TZWorks® Safari Artifact Parser
(sap) Users Guide

Copyright © TZWorks LLC
www.tzworks.com

Contact Info: info@tzworks.com
Document applies to v0.19 of sap
Updated: Apr 25, 2025

Abstract

sap is a standalone, command-line tool that parses artifac
associated with the Safari desktop browser. The tool can
target certain SQLite databases, property lists (plists) and
cookies that are used in Safari. The data can be reported
into either CSV or Log2Timeline formats. This tool has
working versions for Windows, Linux and OS-X.

http://www.tzworks.net/
mailto:info@tzworks.net

Table of Contents

1

[aidgoTe [¥To1dTe] o WU T OO PP R PPPTOUPTROPRINt 3
11 Location Of Safari ArtifactS........iiiieiieeie et 3

[[)V o T U LY=o o N 6
2.1 Targeting SPECITIC fIlES ..vvei i e e e e et e e e e saba e e e e aae e e eansaeeeean 6
2.2 Integrated Parsing AlgOrithms (SQLITE)........c.ueecueeecieieeiee ettt ee et rae e 7

221 Algorithms and their ProS/CONS........ccieiieiiiiie ettt eve et e sbe e aesbesbe e veesbe e baeas 8
2.3 Y T e [=Te @R VA @ LU o TV} PRSP 9
24 BT = D= 1= F=) A o 13N 9
2.5 Processing Multiple Databasescocuiiiiiiiiie ettt e e e 10
2.6 Merging SQLite Data between Tables.......coo i e e 10
2.7 Bypassing the Embedded SQLItE [IDraryccueiiiciiee it 11

2.7.1 SiNAtUre PArSING JOZIC . iii ittt e e st e e e ae e e e e sabaeeeennsreeeeas 12
2.8 Parsing Safari SQLite Artifacts from Memory or a Disk IMagec.ccceevcvveveveciee e, 12
2.9 Splitting the Safari Sessions iNto Separate Filescceeeeciiieeciieee e 13

Databases Targeted DY SOooo it e et e et e e e e 13
3.1 HiSTOrY.db DatabDase.......c.uuviiieiiiee ettt ettt ettt e e e et e e e e ette e e e ebteeeeebtaeeeesteeeeesteeaesssanassnnes 14
3.2 Favicons.db or Webpagelcons.db Databasecccccuveieeiiieiiiiiieeeciiee e seree e e e aee e 16
3.3 TouchlconCacheSettings.db Databaseccueeiieiieiiiciiie e 17
3.4 CloudTabs.db Database..........ccocuieiieiiieiiieiiiite ettt st 18
3.5 CACNE.AD DAtabase.cc.ueeiieiieeiie ettt sttt sttt b e bt bttt nbe e saeesaeeea 19
3.6 <url>_0.localstorage related Databasescccuiieicciiiieieiiiiee ettt e e ectte e e e eeare e e e e eareeeeeanes 20

Property Lists Targeted by this t0O0]oeiiii e 20
4.1 L2 TRy o) g VA)XY SRS 21
4.2 L0611] oo [K3 o Y U PURPPRNt 22
4.3 e oY =X o Ky S USSRRN 23
4.4 ReCeNtlYyCIOSEATADS. PLISt ...ttt e e e e e et e e e e e e e s et ee e e e e e e e sseasateeeeeaeesennsenes 24
4.5 UserNotificQtionPermiSSiONS.PlISToeeeecueeeeeiiee e eectee ettt e et e e et e e e eeaae e e e e tae e e e ebtee e e eareeas 25
4.6 S€ArCADESCIIPLIONS.PIIST ...c....evveeeeiee ettt et e e e e s ree e e st e e e e abaeeeesbaeeeenreaeeennreeas 26

Copyright © TZWorks, LLC Apr 25, 2025 Page 1

4.7 COM.APPIE.SAFAIIPIIST ...ttt ettt e e e et e e et e e e e ta e e e esataee e e asaeeesannaneenan 27

4.8 PEIMUSSIONS. PLIST......vveeeeetieee ettt ettt e et e e e ctte e e e et te e e e sbteeeeebteeesebtaeesestaeeessteeeesastaeaesnnes 28
4.9 LASESESSION.PLIST ..coovveee ettt ettt ettt e ettt e s st e e s sttt e e s sbteeessbtaeessbtaeeesntaeeesantaeaesnes 29
0 O B 0o T ¢ T Y =2 Lo 3 ¢ |1 S PP PR 30
411 Miscellan@ous PlIST fIlES ..ueiiiiuiiii it ebee e s s e e e sareeas 31
O R = 1o Yo) ¢ 1o [3 o [R 31
4.11.2 KNOWNEXEENSIONS.PLIST....c...evveeeeeieieeecieeeeecie e ectte e e e tve e e e sta e e e e sataee e s ataeeeseabaeeesnssaeeesannsaeeean 32
4.11.3 CloudHistoryRemoteConfiguration.pliStccceeeccueeeeciueeeeciieeeeciieeeecieeeeeeraee e eeareee e 32
4.11.4 SiteSAIIOWEdTOAULOPIQY.PIISE........ccoecueeeeieciiie ettt e e e ae e e s bre e e s snreeeeas 33

D COOKIES .teiuteeetee ettt ettt ettt et h ettt e e b et e st e e s bt e e bt e e e b et e hte e st e e e bee e e beeebbeeanbeesraeenareenn 34
5.1 COOKIES.PIISTvveeeeeieee ettt ettt e e e e et e e s et e e e sbtaeeesabteeessabeeeeesbtaeeseastaeesssseeessnsseeassnes 34
5.2 HSTS.PLSE ettt ettt h e sttt et e be e he e ehe e et e et e e beenbeesheesarenas 35
53 DINGIYCOOKIES filE ...ttt ettt e e e e et e e e et e e e eeaaa e e e easaee e e nsaeeesannseeanan 36

