TZWorks® Event Log
MessageTables Offline (elmo)
Users Guide

Copyright © TZWorks LLC
www.tzworks.com

Contact Info: info@tzworks.com
Document applies to v0.46 of elmo
Updated: Apr 25, 2025

Abstract
elmo is a standalone, command-line tool that can traverse

system volume (either live or archived) and pull the various
Windows event log MessageTables into an SQLite database.
This database can then be queried later in an offline
manner to find messages that equate to specific event
identifiers.

http://www.tzworks.net/
mailto:info@tzworks.net

Table of Contents

1 INTEFOUCTION ittt ettt e b e s b e sae e sat e et e et e e bt e beesbeesaeesateenbeebeenneesane e 2
PN - ¥ Tl <=4 (o101 Vo l [a) o110 =1 o] o [P PR 3
2.1 Separation of Source Code from Language Specific RESOUICES.......ccvvivirciieeiiciiie e ccieee e 3
2.2 How Language Names Relate Locale Code ldentifiers (LCIDS)......ccccecvveevveeeceeesieeeeeesiee e 4
2.3 MESSAZE STIING AFSUMENTS ...eviiiiiiieiiiiiiietee ettt e e e s s serree e et e s e s saabereeeeesssssssbtseeeeesssssssreaeaeens 5
2.4 Where are the MESSAGETABLE’S.......coitiiiiieeeeteetee ettt ettt sttt sbe e s saeeeaeees 5

3 HOW L0 USE @IMO ...ttt ettt b e s b e st sttt e sbe e sheesaeesabe e b e e nbeens 7
3.1 Database Creation (or Database UPdate)eeeeciiieiiciieie et 7
3.11 Create from @ LIVE VOIUMIEooiiieiieee ettt ettt st et e s 7
3.1.2 Create from a captured System Mounted VOIUME.........cccviiiiiciiiiiciiee e 8
3.1.3 Create from an Off-Line (Uunmounted) IMagecceevieeeciieecee e 9
3.14 Create from diSCrete filS.......v e e 9

3.2 Querying the database USING €IMO0ueeeeuiiii ettt ettt e e e e e e 9
3.2.1 Table ENUMEIAtioN ...couiiiieieeeee et sre e s e e 9
3.2.2 EVENT ID QUUETY ettt snssnnaen 10

3.3 Using e/mo With evEWwalk CSV Dataccueeeiieiieei ittt ettt e e e e e s sbee e e 12

4 SQLITE NOTES. .ttt e e st e e s e s s e e e e e e e s et e e s nrneee e 13
4.1 0 LIy = B LT o1 =T g T F=Y o Vol [UPRR 13
4.2 Database Schema USEA DY €1MO0coevviiiiee e 13
4.3 Lo o V1o 1= TP P PSPPSRI 14
4.4 Mapping of an Event to e/mo Database.......ccceeiiiieiiiciiie ettt e 15
4.5 Handling MUIIPIE LANGUAEES.....cccuviiieeiiie ettt ettt e stte e e e ae e e s stae e e e s bae e e e sabeee e enaseeas 16

I NV T1 - o] LI @ o 4 o 1SR RSRRN 17
6 Authentication and the LICENSE File........coouiiiiiiiieee e s 19
T REFEIENCES ..ottt ettt s bt s ht e st st e e b e e bt e bt e sbe e satesabeebeenbeesaeesaneaa 20

Copyright © TZWorks, LLC Apr 25, 2025 Page 1

TZWorks® Event Log MessageTables Offline
(elmo) Users Guide

Copyright © TZWorks LLC
Webpage: http://www.tzworks.com/prototype_page.php?proto_id=35
Contact Information: info@tzworks.com

1 Introduction

elmo is a prototype command line utility to assist the analyst in pulling message table data from
providers with the object of integrating these messages to events that are logged in the Windows event
log.

The Windows event log conserves space using a number of mechanisms. One way is to reference the
provider for each event along with unique event information in the log and store the more common
information in a resource binary. The term provider, as used here, is the source of the event that was
generated and is recorded in the event log. This can be one of the running services, drivers, or
applications. Reconstruction of the complete message for an event that is logged therefore requires
one to pull the common message strings from the resource that houses the provider’s information.
elmo is a utility to help the analyst do this.

One can examine the various providers for the event log by looking at the System hive in the Windows
registry, and for newer operating systems, the additional information in the Software hive. Each
provider, in turn, points to one or more PE (portable executable) files that contain an embedded table of
messages (referred to by Microsoft as a MESSAGETABLE). Within the table of messages, each item in
the table equates to an event identifier which is referenced when logging events in the event log. In this
way, boiler plate phrases or sentences can be offloaded to the MESSAGETABLE resources, and only the
unique values that populate the data in the message need to be stored in the log itself.

