

The simple answer is to invoke the Log2Timeline

option (-csvl2t), or the Sleuthkit BodyFile option (-bodyfile). These are excellent options to achieve this,

since these formats have custom pre-defined fields. They are defined in such a way, so that the format

allows for dissimilar datasets by assuming all record will have at least a timestamp and description of the

event that occurred. These formats also contain fields for generic data for notes and comments.

The above formats, because of their nature, can take one record and create multiple CSV entries if an

entry contains multiple differing timestamps. Therefore, if one desires to output a single CSV line per

record, then one needs to generate their own custom format. Leveraging off of the concept of

the -csvl2t format, one can accomplish this by creating some static fields as well as some general-

purpose fields. For the normal -csv option, the csp tool does just that. Specifically, there are a few

static fields where the types are set, but there are others where a quasi-J/SON format is used. In this

way, many of the fields of a record can be outputted in a way where like-fields, such as Type of record,

RowID, Timestamp, and URL are static, but the other general-purpose fields can contain differing types

of data.

For general-purpose data, the quasi-/SON format used by the csp tool consists of outputting the data in

a name/value pairing relationship. From the snapshot of the output below, one can see these fields

which are identified with the field headers: params and extra fields. The image below was meant for

illustrative purposes, and therefore only shows some of the fields.

cmdline: cp6d -db e:\testcase\sglite\Google\tests\histo

dblake.wing.histor

-carve -csv -timeformat hh:mm:ss

Iparams

url
url
url
url
url
url

W W R e e

08/11/2013 17:23:40
08/11/2013 17:23:40
08/12/2013 00:51:59
08/12/2013 00:51:59
08/11/201317:23:30
08/11/2013 17:23:30

08/11/2013 17:23:40
08/11/2013 17:23:40
08/12/2013 00:51:59
08/12/2013 00:51:59
08/11/2013 17:23:30
08/11/2013 17:23:30

type rowid create time [UTC] last access [UTC) expires [UTC] url or name
download 1 08/31/2013 2 il = 08/31/2013 20:31:57
download 1 08/31/2013 2 Static fields 08/31/2013 20:31:57
download 2 09/01/2013 1 09/01/2013 16:42:43
download 2 09/01/2013 16:42:43 09/01/2013 16:42:43
download 3 09/01/2013 16:42:51 09/01/2013 16:43:12
download 4 09/01/2013 16:53:05 09/01,/2013 16:53:08
dowpload .oadn0/0L/203 0653000 o 991012013 16:5360
dov. iu 0142012 vovsga

download 14 10/13/2013 10:01:25 10/13/2013 10:07:16
download 15 10/13/2013 10:01:35 10/13/2013 10:07:12

params translation

extra fields

http://www.skype.com/go/getskype

http://shareholder.api.edgar-online.com, {"current_path":"
http://files.shareholder.com/downloads, {"current_patl
http://files.shareholder.com/downloads, {"current_pat
ht.tn:waw_ehare‘bolder..c}mf.vjsim” fac {Jpemant_pash™:"C;\jee -‘“Mald\j}pw.{"sta‘e":"cumf‘" L

sl fdOV ivas.lencyo.comfce an

http://windows.microsoft.com/en-us/wil {“title™
http://windows.microsoft.com/en-us/wii {"titl
http://windows.microsoft.com/en-Us/wi {"titl
http://windows.microsoft.com/en-US/wi {"titl
http://windows.microsoft.com/en-us/wii {"titl
http://windows.microsoft.com/en-us/wii {"title™;

3.2.1 Type Designations

fnobilus/wWgal2. . e
http://download.lenovo.com/consumer/ {"current_path™"C:\Users\Donald\Dowr {"state":"complete™; "
http://download.lenovo.com/consumer/ {“current_path™:"C:\Users\Donald\Dowr {"state":"complete"

{"eurrent_path":"C:\Users\Donald\Dowr {"state":"complete™; "
http://download.skype.com/dd390b57e5 {"current_path"
http://www.shareholder.com/visitors/ac {"current_path"|