6 Verification and Validation (for SQLIte files ONly).....cccuieeiieiiieeeeee e 36
7 Use Of the SQLILE LIDIary ...eeeieieii ettt sttt e s sttt e e s st e e e sbee e e s sbaeeeesstaaeesnteaeesanes 37
8 CSV Field NAMES / IMEANINGccuviciierieiieeieeiteeetteeteeteeteesteesteestvesbesabeebeebeessaesssessseesseeseesseesssesasesns 38
LS I R a1 7= L o T L3PPSO TP OPPPTOPPPRROR 38
10 F Ny Y] F1 o] [l @ 14 [o -SSR 39
11 Authentication and the LICeNSE Fil......coui it 41
12 REFEIEINCES ..ttt sttt et b e s bt e s ae e et e e bt e s reeseeesanesare e ne e neenes 41

Copyright © TZWorks, LLC Apr 25, 2025 Page 2

TZWorks® Safari Artifact Parser (sap) Users
Guide

Copyright © TZWorks LLC
Webpage: http://www.tzworks.com/prototype_page.php?proto_id=51
Contact Information: info@tzworks.com

1 Introduction

As background, the WebKit engine is used in the current Safari architecture. Other common browser
engines include Gecko and WebKit. Below is a table to showing where the Safari architecture is used,
and consequently, which browsers and the respective SQLite tables, the sap tool targets.

Chromium based that urls, visits, keyword_search_terms, visit_source, downloads, The csp tool just targets
use the Blink engine downloads_url_chains, clusters_and_visits, content_annotations, the SQLite data and the
(e.g. Edge, Chrome, context_annotations, cookies, autofill, thumbnails, top_sites, ccp tool is used to parse
Brave, Vivaldi, etc.) omni_box_shortcuts, logins, favicons, favicon_bitmaps, nel_policies, the cache
bounces

msp Mozilla based that use moz_places, moz_origins, moz_bookmarks, moz_historyvisits, The msp tool just targets
the Gecko engine (e.g. moz_inputhistory, moz_keywords, moz_annos, moz_items_annos, the SQLite data and the
Firefox, SeaMonkey, moz_anno_attributes, moz_cookies, moz_downloads, moz_icons, mcp tool is used to parse
Tor Browser, etc.) moz_icons_to_pages, moz_pages_w._icons, moz_favicons, the cache

moz_formbhistory

sap WebKit based browsers history_items, history_visits, history_items_to_tags, history_tags, The sap tool also parses
(e.g. Safari) icon_info, page_url, cache_settings, cloud_tabs, cloud_tab_devices, the cache, as well as,
cfurl_cache_blob_data, cfurl_cache_receiver_data, some plists containing
cfurl_cache_response, ItemTable useful data

As shown in the last row above, The Safari Browser has many artifacts available that the forensics
examiner can use in identifying a user’s Internet activity. This includes Safari’s SQLite databases, local
storage, associated property lists (plists), cookies and cache. This tool focuses on those artifacts
associated with the desktop version of the browser, however many of these same artifacts appear in the
mobile version of the browser as well.

1.1 Location of Safari Artifacts

Safari leverages files in the local user’s subdirectory; starting with the Library/Safari folder there are
various files that are related to Safari in some aspect. The locations and diversity types of files are
shown in the diagram below.

Copyright © TZWorks, LLC Apr 25, 2025 Page 3

mailto:info@tzworks.net

’ <user’s subdirectory>/Library/Safari folder ‘

B 6¢249d1b-96db-4f4e-9ef-f608f13f582.db
- Old Version
. https_www.airbnb.com_0 . Databases

. Databases.db Name . LocalStorage

B CacheSettings.p

l CloudBookmarksMigrationCoordinator l ReadingListArchives
l Databases . Touch Icons

W | #
I 00F7A22396B9E9CE3CEBAB187996A304 8l Fovicon Cache : = Ebkpige;m:std :
0oKmMarks.plsi
B 1A2D78E60E6B6C5DB1CA31C02035D609 I favicons B Locaistorage B Downl d.p,,
o)202 s iconsdh l RemoteNotifications DI
l Touch Icons Cache i SRR

B AutoFiliCorrections.db W LastSession.plist
. CloudAutoFillCorrections.db . SearchDescriptions.plist

B CloudTabs.db B Topsites.plist
. Permissions.plist . o B
istory.
B web.com.cnn.redalert.safaripush . s -~
erSitePreferences.

h sxdaily. .locall
B Bookmarks.plist I http_osxdaily.com_O.localstorage

. CloudHistoryRemoteConfiguration.plist

l Images . Downloads.plist
. TouchlconCacheSettings.db

. https_app.slack.com_0.localstorage

. LastSession.plist

. PerSiteZoomPreferences.plist
. RecentlyClosedTabs.plist

B SearchDescriptions.plist

. SitesAllowedToAutoplay.plist
. TopSites.plist

B 0A137B375CC3881A70E186CE2172C8D1.png
B 0AA4DC9917292B07BESCI1FFAICBI277.png

2B2BEASRECCA25] EB 2NN REMER60F 76.00

. UserNotificationPermissions.plist

Many of the SQLite files listed are parsed with the sap tool. However, if a particular file listed is not
parsed, it is usually due to a lack of artifact test data (therefore left out of the parser).