These dependencies are integrated in a seamless manner when analyzing event logs using Microsoft
tools and when on the same target machine that the log file was on. Doing it offline however, or using a
different tool to parse the event log, can be problematic, since understanding the dependencies can be
error prone and most of the techniques to extract the entry from the appropriate message table tend to
be manual. To complicate the process further, PE files with embedded MESSAGETABLE’s can change
from one operating system to the next. As an example, the MESSAGETABLE from the PE file
msaudite.dll, which is the main one for Security event auditing, differs from WinXP to Win7 to Win8.
While some of the events IDs match the messages across the operating systems, some do not. This is
also the case when considering different language types. Integrating all these MESSAGETABLES across
differing operating systems is thus a difficult task if tried to do manually.

When architecting elmo, our objective was to have a self-contained way to pull all the appropriate
message tables from a target computer and archive this data into a database that allows for easy
retrieval. SQLite was chosen as the database engine, since it is lightweight, portable and ubiquitous
across various operating systems. To make elmo handle a number of different use-cases, we designed

Copyright © TZWorks, LLC Apr 25, 2025 Page 2

mailto:info@tzworks.net

elmo to pull data from: (a) a live computer, (b) ‘dd’ image of a system volume, (c) a mounted system
volume image that was extracted from another box, or (d) discrete files pulled from a target box. For
some of the database creation use-cases, elmo needs to run at administrative privileges. Once the
database is created, elmo can be used for event log message re-creation and can be run at the typical
user privileges. While elmo doesn’t address all the issues for integrating events to message tables, it is
a good start.

2 Background Information

Since message tables are a key part of event message reconstruction, we added this brief section to
provide background information on: what are the message table components, where they come from
and how these components relate to each other. Arming oneself with this type of information will help
one understand the information elmo exposes and what it means.

2.1 Separation of Source Code from Language Specific Resources

When dealing with message tables (MESSAGETABLE’s) one needs to be familiar with the term MUI,
which is short for Multilingual User Interface. From a worldwide perspective, there are over 6900
known living languages in use. MSDN documents that the purpose of MUl is to “separate the storage
localization resources from application source code, so as to be able to architect any multilingual
application as a combination of language-neutral core binary and as set of language-specific localized
resource files”. Event logs use this concept as well.

MESSAGETABLE’s are defined using a message compiler (.mc) files and are compiled into resource files
using the Microsoft message compiler tool, mc.exe (that is distributed with Visual Studio as well as the
Windows Software Development Kit). The format of the message table is designed so that multilingual
error messages are easier to interpret.

Language names can be specified as either language names or Locale Code Identifiers (LCIDs). Below
are example of English and German language names and their companion LCID’s.

English: en-US or LCID 0x0409
German: de-DE or LCID 0x0407

Give the above, one can see that the LCID 0x0409 equates to the US version of English language name
(en-US). Even though the language name and LCID are different entities, in this document they are used
interchangeably since they directly relate to one another.

Copyright © TZWorks, LLC Apr 25, 2025 Page 3

2.2 How Language Names Relate Locale Code Identifiers (LCIDs)

Locale code identifiers are combination of a primary language ID (10 bits) and a secondary language ID
(6 bits) to form a 16 bit word. Below is a subset list of the primary language ID’s from 0x01 to 0x19.

Primary ID Abbreviation Description

0x01 ar Arabic
0x02 bg Bulgarian
0x03 ca Catalan
0x04 zh Chinese
0x05 cs Czech
0x06 da Danish
0x07 de German
0x08 el Greek
0x09 en English
0x0a es Spanish
0x0b fi Finnish
0x0c fr French

Depending on the primary language ID, the secondary language ID is a subset of the primary. For
example, for English one would use a primary ID of 0x09; below are some secondary IDs that can be
used for English.

Secondary ID Abbreviation Description Final LCID
0x04 en-us English — United States 0x0409
0x08 en-gb English — United Kingdom 0x0809
0x0c en-au English — Australia 0x0c09
0x14 en-nz English — New Zealand 0x1409
0x18 en-ie English — Ireland 0x1809
Ox1c en-za English — South Africa 0x1c09
0x24 en-cb English — Caribbean 0x2409
0x28 en-bz English — Belize 0x2809
0x2c en-tt English - Trinidad 0x2c09
0x34 en-ph English - Philippines 0x3409

The incrementing of the secondary ID looks strange, but it is actually in succession; it is just an artifact of
the primary ID using the first 10 bits of the 16 bit word.