Quasi-JSON formatted fields

"receivi {"opened”:1,
"receiv {"opened™:0;

\Users\Donald\Dowr {"state":"
\Users\Donald\Docui {"state":
\Users\Donald\Docui {"stat

{'state":

"Themes - Microsoft Windows"} {"source meanin
"Search Results - Microsoft Wind {"source meanin,
“search Results - Microsoft Wind {"source meanin

", "receivi {"opened™:0;
" "receivi {"opened":
"; "receivi {"opened";

canceligu’;

"; "receivi {"ope ned":l:!
"Nordic Landscapes theme - Micr {"source meaning”:"internet explorer”}
"Nordic Landscapes theme - Micr {"source meaning”:"internet {"visit_count™
"Themes - Microsoft Windows"} {"source meaning":"

receivi {"opened™:1;"

secginliopened” O

TR

receiv {"opene

R oy

internet explorer™}
"internet {"visit_count":
"Internet explorer”}

"Minternet {"visit count’y

In the output there is a column that identifies records by a type. These types are listed below along with

where the data comes from.

Copyright © TZWorks, LLC

Apr 25, 2025

Page 15

Record Type Table(s) where the data resides Database where table(s) reside
autofill Web Data

Cookie cookie Cookie

Download Downloads, download_url_chains History

favicons, icon_mapping, favicon_bitmaps Favicons

Login logins Logins

omni_box_shortcuts Shortcuts

Thumbnail thumbnails Top Sites

urls, visits, keyword_search_terms, visit_source History

Bounces Bounces DIPS

(W LI[IJ nel policies Reporting and NEL

In addition to the record types shown above, there are some cases were the type is supplemented with
some extra words.

e Trunc - means the data was truncated. This only occurs with using the signature-based scan
(-parse_chunk). This is because the data in the record spans multiple database pages and for
signature-based scans, only the data in the initial page is parsed.

e Blacklisted - as applied to the login type, and means the blacklisted by user flag was set in the
data. This implies that the login credentials are not stored by Chromium (which may or may not
be true).

e (Created - as applied to the cookie type, and means the last access time equals the create time.

e Accessed - as applied to the cookie type, and means the last access time does not equals the
create time.

3.3 Processing Multiple Databases

If desiring to process many database files in one pass, one can put the artifact databases in separate
subdirectories that share a common parent folder (or just enumerate them on a live system) and use
the -pipe option like so:

5] Command Prompt

C:\>dir c:\dump\chrome dbs /b /s csp64 -pipe > out.txt

This will process all the databases contained in the c:\dump\chrome_dbs folder and subfolders. The
results of parsing all the databases found will be put into the file out.txt. To help distinguish which lines
corresponds to which database file, an extra field is appended to each record identifying the source
database.

If one cannot use the -pipe option, one can use the experimental -enumdir option, which has similar
functionality with more control. The -enumdir option takes as its parameter the folder to start with. It

Copyright © TZWorks, LLC Apr 25, 2025 Page 16

also allows one to specify the number of subdirectories to evaluate using the -num_subdirs <#> sub-
option.

3.4 Merging of Data between Tables

Certain tables contain relationships between them, where data from one table is meant to be combined
with another table in order to populate all the fields for a record. The relationships between the
Chromium database tables are shown in the section on “Databases Targeted by this Tool.” The csp tool
will, by default, try to use these relationships and merge the data between the tables appropriately.
Each merged dataset will be treated as a separate record to be outputted into the report. To make this
clearer, here’s an example: If the records from three tables make two records after the data is merged,
only the two merged records will be outputted by this tool in the report.