When looking at the cookies used on a MacOS, there are two types to be aware of. The newer versions
consist of a combination of a HSTS.plist file along with a number of files that have the binarycookies
extension. Alternatively, the older version of Safari consists of mostly plist files. Both of these types are
shown in the image below.

| <user’s subdirectory>/Library/Cookies folder |

-
Library > Cookies SRS, . Library > Cookies

Name Name

B HSTS.plist . com.apple.appstore.plist

. org.macosforge.xquartz.X11.binarycookies |] Cookies.plist

. Cookies.binarycookies
. com.apple.Safari.SearchHelper.binarycookies

Cached webpages reside in the user’s subdirectory/Library/Cache folder. For Safari related cached
webpages, one targets the com.apple.Safari subfolder and parses the Cache.db file. One point to note -
there are many Cache.db files located in the Caches subfolder. Given that all the Cache.db files appear
to all use the same schema, it stands to reason that sap should be able to parse any of them even if they
are unrelated to Safari. While this may be true to some extent, this tool has not been tested on the non-
Safari specific ones.

Copyright © TZWorks, LLC Apr 25, 2025 Page 4

<user’s subdirectory>/Library/Caches folder
. Caches Name

l com.apple.appstore . Webpage Previews
l com.apple.dashboard.client . Cache.db

l com.apple.DictionaryServices

l com.apple.dt.Xcode

l com.apple.finder

l com.apple.helpd

. com.apple.helpviewer

l com.apple.iCal

l com.apple.installassistant

B com.apple.installer

l com.apple.iTunes

l com.apple.PubSubAgent

l com.apple.QuickLookDaemon

. com.apple.Safari

Copyright © TZWorks, LLC

Apr 25, 2025

Page 5

2 How to Use sap

The screenshot below shows the options available. The output options are similar to the rest of the
TZWorks tools, and can be rendered in one of the three formats: CSV, Log2Timeline, or BodyFile
(Sleuthkit format).

2. Administrator: Windows PowerShell

Usage

Safari Artifact Parser commands

sap -db <History.db> [options]

dir <location Safari db/plist/cookie> /b /s | sap -pipe [options]

sap -enumdir <location Safari db/plist/cookie> -num_subdirs <#> [options]

Parsing options
<no option> use internal/predefined SQL ‘'select’
-carve [-incl_slack] * carve optl: by walking db structures
-parse_chunk [-blob] = * carve opt2: by scanning for signatures

Basic output options
-csv
-csvlat
-bodyfile

output in CSV format
og2timeline output
sleuthkit output

nonon

Additional options
-username <name>
-hostname <name>
-csv_separator "|"
-dateformat mm/dd/y
-timeformat hh:mm:ss.xxx
-no_whitespace
-quiet

for -csvl2t output

for -csvl2t output

use a pipe char for csv separator

"y -mm-dd" is the default

"hh:mm:ss" is the default

remove whitespace around csv delimiter
no progress shown

Folder Traversing Options
-pipe pipe files to parse
-enumdir <dir> -num_subdirs <#> pull from files from folder
-split_sessions *** Split sessions into separate files

Testing options
-no_table_merge [SQLite only] dont merging tables
-verify [-add_comments] [SQLite only] generate stats on parsing
-show_all_data show all binary data

To process artifact files, sap can either target a folder, individual SQLite database files, individual plist
files, or binarycookies files. The tool will automatically determine the file type version and adjust the
parsing engine accordingly. When parsing many subdirectories at once, where each subdirectory is a
different account or machine, the tool will dynamically adjust for the type and version of the file so as to
preserve the record content when interleaved from one record type to another.

2.1 Targeting Specific files

To target a specific SQLite file, plist file, or cookie file, use the -db option. From sap’s perspective all
the file types are treated as if they are a database. If targeting an SQLite file, without any specific
parsing parameters, the default parser uses the Structured Query Language (SQL) in combination with

Copyright © TZWorks, LLC Apr 25, 2025 Page 6

the statically linked SQLite library to extract the records in the various tables in the database. Below is
an example of doing this.

The default output is rendered in pipe delimited text and has a fixed set of fields. These fields are
explained in the section on CSV Field Names/Meaning. To allow flexibility rendering differing data types
across the tables and databases in the output, some of the fields in the CSV output make use of a quasi-
JSON like format; this allows records with different fields across various tables to be rendered in one
CSV/delimited format. Below is a sample output.

type rowid create time last access | expires url or name params params translation extra fields datare file

url 1 01/01/2020 01/01/2020 https://youtu.be/2GYvX69Qlgd {redirect_destination=["u {history_visits=["id":"1";"histd E:\testcase\
url 2 01/01/2020 01/01/2020 https://www.youtube.com/watch?v=2GYvX¢ {"title":"Venice - Fi {redirect_source=["url":"t. {history_visits= a E:\testcase\
url 3 01/01/2020 01/01/2020 https://www.youtube.com/watch?v=efnXbr {"title":"How to Co {history_visits=["id":"3";"histd E:\testcase\

sap will try to show all the associated fields for each record. Fields that do not have a dedicated
column, are shown in the ‘extra fields’ column; each field in this column is annotated by a ‘name of
field/value of data’ pair. Many of the items of interest such as timestamps and URL have their own
dedicated columns.

If running sap with either the -carve or the -parse_chunk options, the ‘data record sources’ field will be
populated with the offset of the record. For example, running the same command above while
specifying carve as the parse algorithm yields the same data above, but with the data record sources
field populated.

-db c:\dump\History.db -out resu

data record source(s)

{history_visits=["src":"carve main"; "record offset":"0x0001afe6"];history_items=["src":"carve main"; "record offset":"0x00018fd3"]}
{history_visits=["src":"carve main"; "record offset":"0x0001afb5"];history_items=["src":"carve main"; "record offset":"0x00018f7e"]}
{history_visits=["src":"carve main"; "record offset":"0x0001af4b"];history_items=["src":"carve main"; "record offset":"0x00018f3a"]}

This gives one the location information necessary to analyze the data in a hex editor to verify the results,
should a manual verification of the results be required.