Copyright © TZWorks, LLC Apr 25, 2025 Page 4

2.3 Message String Arguments

For event logs to use pre-canned messages stored in provider resources and create unique messages for
each event ID, they make use of string arguments within the message resource. Each argument is
preceded by a percent ‘%’ character. The argument is another character that is used for an action. The
table below is taken from the Microsoft documentation on MESSAGETABLE string arguments and
contains most of the arguments that one will see in the provider message resource.

The arguments that have a number after the percent character are place holders that directly equate to
the event field that has the same index number. In this way, each event can uniquely put the proper
data in the specified position when recreating the entire message for that event.

More information on arguments and their meaning can be found at this URL [ref:
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679351(v=vs.85).aspx]:

Value Description

%% A single percent

%<space> A single period space

%. A single period

%! A single percent exclamation point

%n A hard line break

%r A hard carriage return without a trailing newline character

%t A single tab

%0 Terminates a message text line without a trailing new line character
%1 - %99 Argument place holder

%1!format string! - Argument place holder with format specifier that is similar to the printf
%99!format string! formatting.

2.4 Where are the MESSAGETABLE's

It is sometimes useful to see exactly where these MESSAGETABLE’s come from.

Below is what a MESSAGETABLE looks like for the Security Provider “msaudite.dll”. Highlighted is one of
the messages in the table equating to event ID 519. One can repeat this, by opening up “msaudite.dll”
from the System32 directory using pe_view from TZWorks. The MESSAGETABLE is embedded in the
resource section of the PE file.

This is the data that elmo extracts and catalogs for easy retrieval during its database creation phase.

Copyright © TZWorks, LLC Apr 25, 2025 Page 5

g
[pe] pe_view - full ver: 0.97; Copyright (c) TZWorks LLC - License #1d0bd09d075¢9¢0 is authenticated for busi use. L[E) [|

File View Option

Dos Header

B RealMode Stub

Image Header

Optional Header
=20 Directories

(3 Section Hdrs
#(2] linear mapping

Objects

= C:\Windows\System32\msaudite.dll

=1 resource table

[E]000 : MESSAGETABLE : 0:0001 :

001 : VERSION : 0x0001 : 0x0409
002 : MUI: 0x0001 : 0x0409

event id

WONOVEWNRO

LR RV R R RV RV RY]
B B b b b
WoONOWVEWN

521
523

Help

: Unused message ID<CR>

: System Event<CR>

: Logon/Logoff<CR>

: Object Access<CR>

: Privilege Use<CR>

: Detailed Tracking<CR>

: Policy Change<CR>

: Account Management<CR>

: Directory Service Access<CR>
: Account Logon<CR>

: Windows is starting up.<CR>
: Windows is shutting down.<CR>All logon sessions w

H Invahd use of LPC port. %n(CR)%tProces
520 :
: Unable to log events to security log: %n<CR>%tStat|
: The security log is now %1 percent full.<CR>

524 :

525 :
28 .

%1 = 15t parameter used in Event ID 519
%n = new line

The system time was changed.%n<CR>Proce:

Event log auto-backup%n<CR>¥tLog:%¥t%¥1%¥n<CR>%tFile
Administrator recovered system from (rashOnAuditir_‘
»

A carurity narbama hac haan lnadad hu +ha 1aral € Y

Copyright © TZWorks, LLC

Apr 25, 2025

Page 6

3 How to Use elmo

The screen shot below shows all the options available. The options are grouped into categories that
equate to three basic functions: (a) create a SQLite database of MESSAGETABLE's, (b) query the
database to find specific data within the database, and (c) analyze the CSV data produced by the
TZWorks® tool evtwalk and annotate the CSV data with message data.

2 Administrator: Windows PowerShell

Usage:

elmo db <d = from 1
elmo o - . e from
elmo db =

elmo vs <hi <hivesr -dir <folder:

-DE, fr-FR, ja-1P"
ecurity
em pr
only applicati

Add R
elmo

Query the 50
elmo -db
elmo -db
elmo -db
elmo -db
elmo -db
elmo -db
elmo -db
elmo -db

Append ewvent ms 0
elmo -db <nam <F1i <files extract msg from db

ventlog [sug
to integrate msgs

gestion]

3.1 Database Creation (or Database Update)

Shown in the menu above, there are four ways to create or update an elmo database with new
MESSAGETABLE data. The database that is created or updated is formatted as SQLite. The sections
below describe each of these ways. For Linux and OS-X versions of elmo, this is reduced to two ways
(‘dd’ image and discrete files).

3.1.1 Create from a Live Volume

Creating a database from a live volume requires one to run elmo with administrator privileges. This
option is only available when running on Windows operating systems. To invoke this command one
uses the -livesys switch and specifies that name of the database to create via the -db <path/dbname>.