On the flip side, if one has two tables to be merged and they have a ‘one to many’ or ‘many to one’
relationship, then the tool will try to create a ‘one-to-one’ relationship with the results that are
outputted. A good example is the history database, where a ‘one to many’ relationship exists with the
url table and the visits table. One url record can have one or more visits records. Since the visits record
has its own timestamp when the visit occurred, to create a proper timeline of events, one needs to
duplicate the url record data to account for all the visits record data. This action of duplication of data
from the url record creates the ‘one-to-one’ relationship in the output. Unfortunately, this gives the
perception that there are a large number of duplicate records. Whether it be with the url to visits
relationship or some other table to table relationship, inevitability, there will be duplicates where some
of the records outputted will match each other, especially when considering parsing deleted records out
of unallocated space. This tool does not make the determination whether the records it parses are
duplicated or not; it just outputs all the data.

In some cases, one may not want this merging to take place, and may want to see all the un-merged
data from each table separately outputted as a separate record. This behavior can be done by invoking
the -no_table_merge switch. This option only works with the default or -csv output modes (and does
not work with -csvI2t or -bodyfile). This is because not all table records that are parsed by this tool
have a timestamp associated with them, which the -csvI2t and -bodyfile formats rely on.

The main use-case for the -no_table_merge, is when one processes chunk of data (i.e. consider a partial
memory dump, volume dump or a partial database file) which contains some Chromium artifacts. In this
case, any records extracted from partial tables may relate to one computer’s account Chromium data,
but not to another account. Alternatively, using the same example, assume there is only one user
account on the computer; what could happen is that a parsed timestamp from one table may be out of
sequence, from a chronological perspective, from data in another related table. Therefore, any merge
operation in the above cases is dubious at best, since there is really no good way to tell if the merge
operation will yield accurate results.

Copyright © TZWorks, LLC Apr 25, 2025 Page 17

3.5 Parsing Chromium Artifacts from Memory or a Disk Image

If one wishes to parse artifacts from a file-based archive that contains a memory or a disk image, then
one would use the -parse_chunk option. During the parsing operation, the tool uses a signature-based
scan looking for records. Below is an example of performing this operation on a VMWare memory
image. Notice we incorporated the -no_table_merge option as well, since we do not want to merge
table data together. This is done as a precaution in case there were multiple instances of Chromium
artifacts at one time or another; each instance, in this case, would represent a different user account on
the system. Merging table data from one user to another user would yield incorrect and misleading
results.

3. Command Prompt

Notice in the command shown, that we still use the -db <file> syntax even though the file we are parsing
is not a database, but is an image of physical memory stored as a file.

The same type of scan can be done on any image that is not encrypted. The only restriction here is that
the image (memory, volume, disk or chunk of data) has to be identical to the system it came from. The
key here is the SQLite records being scanned/parsed need to be preserved in their original form.

The last point to mention is if the csp tool detects that you are passing in a very large file for analysis, it
will complain if you are not using the option -parse_chunk. This limitation is hardcoded into the tool.
Furthermore, it will automatically switch into the mode -no_table_merge. The term ‘very large’ in this
context are sizes not normal for individual Chromium databases, so an arbitrary size above 130 MB is
used for this threshold. The reason for this design decision is to bound what resources the tool can use
for parsing; this is a good thing if you want to run it and play well with other applications running on a
system. For the tool to do a proper merge operation, all the table records that were parsed either need
to be in memory or they need to be in a file base archive (like an SQLite database). In general, when we
design our tools, we prefer to maintain a small footprint on the target box and not create additional
artifacts on the system under investigation. Therefore, the csp tool does not explicitly create any
temporary files itself; the Operating System, on the other hand, may do this on your behalf, but that is
entirely another matter which we cannot control. Taking all these constraints into account, the csp only
operates in memory, and to maintain a small footprint, it flushes any parsed data to the results file so as
to reuse the old memory for new records to be parsed.

Copyright © TZWorks, LLC Apr 25, 2025 Page 18

3.6 Bypassing the Embedded SQLite library

The csp tool has the SQLite library embedded into the binary. More information about this is discussed
in the section Use of the SQLite Library. The csp tool makes use of this library in the default mode when
parsing.