2.2 Integrated Parsing Algorithms (SQLite)

sap offers three possible parsing algorithms to choose from when dealing with SQLite databases; these
are outlined below:

1. Default option. This option uses the internal SQLite library that is statically linked into sap to
perform a SQL-Select statement on the database under analysis. It is sensitive to corrupt
databases.

Copyright © TZWorks, LLC Apr 25, 2025 Page 7

2. Carve option. (-carve). This option uses a TZWorks based set of algorithms to traverse the SQLite
data structures to parse the records in the database. It relies on the database’s schema and
internal tree-based structures to find the data. When corruption is present, this option will
skip bad records and will attempt to parse the next one. It also looks at unused space for any
records that may be present using the -incl_slack option.

3. Signature-base option. (-parse_chunk). This option does not make use of the SQLite schema or
tree-based structures in the database to locate records. Instead, it looks for pre-defined
signatures in order to locate records and parse them. Empirical testing has shown this approach
works from either a fully intact database, a corrupted database or a partial blob of a database.
While this option can pull valid records, it truncates the data when a record spans multiple
SQLite-pages. For any records that are truncated, the output will be annotated with a flag
identifying it as such.

2.2.1 Algorithms and their Pros/Cons

The benefit of the default option is its usefulness for verification and validation purposes. Given that
sap can produce the same output for any of the three available parsing options, one can use the default
option as the base option to compare other parsing algorithm results. In this way, one can easily verify
whether the carve option and/or signature-based option works, simply by comparing the results to that
of the default SQL-Select option.

In most cases, the carve option (-carve) is a better choice over the default option, simply because it
returns the same, if not more, results. If invoking the sub-option -incl_slack, the tool has the ability to
detect unused space and switches to a signature-based scan for those areas.

Surprisingly, the signature-base option (-parse_chunk) competes very well with the other two options
with some exceptions. Keep in mind, the -parse_chunk option strictly relies on unique signatures being
accurate for its success. Also, just because a signature is available, one needs to ensure the signature
isn’t too simple in the sense it generates many false-positives. While the other two options can
dynamically adjust their parsing engine based on the schema identified in the database, the signature-
based option cannot. Depending on the number of recoverable records in the database, it is possible for
signature-based option to extract more records than the other options, however, the user is cautioned
that more records do not necessarily mean accurate data. For example, if one passes in a file that
contains the contents of a disk volume, with the intent of extracting all the Safari artifacts from that
image, then there may be multiple false positives on certain table records. sap does a good job of
statistically pulling out table entries that have many fields versus those tables that only have a few
fields. Therefore, certain table entries will have less false positives than others.

The other issue to consider with the signature-base option is the merging operation from data in one
table to another table (based on some relationship between the tables) may or may not make sense.
For example, if a timestamp from one table is merged with data from another table, and the data is not
in sync (from a chronological point of view), then the resulting merged record will mislead the
investigator of an event’s occurrence time-wise. The other pitfall with the signature-based scans, which

Copyright © TZWorks, LLC Apr 25, 2025 Page 8

was mentioned earlier, is that approach will truncate the data if a record overflows into multiple
databases pages; the signature-based scan will only report on data found in the initial page.

To handle the data accuracy issue, refer to the section on “Merging of Data between Tables”.

In conclusion, despite the negatives for the signature-based parse, it is the only choice if analyzing
partial chunks of database fragments, whether from memory or disk images.

2.3 Modified CSV Output

When parsing various databases, where a database type can have differing tables and each table
translates to differing schemas or fields, one of the challenges in report generation is rendering all the
various data fields into a common CSV format. The simple solution is to invoke the Log2Timeline
option (-csvi2t), or the Sleuthkit BodyFile option (-bodyfile). These are excellent options to achieve this,
since these formats have custom pre-defined fields. They are defined in such a way that the format
allows for dissimilar datasets by assuming all records will have at least a timestamp and description of
the event that occurred. These formats also contain fields for generic data such as notes and comments.

The above formats, because of their nature, can take one record and create multiple CSV entries if an
entry contains multiple differing timestamps. Therefore, if one desires to output a single CSV line per
record, then some of the fields need to be designated as variable in nature. Leveraging off of the
concept of the -csvI2t format, one can accomplish this by creating some static fields as well as some
general-purpose fields. For the default or the -csv option, sap does just that. Specifically, there are a
few static fields where the types are set, but there are others where a JSON like format is used. In this
way, many of the fields of a record can be outputted in a way where similar fields, such as Type of
record, RowlID, Timestamp, and URL are static, but the other general-purpose fields can contain differing
types of data. For general-purpose data, the JSSON like format used by sap consists of outputting the
data in a name/value pairing relationship.

2.4 Type Designations

For SQLite artifacts, the output will render two types of designations. The first is a result of merging
records from tables in accordance with the schema of the database. For this case, the following
designations are used:

SQLite Record Type Table(s) where the data resides Database where the table(s)
reside

(new) icon_info, page_url, rejected_resources, favicons.db, Webpagelcons.db
(older) iconData, Iconinfo, PageURL

_ history_items, history_visits, History.db
history_items_to_tags, history_tags

xxx.localstorage ItemTable <url>_0.localstorage

Copyright © TZWorks, LLC Apr 25, 2025 Page 9

CloudTab cloud_tab_devices, cloud_tabs CloudTabs.db

Cache cfurl_cache_blob_data, Cache.db
cfurl_cache_receiver_data,
cfurl_cache_response

cache_settings TouchlconCacheSettings.db

<plist type> based Not applicable For plist type file

on filename

Cookie Not applicable For <filename>.binarycookies

type files

Alternatively, if merging table records is turned off (via -no_table_merge), then the type designations

may specify the actual table name where the data came from. These table names are shown above as
well as in the section on “Databases targeted by sap”.