Copyright © TZWorks, LLC Apr 25, 2025 Page 7

The resulting database that is operating on can be a new database (in which case it is created) or an
existing database. If specifying an existing database, elmo will only add new MESSAGETABLE entries to
the database. The term ‘new’ is defined here, in the sense that the hash of the MESSAGETABLE doesn’t
already exist in the database.

When creating new databases, it is recommended using a name that describes the target machine
operating system and the default language used. Creating a separate elmo database for each Windows
OS and/or language ID is the most reliable way to ensure that the proper message is matched with the
event ID. The importance of a good naming convention will become more apparent later when trying
to use the database to correlate messages to event IDs.

For example, on a Windows 7 box, where you think the default language ID is en-US, one might use:

elmo6d —livesys —db win?_en_us.dh

Be aware, that even though the name includes en_us, what elmo does internally is look at the default
language ID that is on the operating system and targets it. So if it happens to be German, then it will
target MESSAGETABLE resources that are German versus English. elmo does, however, include an
option to force it to look at other language identifiers (LCIDs), via the -Icid option. One can specify any
LCID one wants via this option and elmo will scan the system volume for MESSAGETABLE resources with
those LCIDs, in addition to the default LCID.

Another factor to consider when using elmo to create databases is that elmo will scan all the providers
identified by the System hive (and depending on OS version, the Software hive as well) of the Windows
registry. From each provider found, it will then parse each of the PE resources that were identified. This
can amount to a lot of data in one database. If one only wants to target a specific category of providers,
there are a couple of optional switches: -only_security, -only_system, and -only_application, to
target the respective providers from security, system or applications. While there are other providers,
these are the main ones. Suffice it say, if one wants all to pull all the providers MESSAGETABLE
resources then invoke elmo using the default behavior by not specifying any of these optional switches.

3.1.2 Create from a captured System Mounted Volume

If one captures an image of a Windows system volume as a file and it can be mounted on a separate
workstation as a separate drive letter, then elmo can target this mounted volume. The proviso is that
the mounted system volume is mounted as a ‘block device’ where the entire filesystem is exposed
without additional aliases.

This option is similar to the previous one with a live system volume, but just targets a separated system
volume mounted as another drive letter. One uses the option: -partition <drive letter> to invoke this.
All the same optional switches discussed above apply here.

This option is only available to Windows and requires one to run elmo with administrator privileges.

Copyright © TZWorks, LLC Apr 25, 2025 Page 8

3.1.3 Create from an Off-Line (unmounted) Image

If one captures an image of a Windows system volume as a single ‘dd’ file, one can point this elmo to
this file. This option does not require any special permissions when running elmo, however it does
requires the file to be a monolithic ‘dd’ type image of a Windows system volume. What this means is
the ‘dd’ image consists of one file, and not multiple files that are parts of one image. This mode can be
run from any compiled version of elmo, such as OS-X or Linux. The same optional switches discussed
above apply here.

To invoke this option, use the syntax: -image <path/filename of the ‘dd’ image>. The image option is
similar to the live volume in the sense that elmo will locate the proper registry hives, parse them, and
based on the registry information, locate the PE resources, extract the MESSAGETABLE data and build a
database that can be used offline.

3.1.4 Create from discrete files

Lastly one can tell elmo to create (or update) a database directly from separate files that were extracted
from a target box. The necessary files would include: (a) Windows system and software registry hives
and (b) the PE files that contain the MESSAGETABLE resources. One uses the options -sys <system
hive> and -sw <software hive> to specify the system and software hives, respectively. The -dir
<directory of PE resources> option specifies the directory where to locate the PE resources that are
referenced by the data in the system and software hives.

Using this option does not require any special permissions when running elmo. Also, this option can be
run on Linux and OS-X. There are, however, some limitations when using this mode. The biggest
limitation is making available all the PE resource files needed so that a complete listing of event log
message tables can be cataloged within the database that is created or updated. Further, one must
ensure the PE resource files included in the directory match those specified as providers in the system
and software hives. For this reasons, it is best (and less problematic) to use one of the previous options
which rely on the Windows system volume being present during the database creation.

3.2 Querying the database using elmo

One can use SQLite tools to query the database, or one can use the built in emo commands to
enumerate any of the tables, their contents, or to search for matching messages given an event ID and
its associated provider.