Sometimes, however, one may not wish to use the SQLite library for analyzing tables and extracting
records, so an option was added to bypass the SQLite library and use the TZWorks internal SQLite
algorithms to parse the database. This functionality can be invoked in one of two ways: (a) with

the -carve option or (b) the -parse_chunk option. Out of the two options, one should opt for the first,
the -carve option. This option will try to traverse the internal SQLite data structures in the database
(even corrupted ones), and should extract all the same information as if using the normal SQLite. The
difference here is the -carve option is more immune to database corruption or database lockdown than
the default option.

The purpose for the second option -parse_chunk, is to go a step further and operate on only a subset of
the database. More specifically, if at least a page of the database is available, this option will try to
make sense of any records it finds. The limitations of this option include: (a) it will not be able to handle
overflow records between SQLite pages, and (b) it may not be able to provide joins between tables that
have a relational aspect. The -carve option discussed earlier, however, will handle the overflow of data
between pages and perform the necessary joins between tables that have dependencies between them.
The benefit of the -parse_chunk option is that it can handle pulling out records from a journal file
independently of the main database file, whereas the other 2 options cannot.

3.7 Verification and Validation

All tools need to tested with some form of verification to ensure their results are accurate. Part of that
testing is to validate the tool’s functionality across different artifact versions. If the tool developer can
automate this testing, then it allows the developer to test the tool across many datasets quickly. This in
turn quickly identifies inconsistencies and problems so that a wide range of bugs can be diagnosed and
fixed.

Normally, the developer tries to do as much of this testing before sending a tool out to clients. In the
case of Chromium, however, since it has a history of changing the schemas across versions so that they
are not backwards compatible, we decided to temporarily add an option for clients to run this type of
verification on their own, if they so choose. To this end, the csp tool incorporates the -verify option to
aid in this purpose.

The -verify option internally invokes all three parsing engines in sequence to parse the same database
so it can compare the results of all three. Simplistically, if all the results match, then the confidence is
very high the tool is working as designed. If the results do not match, it will be because a version of

Chromium is being analyzed where the tool may work with one of parsing engines, but not the others.

Copyright © TZWorks, LLC Apr 25, 2025 Page 19

The first parsing engine most likely to have problems will be the signature-based parsing, since it more
sensitive to schema changes. In contrast, the default SQL-Select type parsing engine should be the most
robust if there are schema changes, because it will key off of specific field names, which typically are
more consistent across versioning. Either way, the purpose of the -verify option is to provide an
internal test to alert a user if any issues are found.

The nice thing about the way this option was implemented, is not only does it check the internal parsers
against themselves, but it also outputs critical diagnostic data that can be used by TZWorks to help
improve the tool. To ensure no personal information is outputted, the -verify option sanitizes the
results so that it does not contains private/confidential information from the raw artifact. The output
primarily contains metadata from the SQLite internal structures. This causes the data generated to be
cryptic and only useful for machine type learning/statistics. An additional sub-option was added (-add
comments) to annotate some additional commentary to the results; this provides some extra
information for the user if a test passed or failed and why.

If one wants to test an entire collection of SQLite artifacts from Chromium, one can run this option with
the -pipe switch and point it at the folder/subfolders of Chromium database artifacts. The tool will
process all the database/records it finds and incorporate the results into a final report. Below is an
example of doing this.

©s.) Command Prompt

As mentioned earlier, the data produced is mostly cryptic since it contains statistical information about
the database and records being parsed. This statistical information, if sent back to TZWorks, will help us
improve our parsing engines for future releases.

Below is a screenshot of one of the entries in the results after running this test. For each database
processed, there will be information about the various table schemas we are interested in. From this we
can see if the schema has been updated from one version to another. In addition, the output shows the
number of records parsed by each engine, the signatures found, and so on. Highlighted is a case, where
the signature-based parsing could be improved along with the data necessary we need to make that
improvement.