In addition to the record types shown above, there are some cases were the type is supplemented with
an extra word, such as Trunc, which means the data was truncated.

2.5 Processing Multiple Databases
If desiring to process many database files in one pass, one can put the artifact databases in separate

subdirectories that share a common parent folder (or just enumerate them on a live system) and use
the -pipe option like so:

>dir c:\dump\safari_dbs /b /s /a | sap64 -pipe -out results.csv

To be more discriminating one can use the -enumdir option along with the sub options -num_subdirs and
-filter. This allows one to target the specified level of subdirectories and files with a certain extension.

>sap64 -enumdir c:\dump\safari_dbs -num_subdirs 10 -filter "*.db" -out results.csv

The above command will process all databases contained in the c:\dump\safari_dbs folder and the 10t
level of subfolders. The results of parsing the databases found will be put into the file results.csv. To
help distinguish which lines corresponds to which database file, an extra field is appended to each
record identifying the source database.

2.6 Merging SQLite Data between Tables

Certain tables contain relationships between them, where data from one table is meant to be combined
with another table in order to populate all the fields for a record. The relationships between the Safari
database tables are shown in the section on “Databases Targeted by sap.” By default, sap will try to use

Copyright © TZWorks, LLC Apr 25, 2025 Page 10

these relationships and merge the data between the tables. Each merged dataset will be treated as a
separate record to be output into the report. For example, if the records from three tables make two
records after the data is merged, only the two merged records will be output by sap in the report.

On the flip side, if one has two tables to be merged and they have a ‘one to many’ or ‘many to one’
relationship, then the tool will try to create a ‘one-to-one’ relationship in the results that are output.
Unfortunately, this gives the perception that there are a large number of duplicate records. Whether it
be with some other table to table relationship, inevitability there will be duplicates where some of the
outputted records will match each other. This is especially true when considering parsing deleted
records out of unallocated space. sap does not make the determination whether the records it parses
are duplicated or not; it just outputs all the data.

In some cases, one may not want this merging to take place, and may want to see all the un-merged
data from each table separately output as a separate record. This behavior can be done by invoking the
-no_table_merge switch. This option only works with the default or -csv output modes (and does not
work with -csvi2t or -bodyfile). This is because not all table records that are parsed by this tool have a
timestamp associated with them, which the -csvi2t and -bodyfile formats rely on.

The main use-case for the -no_table_merge is when processing chunks of data (i.e. consider a partial
memory dump, volume dump or a partial database file) that contain Safari artifacts. In this case, any
records extracted from partial tables may relate to one user’s account Safari data, but not to another
account. Alternatively, using the same example, assume there is only one user account on the
computer; what could happen is that a parsed timestamp from one table may be out of sequence, from
a chronological perspective, from data in another related table. Therefore, any merge operation in the
above cases is dubious at best, since there is really no good way to tell if the merge operation will yield
accurate results.

2.7 Bypassing the Embedded SQLite library

sap has the SQLite library embedded into the binary. More information about this is discussed in the
section Use of the SQLite Library. The tool makes use of this library in the default mode when parsing.

Sometimes, however, one may not wish to use the SQLite library for analyzing tables and extracting
records, so an option was added to bypass the SQLite library and use the TZWorks internal SQLite
algorithms to parse the database. This functionality can be invoked in one of two ways: (a) with

the -carve option or (b) the -parse_chunk option. Out of the two options, one should opt for the former,
the -carve option. This option will try to traverse the internal SQLite data structures in the database
(even corrupted ones), and should extract all the same information as if using the normal SQLite library.
The difference here is the -carve option is more immune to database corruption or database lockdown,
than the default option.

Copyright © TZWorks, LLC Apr 25, 2025 Page 11

The purpose of the second option -parse_chunk, is to go a step further and operate on only a subset of
the database. More specifically, if at least a page of the database is available, this option will try to
make sense of any records it finds. The limitations of this option include: (a) it will not be able to handle
overflow records between SQLite pages, and (b) it may not be able to provide joins between tables that
have a relational aspect. The -carve option discussed earlier, however, will handle the overflow of data
between pages and perform the necessary joins between tables that have dependencies between them.
The benefit of the -parse_chunk option is that it can handle pulling out records from a journal file
independently of the main database file, whereas the other two options cannot.

2.7.1 Signature parsing logic

When invoking the -parse_chunk flag, the internal parser resorts to a signature-based parsing logic.
When considering the number of different Safari SQLite databases, where each database can have one
or more tables and each table having a unique schema, the number of signatures the tool can look at
can be quite a few. Therefore, to restrict the number of signatures the tool targets the filename of the
database that is passed in to determine which signatures to use to find candidate records. This results in
two things: (a) it restricts the number of signatures to scan for, and (b) it reduces the number of false
positives, in the case where multiple signatures are similar.

In those situations where the file being passed in was carved from disk or taken from memory, the
filename approach described above does not work; specifically, one needs to tell sap to scan the file for
all the signatures internally available. To tell sap to do this, use the -blob option in conjunction

with -parse_chunk, and the tool will scan through the file looking for various possible records by trying to
match a dictionary set of signatures.

2.8 Parsing Safari SQLite Artifacts from Memory or a Disk Image

To parse artifacts from a file-based archive that contains a memory or a disk image, one would use

the -parse_chunk option along with the -blob option. This tells sap not to use the filename to determine
which signatures to use. Instead, the tool will use any unique signatures it has to scan for a broad set of
record types. The term unique is used here to mean the signature doesn’t produce a large set of false
positives.