3.2.1 Table Enumeration

For general table enumeration functions, one can use the appropriate option to enumerate all the
entries of a desired table. For example, the options -tables, -providers, and -metadata refer to the
respective tables: ref, _providers and metadata. The option: -msgtable < table name > refers to the PE

Copyright © TZWorks, LLC Apr 25, 2025 Page 9

resource tables, where the table name is the name of the PE file. If there are questions about how the
data in the database was gathered one can use the -create_stats to enumerate the _genesis table,
which will include, among other things, the command line used during database creation. Multiple
entries imply that multiple target operating systems were used to create the database. If there were
some PE resource entries that you thought should have been parsed but were not, use the -errors
option to enumerate all the problem entries that were discovered and the reason why elmo thought it
was a problem.

Finally, in the category of table enumeration, if one instead wants to view any of the table contents in a
graphical sense, the SQLite browser from SQLite.org works well.

3.2.2 EventID Query

For spot event ID queries, one can input an event ID and provider name (or GUID) and get the associated
event message. To do this, one uses the option: -id <#> -provider <name>. In some cases, more than
one message will be returned. This is because an event ID may have multiple qualifiers that are
embedded into the high order bits of the raw event ID, where the lower 16 bits are the identifier itself.
Another reason that one may get multiple entries is if the database was created using PE resources from
multiple Windows operating systems. This usually causes overlap between event IDs.

Below is an example where we created a single database from both Win7 and WinXP images and
qgueried an event identifier that 615 from the Security provider. The PE resource file used by the
Security Provider for both Win7 and WinXP is msaudite.dll. While most PE resources that span multiple
operating systems have similar messages, some do not, like that in the example below.

Everything is the same,
<— except the OS version
and event message

Win7

In this case the first message is just the characters "%1" and the second is the message "IPSec Services:
%t%1%n". The "%1" is the way Microsoft defines a placeholder for a string argument. The data for the

Copyright © TZWorks, LLC Apr 25, 2025 Page 10

string argument is taken from the parsed event log and substituted into the message. The other
variables, %t and %n are for a tab character and line feed character, respectively. So, while this example
has a very short message, it was shown to enlighten the user that the combination of Provider and Event

ID do not necessarily yield unique messages. As operating systems are enhanced, the names of many of

the system PE resources stay the same, but their respective message tables may or may not change.

To help one understand the data that is outputted by elmo, the definition of the above fields is shown in

the table below:

elo De 0 optio 0 e OT data
Event ID Unfiltered 4 bytes of the event ID Message table
Event code Lower 2 bytes of the event ID Derived from Event ID
Severity High 2 bits of the event ID. Options are: Derived from Event ID
00 - Success,
01 - Informational,
10 - Warning,
11 - Error
LogType Which type of event log this event applies to. Parent key of the provider of the
Common ones are: Security, System and eventlog in registry hive
Application.
Provider Name of the provider that pointed to this PE file Taken directly from Providers in
containing the message table System and/or Software hives
SrcMsgFile PE file containing the message table Usually in System32 directory
TypeMsgFile Relates to type of MESSAGETABLE. Options are: Taken directly from Providers
1 - Event (EventMessageFile), identified in System and/or Software
2 - Category (CategoryMessageFile), hives
3 - Parameter (ParameterMessageFile),
4 - Guid (GUIDMessageFile)
LCID Language Code Identifier MUI name or PE resource internals
Min OS Minimum Window OS that this PE resource is Directly from PE resource internals
applicable for
Message Raw Message table entry associated with Event Directly from PE resource internals

ID

For the TypeMsgFile where multiple types are shown, this is because multiple types were either

specified in the registry hive or because different providers specified different types for the same PE

resource.

One can also query using a provider GUID, which is shown below. Notice, that there is no filtering in the

output, so duplicate entries are displayed. We tried to annotate the reasons for each duplicate entry.

Copyright © TZWorks, LLC

Apr 25, 2025

Page 11

-6eScfe9cel48} -id 1"

Targets Security Eventlog

Sometimes duplicate entries are
displayed where everything
matches, but elmo found different
areas in registry which tells which
eventlog type to target

Targets System Eventlog

Then there are entries with the
same event code, but different
event qualifiers

3.3 Using elmo with evtwalk CSV Data

evtwalk is a TZWorks command line tool for parsing Windows event logs and outputting the results in a
CSV fashion. While evtwalk pulls all the data available from an event log, it doesn’t try to locate and
extract the message table from the PE resource. To fill that need, we therefore added the functionality
into elmo. So, if one has the updated version of evtwalk (v0.30 or later), one can take the CSV output
from evtwalk and pass it into elmo. elmo in turn will analyze the CSV data and extract certain fields (like
the provider and event ID for each record) and look up an associated message table. After this, elmo
will perform argument substitution by taking the parameter data from the CSV file and generate a
message which then gets appended to the CSV data. To ensure there is no corruption with the original
CSV data, a new CSV file is created, which is identical to the original evtwalk CSV file inputted, but adds
a couple of extra fields to each record. These fields include: (a) message translation and (b) task
category translation.