Copyright © TZWorks, LLC Apr 25, 2025 Page 20

One final comment on the -verify option. This is not a do-everything type built-in test. While it is very
capable and provides a wealth of information, the biggest limitation of this test is that it only compares
un-merged tables records. Therefore, if there is an error during a merge operation between some table-
to-table relationship, it is not included in the battery of tests used by the -verify option. The other
testing shortfall is the last (phase 3) test only compare the first two parsing engines resulting values and
doesn’t consider the third parsing engine (signature-type scan). These shortfalls may be something
added in the future, but for now the purpose of this automated testing is to: (a) capture differences in
various Chromium formats, (b) identify issues with the various parsing engines in the tool so they can be
fixed quickly, and (c) get more empirical results as it pertains to signature-type scanning, since this
engine at its core relies on statistical data.

Copyright © TZWorks, LLC Apr 25, 2025 Page 21

4 Use of the SQLite Library

The databases that are targeted by the csp tool are SQLite databases. For the purposes of the csp tool
we statically link in the SQLite library to ensure the tool has minimal dependencies. The source code for
the SQLite library is an amalgamation of the SQLite ‘C’ source files, version 3.32.3. More information
about SQLite, the documentation and the source code can be seen at the official SQLite website
[http://www.sqlite.org/].

Normally when we build a tool to parse a raw artifact, we prefer not to use outside libraries, however, in
this case, the SQLite library has an option to open a SQLite database in ‘read-only’ mode. From the
testing done and from the documentation, it appears that this is acceptable for this release.

5 Pulling Chromium Artifacts off a Live System

Some of the files used in Chromium are locked down which means other applications cannot read or
copy them. To run csp, the files that are processed need to allow the application to at least have read
access. If this is an issue, then one needs to look to other tools to copy the artifact data. If youareona
Windows machine, one can use the TZWorks’ tool dup (Disk Utility and Packer). It will allow one to copy
a file or entire directory even if some of the files are locked down by the operating system. To use dup
to target the Chromium folder, one could use the following command:

dup -copydir C:\Users\<username>\AppData\Local\Google\Chrome\User Data\Default -level 9 -out
<results folder>\chrome_data

6 Available Options

Option Description

Specifies which database file to act on. The format is:
-db <database or file to parse>

-db

Outputs the data fields delimited by commas. Since filenames can have
-CSV commas, to ensure the fields are uniquely separated, any commas in the
filenames get converted to spaces.

-csvl2t Outputs the data fields in accordance with the log2timeline format.

Copyright © TZWorks, LLC Apr 25, 2025 Page 22

http://www.sqlite.org/

-bodyfile

-username

-hostname

-pipe

-enumdir

-filter

-no_whitespace

-cSv_separator

-dateformat

-timeformat

-quiet

-carve

Outputs the data fields in accordance with the 'body-file' version3 specified in
the SleuthKit. The date/timestamp outputted to the body-file is in terms of
UTC. So if using the body-file in conjunction with the mactime.pl utility, one
needs to set the environment variable TZ=UTC.

Option is used to populate the output records with a specified username. This
only applies to the -csvI2t option. The format is:

-username <name to use>.

Option is used to populate the output records with a specified hostname. This
only applies to the -csvI2t option. The format is:

-hostname <name to use>.

Used to pipe files into the tool via STDIN (standard input). Each file passed in is
parsed in sequence.

Experimental. Used to process files within a folder and/or subfolders. Each file
is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs <#>.

Filters data passed in via STDIN via the -pipe option. The syntax is -filter <"*.ext
| *partialname* | ...">. The wildcard character '*' is restricted to either before
the name or after the name.

Used in conjunction with -csv option to remove any whitespace between the
field value and the CSV separator.

Used in conjunction with the -csv option to change the CSV separator from the
default comma to something else. Syntax is -csv_separator "[" to change the
CSV separator to the pipe character. To use the tab as a separator, one can use
the -csv_separator "tab" OR -csv_separator "\t" options.