Even though the tool will allow the user to run it in either the 32-bit or 64-bit version of the binary, one
is encouraged to use the 64-bit version. The reason is with a scan that spans a very large disk image, it
may be possible to extract a large number of records. The larger the number of records that are
extracted, the more memory the tool will consume; using the 64-bit binary can grow the memory
needed appropriately, whereas the 32-bit version is limited.

Below is an example of performing this operation on a VMWare memory image. Notice we
incorporated the -no_table_merge option as well, since we do not want to merge table data together.
This is done as a precaution in case there are multiple instances of Safari artifacts at one time or

Copyright © TZWorks, LLC Apr 25, 2025 Page 12

another; each instance, in this case, would represent a different user account on the system. Merging
table data from one user to another user would yield incorrect and misleading results.

>sap64 -db c:\dump\test_image.bin -parse_chunk -blob -no_table_merge -out results.csv

Notice in the command shown, that we still use the -db <file> syntax even though the file we are parsing
is not a database, but an image of physical memory stored as a file.

The same type of scan can be done on any image that is not encrypted. The only restriction here is that
the image (memory, volume, disk or chunk of data) has to be identical to the system it came from. The
key here is the SQLite records being scanned/parsed need to be preserved in their original form.

The last point to mention is if sap detects a very large file being processed for analysis, it will complain if
you are not using the option -parse_chunk. Also, sap will complain if either the -csvi2t or -bodyfile output
options are used for large file analysis, since only the -csv (or the default) output option is allowed for
this situation. This limitation is hardcoded into the tool. Furthermore, it will automatically switch into
the mode -no_table_merge for very large files. The term ‘very large’ in this context are sizes not normal
for individual Safari databases, so an arbitrary size above 130 MB is used for this threshold.

2.9 Splitting the Safari Sessions into Separate Files

One of the use-cases is to run sap against a system with multiple accounts, and breakout the parsing
results by account into separate files. To do this, use the option -split_sessions. It can be used with
either of the directory enumeration options (-enumdir or -pipe). The behavior of sap will take whatever
was specified as the output file to be appended with a session number. For this to work properly, the
tool is assuming that the starting folder includes the user’s account folder/subfolders. Below is an
example using this syntax.

5. Command Prompt

E:\>sap64 -enumdir <extracted_files>/users -num_subdirs 15 -filter "*.db|*.plist|*.binarycookies" -split_sessions -out results.cswv

When the processing is done, a number of files (one per Safari session) will be generated. The output
notation will the output name specified (in this case “results”) prepended with an incremented number
along with the folder name used by Safari for that session.

3 Databases Targeted by sap

sap currently targets the following SQLite databases: (a) History.db, (b) Favicons.db (or
Webpagelcons.db), (c) TouchlconCacheSettings.db, (d) CloudTabs.db, (e) Cache.db and (f) localstorage
related files. This tool focuses on the desktop platform (MacOS) of Safari artifacts and not the device
versions run with jiOS.

Copyright © TZWorks, LLC Apr 25, 2025 Page 13

When looking across the various versions of the Safari Browser over time, the schemas of the databases
have changed somewhat. The database schema can be thought of as the roadmap that defines the
fields and the type of data in each field that comprise a record in the table (where one or more tables
reside in a database). More often, however, the older browser versions made more extensive use of
plist (property list) files; the newer browser versions have evolved some of the plist files into SQLite files.

The change in schemas across different browser versions as well as the use of plists in some of the older
versions is something that needed to be taken into account when designing sap. The design allows the
tool to dynamically detect and adjust to varying schemas and/or plist usage as they are encountered
during the processing.

In addition to the auto-schema detection, sap allows the user to parse a target SQLite database in three
ways. (1) The first way makes use of the standard SQL (Structure Query Language) to parse the records.
The SQL syntax is internal to the tool, so the user is not required to have any knowledge about SQL or its
syntax. For this option to be available, the SQLite library was statically linked into sap, which eliminates
the need for the SQLite dynamic library to be present to run the tool. (2) The second approach allows
the user to instruct the tool to parse each record by traversing the internal SQLite structures as they are
encountered. This option does not use any part of the standard SQLite library, but utilizes the TZWorks’
internally designed libraries. The library allows sap to extract records from a corrupted database and
annotate the exact offset of the data where it was found. This enables one to easily validate it later with
a hex-editor. (3) The third, and final approach, uses a signature-based parse. While this option is more
limited in merging records from one table to another, this turns out to be a unique way in parsing a blob
of data whether it be from memory or from a fragment of a database. All three approaches are
designed into sap for the analyst to use.

3.1 History.db Database

Safari’s History.db database located in the <user’s subdir>/Library/Safari/ folder has a number of tables
of interest to the analyst. Below is a diagram of these tables and their relationships to each other. Keep
in mind not all the tables, as well as fields in the tables, may be present in the older Safari browser
versions. The same can be said of the fields that comprise each of the tables.

Copyright © TZWorks, LLC Apr 25, 2025 Page 14

| history_items .L—
(2 id = history_visits
[=) url 2 id @
|=) domain_expansion —@® [history_item
|/ visit_count |=) visit_time
[=) daily_visit_counts D title
| weekly_visit_counts) load_successful
|| autocomplete_triggers ; http__non_get
|==) should_recompute_derived_visit_counts [2) synthesized
- Visit_count_score) redirect_source [Yym—
|| status_code =) redirect_destination@—
l= oOrigin
= generation
Ll history_tombstones - attributes
2 id = score
| start_time
- end_time | history_items_to_tags
=) url —® | history_item
| generation —® |- tag_id
| timestamp
|| history_events
D id L history_tags
[2) event_type —P® [id
) event_time =l type
|=) pending_listeners = level
D value || identifier
|l title
l=/ modification_timestamp
l=) item_count

The table relationships are shown by the lines connecting one table to another. These relationships will
have an effect on the number of records that will be outputted by sap. For example, the tables
history_items and history_visits have what is called a ‘one to many’ relationship. The history_visits may
have many linked records to only one entry in the history_items table. Therefore, after merging the
data from the history_visits table to the history_items table, one most likely will get more records in the
output of the report then the number of records in the history_items table. This is because each parsed
line in the output has taken the ‘one to many’ relationship and converted it to a ‘one to one’
relationship; where each line in the output shows one history_items entry and one history_visits entry.
If there was a second history_visits entry for the same history_items entry, that would constitute a
separate output line. Outputting the data this way allows the various timestamps recorded to be
digested better by other tools.