This option should be considered experimental, since a number of conditions need to be satisfied for the
above process to work. Firstly, it assumes that resulting CSV file produced by evtwalk has all the fields
needed by elmo populated. Basically this means that if you run evtwalk in a mode that does not filter
any fields, then it should work. If filtering is used and the required fields needed by elmo are filtered
out, then the results will be unknown. Second, the CSV file needs to have the required field header

Copyright © TZWorks, LLC Apr 25, 2025 Page 12

names and argument syntax for elmo to extract the proper fields during its analysis. If one is using the
latest version of evtwalk (v0.31 or greater), then this latter requirement is satisfied.

4 SQLite Notes

4.1 SQLite Dependencies
elmo makes use of the SQLite library. If one is unfamiliar with SQLite, the official SQLite website is
http://www.sglite.org/. It has documentation and details on everything one would ever want to know.

Prior versions to v0.24 required a separate shared SQLite library for the tool to run. Starting with v0.24,
we have compiled in the static library into elmo, so everything is self-contained.

4.2 Database Schema used by elmo

If one is interested in the internals of the database that gets created from elmo, below is a diagram of
the database schema used. There are a few tables to track housekeeping items (tables: ref, providers
and metadata). There are also two tables (_genesis and _problem) to record the history of what
commands were used in database creation and any problems encountered during database creation.
These latter two are only used to help diagnose problems. The other set of tables uses a generic table
structure to record MESSAGETABLE data of PE resources. These last set consist of one table per unique
PE resource.

The table used for navigation and summary information is the metadata table. It in combination with
the PE resource MESSAGETABLE tables allows elmo to quickly pull the candidate messages given an
event identifier, provider name and an optional language identifier.

Copyright © TZWorks, LLC Apr 25, 2025 Page 13

http://www.sqlite.org/

SQLite D/B created by elmo Use for navigation ntdil_dli
within the database metaref
metadata Icid
" ¥ metaref ‘ raw_evtid
link evt_code
_providers hash message
metaref Icid
link data_table_name vee
log_type log_type
prov_name prov_name msimsg_dll
prov_guid prov_guid metaref
prov_file Icid
min_os raw_evtid
os_num evt_code
type_msg message
row_data_start
row data end PE resource tables containing
message table content
ref _genesis _problem
table_name | [% timestamp ¥ timestamp
last_rowid run — run
last_update tracking hash
target_os logtype
cmdline provider
elmo guid
admin resource
result issue

Given the general schema above, one can see the basic relationships for each of the tables. elmo has a
few built-in options to dump any of the above tables. This is useful if the user is not familiar with SQL
gueries or needs to look something up quickly. The options for table enumeration are discussed in the
section on “Table Enumeration”.

4.3 Providers

In the discussion, the term “Provider” will be used to pinpoint where the event ID references. In some
references the name Publisher is used instead. For the purposes of elmo, the name Provider is used for
both.

Providers were originally listed in the System hive of the Windows registry, specifically the subkeys
located here: HKLM\SYSTEM\CurrentControlSet\services\eventlog\<event log names>\<provider
names>\. So for Window XP and later operating system versions, this location still has a list of
Providers. With the later versions, a Provider name can also have a GUID (Globally Unique Identifier)
associated with the name, as well as have more details in the Software hive. Specifically, if one looks at
the subkeys: HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\WINEVT\Publishers\<GUID>\),
there contains a list of Provider GUIDs associated with Provider Names.

In the schema shown above, the “_providers” table will contain both the Provider Name and Provider
GUID (if available). This allows one to query an event ID with either Provider Name and/or GUID.

Related to the Provider, is the log_type field. This entry specifies an event log name that can contain
entries by a Provider. In some cases one can see one Provider has entries in multiple event log types.

Copyright © TZWorks, LLC Apr 25, 2025 Page 14

Familiar log_types are event logs named: “Security”, “System”, and “Application”. There are many other
log_types for the new versions of Windows.

4.4 Mapping of an Event to elmo Database

When needing to check the results of eilmo manually, one needs to understand how to map a specific
event to a final translated message. To do this accurately, one needs to understand the fields used in
the event and how they are matched to records in specific SQLite tables.

As an example, below is Event ID 7036 rendered from the TZWorks® tool evtwalk. Highlighted with
numbers are the locations of data used by elImo to perform automatic lookup and message translation.