Output the date using the specified format. Default behavior is -dateformat
"yyyy-mm-dd". Using this option allows one to adjust the format to mm/dd/yy,
dd/mm/yy, etc. The restriction with this option is the forward slash (/) or dash
(-) symbol needs to separate month, day and year and the month is in digit (1-
12) form versus abbreviated name form.

Output the time using the specified format. Default behavior is

-timeformat "hh:mm:ss.xxx". One can adjust the format to microseconds, via
"hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no
fractional seconds, via "hh:mm:ss". The restrictions with this option is a colon
(:) symbol needs to separate hours, minutes and seconds, a period (.) symbol
needs to separate the seconds and fractional seconds, and the repeating
symbol 'x' is used to represent number of fractional seconds.

Show no progress during the parsing operation.

Experimental option. Bypass the SQLite embedded library and parse using
TZWorks internal algorithms. This is useful when the database to be parsed is
corrupted and the SQLite library has trouble parsing it.

Copyright © TZWorks, LLC

Apr 25, 2025 Page 23

Experimental option to look a unused space to see if any records are present.
-incl_slack Not required with the -parse_chunk option. Use this in conjunction
with -carve option to look for delete records.

Experimental option. Given a portion (chunk) of the database, this option will
examine the data to see if any records exist and parse out the contents. This is
a signature-based parse so it can parse out records from chunks of memory or
slack space (in the form of a file).

-parse_chunk

This option is for pulling records from an image. It is also used for testing and
-no_table_merge |debugging purposes. If you want to see all the tables that were parsed without
merging any relationships, use this option.

This option is for testing and debugging purposes only. This option runs all 3
parsing engines in the tool (SQL Select parse, Carve parse and Signature-based

-verify parse) and reports whether the parsers work at least up to the level of the SQL
Select parse. Metadata is generated that can be used to help develop more
robust parsing algorithms.

All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8 byte

-utf8 bom . . .
- order mark to the CSV output using this option.

7 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital
X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools
(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The
license needs to be in the same directory of the tool for it to authenticate. Furthermore, any
modification to the license, either to its name or contents, will invalidate the license.

8 References

1. https://cs.chromium.org/chromium/src/docs
https://chromium.googlesource.com/chromium/chromium/+/df261d32079bc4e1160c36200657ee
d26fad5961/content/public/common/page_transition_types_list.h
https://developers.google.com/analytics/devguides/collection/analyticsjs/cookie-usage?csw=1
Evolution of Chrome Databases, by Ryan Benson, https://dfir.blog/chrome-evolution.

Hindsight, by Ryan Benson, https://www.obsidianforensics.com/hindsight

SQLite library statically linked into tool [Amalgamation of many separate C source files from
SQLite version 3.32.3].

7. SQLite documentation [http://www.sglite.org].

N

ok w

Copyright © TZWorks, LLC Apr 25, 2025 Page 24

https://cs.chromium.org/chromium/src/docs
https://developers.google.com/analytics/devguides/collection/analyticsjs/cookie-usage?csw=1

	1 Introduction
	2 Databases Targeted by this tool
	2.1 History Database
	2.2 Cookies Database
	2.3 Web Data Database
	2.4 Top Sites Database
	2.5 Shortcuts Database
	2.6 Login Data Database
	2.7 Favicons Database
	2.8 Reporting and NEL Database
	2.9 DIPS Database

	3 How to Use csp
	3.1 Integrated Parsing Algorithms
	3.1.1 Algorithms and their Pros/Cons

	3.2 Modified CSV Output
	3.2.1 Type Designations

	3.3 Processing Multiple Databases
	3.4 Merging of Data between Tables
	3.5 Parsing Chromium Artifacts from Memory or a Disk Image
	3.6 Bypassing the Embedded SQLite library
	3.7 Verification and Validation

	4 Use of the SQLite Library
	5 Pulling Chromium Artifacts off a Live System
	6 Available Options
	7 Authentication and the License File
	8 References