This behavior exists across other tables as well, assuming there are multiple entries from one table
referencing a single entry in another table.

Below is a sample output from the fields in the History.db database. One should note, while the
timestamps shown are for create and last access, the timestamps can come from a number of sources
with this database. (a) history_visits:.visit_time, (b) history_tags::modification_timestamp or (c)
history_items_to_tags::timestamp. The visit_time is used for the create time and the others (if
available) are used for the last access time.

Copyright © TZWorks, LLC Apr 25, 2025 Page 15

url
url
url
url
url
url
url
url

01/01/2020 01/01/2020
01/01/2020 01/01/2020
01/01/2020 01/01/2020
01/01/2020 01/01/2020
01/01/2020 01/01/2020
01/01/2020 01/01/2020
01/01/2020 01/01/2020
01/02/2020 01/02/2020

typ -¥ create tir ¥ | last acce: ¥ | expires v lurl or name ¥ |params ¥ | params translation v | extra fields

https://youtu.be/2GYvX69Qlgs {redirect_destination=["url":"https://www.\ {history_visi
https://www.youtube.com/watch?v=2GYv {"title":"Venice - Film - YouTube";args=["v":"2GYvX69Ql {redirect_source=["url":"https://youtu.be/2: {history_visi
https://www.youtube.com/watch?v=efnX {"title":"How to Completely Remove/Uninstall Program {history_visi
https://app.slack.com/signin {redirect_destination=["url":"https://tzwork {history_visi
https://tzworks.slack.com/?is_ssb_browse {"title":"Slack";args=["is_ssb_browser_signin":"1"]} {redirect_source=["url":"https://app.slack.cc {history_visi
https://tzworks.slack.com/ {redirect_destination=["url":"https://tzwork {history_visi
https://www.xquartz.org/ {"title":"XQuartz"} {redirect_source=["url":"https://www.googl {history_visi

https://help.apple.com/macos/catalina/m {args=["lang":"en"; "cases":"kIFAGHvXTAepRptQXiXeSw {redirect_destination=["url":"https://help.a| {history_visi

If desiring to know which timestamp is represented, one can examine the ‘extra fields’ which has the

raw data for each of the fields. An example of an expanded ‘extra fields’ is shown in the screenshot

below.

extra fields

fhistory_visits=| "id":"63";"history_item":"35"{'visit_time":"599686509.499291"}"title":"Apple OS X: Install X Window System
XQuartz For SSH X11 Forwarding On a Mavericks or Yosemite -
nixCraft“;"Ioad_successfuI":"1";"redirec‘t_source":"62";"score":"loo"][“id":"35";"urI":"https://www.cyberciti.biz/f
ag/apple-osx-mountain-lion-mavericks-install-xquartz-server/";"domain_expansion":"0";"visit_count":"1";"daily_visit_counts
(encoded)"=[100];"visit_count_score":"100"] ["history_item":"35";"tag_id":"3"{"timestamp":"599686516.0|
63098" fhistory tagsk{"id":"3";"type":"1";"level":"200"; "identifier":"Q170460"; "title":"Secure

shell";'modification_timestamp":"599686516.063098";"item_count":"1"]}

3.2 Favicons.db or Webpagelcons.db Database

Depending on the Safari version, there will be one of two website icon datatypes. The primary data of

interest are the timestamps and the URL that was visited.

The Favicons.db database is found in the newer version of the browser and is located in the <user’s
subdir>/Library/Safari/Favicon Cache/ folder. It has 3 tables of interest to the analyst. Below is a
diagram of these tables and their relationships to each other.

= icon_info
|:; uuid [o
Q url
Q timestamp
[=) width
[=) height
Q has_generated_representations
=] page_url
»® [urd
Q uuid [
=l rejected_resources
B Q page_url
Q icon_url

Q timestamp

Below is a sample output from the fields in the Favicons.db database.

Copyright © TZWorks, LLC Apr 25, 2025 Page 16

type rowid create time [UTC] last acces expires url or name params extra fiel
favicon 1 01/01/2020 00:33:24 https://s.ytimg.com/yts/img/favicon_32-vfl {page_url:[https://www.rygutube':é/ {icon_inf
favicon 2 01/01/2020 00:36:53 https://www.google.com/favicon.ico {page_url=[rb,§tpse//W'\fv/\fv/.google.cm {icon_inf
favicon 3 01/01/2020 00:47:17 https://static.xx.fbcdn.net/rsrc.php/yo/r/iR {page_url=[https://www.facebook.: {icon_inf

| extra fields

{icon_info=["uuid":"8C4EC8D1-3F61-4EEC-BAS53-
359CF7BC4334";"url":"https://s.ytimg.com/yts/img/favicon_32-
vflOogEID.png";"timestamp":"599531604.76792";"width":"32";"height":"32";"has_generate

d_representations":"1"];page_url=[https://www.youtube.com/watch?v=2GYvX69Qlg4&fea
ture=youtu.be]}

The older version of the website icon database is the Webpagelcons.db. This is located in the <user’s
subdir>/Library/Safari/ folder. The tables of interest as well as their relationships are shown below.