The key fields are: (a) Provider name and GUID (shown as 1 and 2 below), (b) Event ID and Qualifier
(shown as 3 and 4 below), and (c) any string arguments (shown as 5). The first thing elmo looks at is the
Provider name and/or GUID and looks up the Provider details in the metadata table. If a record is
found, elmo then finds which PE resource message table was referenced by the Provider. With the PE
resource message table, elmo then looks for a record with the target event ID and qualifier. If this is
located, then the message is extracted. If there are any string arguments that need to be populated
with event data, those fields are searched in the event, and if found, extracted and substituted into the
string arguments to make a completed message for that event.

What fields e/mo uses from an event to integrate messages from providers

4 1 5 3 2
A [1 Il 1
f 1 [W 1 r W 1
EventID | ... | Provider Name | Ooi1:parami | o2:param2 | ... | EventID Qualifiers | Provider Guid |
7036 | ... | Service Control Manager | workstation | running | «.. | 16384 | {555908d1-a6d7-4695-8el1e-269
elmo reads in evtwalk’s parsed data evtwalk (field delimited format)
1 /J Icid data_table_name log_type prov_name prov_guid prov_file
en-US SErvices.exe system {555908 d1-a6d7-4695-8el e-26931d2012f4} %SystemRoot%\system32\en-US\services.ex
metadata table
Icid raw_evtid evt_code message
3 16384 = 0x4000
4 7036 = Ox1b7c en-US 0x40001b7¢ m The %l service entered the %2 state.
services.exe table elmo
g %1 = workstation, %2 = running (sQlite table data)
The workstation service entered the running state.

elmo generates a final translated message

Copyright © TZWorks, LLC Apr 25, 2025 Page 15

4.5 Handling Multiple Languages

The database created by elmo internally stores the associated language identifiers for each message
table that is extracted. This has a couple of benefits. First it allows multiple languages for the same
provider and event ID to co-exist within the database. Second it allows one to query the database and
specify which language identifier to use.

To create a database that has message tables with multiple languages, one has a couple of options: (a)
the first use-case is during the creation of the initial database, pass in the option -Icid <language ID’s
delimited by commas>. What this tells elmo to do is to first look at the default language (from the
target box) and then look at any language ID’s specified as well. So if one wanted English, French and
the German language message tables, one could specify -Icid “en-US, fr-FR, de-DE”. The resulting
database that is created will be based on the ability of elmo to find all the PE resources of the language
types that were specified. (b) The second use-case is to run elmo with the database creation option for
each target box passing in the same database for each one. elmo, in this case, will merge new message
table data into the database for each run. If the target machines had operating systems with differing
default language packs, then the resulting database at the end would have a combination of the
message tables for each of those default languages.

Below is an example of doing this on English, French and German. Shown below are some of the fields
for the provider “Microsoft-Windows-FMS” in the metadata table that was created. This particular
provider points to the PE resource file fms.dll, located at %systemroot%\system32\<lang
id>\fms.dll.mui. Each version of the message table resource is stored at the respective <lang id>
subdirectory.

Icid data_tabie_name prov_name prov_guid prov_file
en-Us frs.dll microsoft-windows-fms {deal7764-0790-44de-b3cd-40677b17174f} SystemPRoot¥\system32ien-US\fms.diLmui
de-DE frs.dll microsoft-windows-fms {deal7764-0790-44de-b3cd-40677b17174f} SystemPRoot¥\system32 de-DE\fms.dilLrmui
fr-FR frns.dll microsoft-windows-fms {deal7764-0790-44de-b3cd-40677b17174F} SystemPRoot¥\system32\fr-FR\frs.dil.mui

When looking at the ‘fms.dll” data table that was created, one would see entries for each LCID that
extracted, which in this case is en-US, de-DE, and fr-FR. For each of these LCID’s there is an event code
and its associated message for the language.

Copyright © TZWorks, LLC Apr 25, 2025 Page 16

-

metaref Icid raw_evtid evt_code message
1308985716958... en-US 0x30000000 Info | Dpata Table
1308985723377... de-DE 0x30000000 Info fms.dll
1308985723382... fr-FR 0x30000000 Informations
1308985716958... en-US 0x30000001 Start
1308985716958... en-US 0590000001 Microsoft-Windows-FMS
1308985723377... de-DE 0x30000001 Starten
5 Available Options
Option Description
Create a database from the system volume elmo is being run on. The
-livesys format is:
-livesys -db <resulting db>
Create a database from a mounted image from some offline system
. volume. The format is:
-partition o) o
-partition <drive letter containing mounted system volume> -db
<resulting db>
Create a database from an image of a system volume. The image
-image needs to be a monolithic file in ‘dd’ format. The format is:
-image <file with dd image> -db <resulting db>
Create a database from this specific System registry hive and/or
-Sys Software hive. Use the PE resources identified in directory
-SW specified. The format is:
-dir -sys <system hive> -sw <software hive> -dir <system32
directory> -db <resulting db>
iq Query the message that matches this event ID and provider. The
! ” format is:
-proviaer . . .
P -id <event ID> -provider <name of provider> -db <db to query>
Dump the table data for a specific MESSAGETABLE resource. The
-msgtable format is:
-msgtable <table name> -db <db to query>
Dump the metadata table. The format is:
-metadata

-metadata -db <db to query>

Copyright © TZWorks, LLC

Apr 25, 2025 Page 17

-providers

-tables

-Create_stats

-errors

-Icid

-only_security

-only_system

-only_application

-src
-dst

-msg

Copyright © TZWorks, LLC

Dump the providers table. The format is:
-providers -db <db to query>

Dump the tables used in the elmo database. The format is:
-tables -db <db to query>

Dump the creation table stats. The format is:
-create_stats -db <db to query>

Dump the provider errors. The format is:
-errors -db <db to query>

Include the following language IDs in the MESSAGETABLE
resource extraction during the database create option. The format is:
-Icid “de-DE, fr-FR, ja-JP, en-US, ...” [any of the database creation
options]

Only pull security providers during the extraction of
MESSAGETABLE resources during the database create option.
The format is:

-only_security [any of the database creation options]

Only pull system providers during the extraction of
MESSAGETABLE resources during the database create option.
The format is:

-only_system [any of the database creation options]

Only pull application providers during the extraction of
MESSAGETABLE resources during the database create option.
The format is:

-only_application [any of the database creation options]

The -src option specifies the CSV file containing the output of
evtwalk parsed data. The -dst option specifies where you want the
resulting data to put.

-src <evtwalk CSV file> -dst <results file> -db <db to use for
message tables>

Target the following Windows operating system event log message
tables (if possible). The format is:

-0s [winxp|vistalwin7|win8|win8.1|win10]

Option for -src / -dst for parsing evtwalk CSV output, to tell how
you want the messages to be integrated into the final output. raw =
show raw message with no parameter substitution; debug = provide
parameter substitution along with original argument string. Default
mode does parameter substitution without the argument string. If
desiring default mode, don’t use this option. The format is

Apr 25, 2025

-msg [raw | debug]

6 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital
X509 code signing certificate embedded into the binary (Windows and macQOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools
(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The
license needs to be in the same directory of the tool for it to authenticate. Furthermore, any
modification to the license, either to its name or contents, will invalidate the license.

Copyright © TZWorks, LLC Apr 25, 2025 Page 19

7 References

1. Microsoft Portable Executable and Common Object File Format Specification.

2. AnIn-Depth Look into the Win32 Portable Executable File Format, by Matt Pietrik, MSDN
Magazine.

3. Wikipedia, the free encyclopedia. PE format

4. String Message Arguments. https://msdn.microsoft.com/en-
us/library/windows/desktop/ms679351(v=vs.85).aspx

5. Detailed explanation of the message text file:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/mc_77If.asp

6. Parsing Event log data with theTZWorks® evtwalk tool.
https://tzworks.com/prototype_page.php?proto_id=25

7. Viewing of MESSAGETABLE data in PE Resource with the TZWorks® pe_view tool.
https://tzworks.com/prototype page.php?proto id=7

8. SQLite library statically linked into tool [Amalgamation of many separate C source files from
SQL.ite version 3.32.3].

9. SQLite documentation [http://www.sglite.org].

Copyright © TZWorks, LLC Apr 25, 2025 Page 20

http://www.microsoft.com/whdc/system/platform/firmware/pecoff.mspx.
http://en.wikipedia.org/wiki/Portable_Executable
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679351(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679351(v=vs.85).aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/mc_77lf.asp
https://tzworks.net/prototype_page.php?proto_id=7

	1 Introduction
	2 Background Information
	2.1 Separation of Source Code from Language Specific Resources
	2.2 How Language Names Relate Locale Code Identifiers (LCIDs)
	2.3 Message String Arguments
	2.4 Where are the MESSAGETABLE’s

	3 How to Use elmo
	3.1 Database Creation (or Database Update)
	3.1.1 Create from a Live Volume
	3.1.2 Create from a captured System Mounted Volume
	3.1.3 Create from an Off-Line (unmounted) Image
	3.1.4 Create from discrete files

	3.2 Querying the database using elmo
	3.2.1 Table Enumeration
	3.2.2 Event ID Query

	3.3 Using elmo with evtwalk CSV Data

	4 SQLite Notes
	4.1 SQLite Dependencies
	4.2 Database Schema used by elmo
	4.3 Providers
	4.4 Mapping of an Event to elmo Database
	4.5 Handling Multiple Languages

	5 Available Options
	6 Authentication and the License File
	7 References