|~ 1conData
|-} iconiD [o
Q data

._i IconDatabaselnfo
=) key
|;] value

] lconinfo

L] |__:} iconlD @
|=) url
=) stamp

=] PageURL
Q url

R |;] iconlD

The sample output is shown below. As one can see, the main fields are similar from the new browser

version; the only real changes between the versions are in the data reflected in the ‘extra_fields’
column.

type rowid create time [UTC] last acces expires url or name params extra field

favicon 1 12/24/202016:12:44 https://www.apple.com/favicon.ico {page_url=[http://www.apple.com/safari/welc |Iconinfo=["

favicon 5 12/24/2020 16:27:20 https://support.google.com/favicon.ico {page_url:[https://suppon.googlé.com/maps/' Iconinfo=["

favicon 6 12/24/2020 16:32:45 https://www.bing.com/sa/simg/favicon {page_url=[https://Www.bing.com/]} Iconinfo=["
| extra fields

Iconinfo=["iconid":"1";"url":"https://www.apple.com/favicon.ico";"stamp":"1608826364"];
IconData=["iconid":"1";data=["type":"ico";"width":"16";"num_bytes":"22382"]];PageURL=["
url":"http://www.apple.com/safari/welcome/";"iconID":"1"]}

3.3 TouchIconCacheSettings.db Database

The TouchlconCacheSettings.db is located in the <user’s subdir>/Library/Safari/Touch Icon Cache/ folder.
Fields of interest are the host that was visited, the last request date, and the request count. One can

also pull the images from the next level subdirectory labeled Images. Below are the fields of the
cache_settings table.

Copyright © TZWorks, LLC Apr 25, 2025 Page 17

_| cache_settings
[id
[=) host
[2) last_request_date
\;] last_request_was_in_user_loaded_page
[=) request_count
[icon_is_in_cache
[=) download_status_flags
[=) extracted_color
2 transparency_analysis_result

(=) uuid

[;] last_response_status_code

Below is a sample output from the fields in the TouchlconCacheSettings.db database.

type rowid create last ac expires [UT url or name
IconCache 1 01/01/2020 www.apple.com
IconCache 2 01/01/2020 www.icloud.com
IconCache 3 01/02/2020 www.bing.com
IconCache 4 01/01/2020 www.yahoo.com
IconCache 5 09/20/2020 www.google.com

params

{"request_count":"1"}
{"request_count":"1"}
{"request_count":"2"}
{"request_count":"1"}
{"request count":"4"}

3.4 CloudTabs.db Database

The CloudTabs.db is located in the <user’s subdir>/Library/Safari/ folder. This also documents URL and
timestamps related to a device. The tables shown below are connected via the device’s universal

unique identifier and exhibits a one-to-many relationship; there can be one or more cloud_tabs entries

for a single cloud _tab_device entry. The fields for these tables are shown below:

| cloud_tab_devices

|-} device_uuid @<

I;] system_fields
Q device_name
I;j has_duplicate_device_name
l;] is_ephemeral_device
[=) last_modified
=] cloud_tabs
[} tab_uuid
[2) system_fields

Q device_uuid [&

(=) position

(=) title

=) ur

[;l is_showing_reader

[is_pinned

Q reader_scroll_position_page_index
| scene_id

Below is a sample output from the fields in the CloudTabs.db database.

Copyright © TZWorks, LLC

Apr 25, 2025

Page 18

type rowid create time lastaccess | expires url or name extra fields

Safari CloudTabs 7 02/27/2018 02/25/2018 https://www.google.com/famp/s/wv {cloud_tabs=["tab_uuid":"00ES
Safari CloudTabs 8 02/27/2018 02/25/2018 https://www.apple.com/ {cloud_tabs=["tab_uuid":"8AE.
Safari CloudTabs 9 02/27/2018 02/25/2018 https://www.google.comfamp/wwv {cloud_tabs=["tab_uuid":"58A4
Safari CloudTabs 10 02/27/2018 02/25/2018 https://tetris.com/play-tetris-conter {cloud_tabs=["tab_uuid":"29D
Safari CloudTabs 11 03/03/2018 12/23/2017 https://www.mac4n6.com/blog/201i {cloud_tabs=["tab_uuid":"2A7

3.5 Cache.db Database

A number of Cache.db exist. All of them are located in the <user’s subdir>/Library/Caches folder. The
one specific for Safari is located in a lower subdirectory, at <user’s
subdir>/Library/Caches/com.apple.Safari/ or for newer versions of the OS it is located in the
subdirectory <user’s subdir>/Library/Containers/Safari/Data/Library/Caches/com.apple.Safari/. All the
Cache.db in the various subfolders have the same schema and therefore could be parsed by this tool.
However, sap was only tested against the Safari specific Cache.db. The tables and their respective fields
used (for schema version 202) are shown below.

| cfurl_cache_blob_data
—® _'_,i entry_ID

l=| response_object

| request_object

|==| proto_props

= user_info
| cfurl_cache_receiver_data
—n® |_} entry ID

|| isDataOnFS

| receiver_data
| cfurl_cache_response
5@ |- entry ID
|| version
| hash_value
\==| storage_policy
| request_key
| time_stamp
| partition

The Cache.db records both the request from the browser and the response from the server handling the
requested webpage. These fields are the request_object and the response object, respectively. sap
parses out this data and renders the data to the analyst, including: URL, timestamps and type of data
that was transmitted/received.

Below is a sample output from the fields in this database. Many of the other parameters not shown in
their dedicated column but are collected into the ‘extra fields’ column. This allows the analyst to review
any details that may become pertinent if a finer examination is required. Due to the large amount of
data packed into the ‘extra fields’ column, the output may have problems rendering in Excel or another
spreadsheet tool.

Copyright © TZWorks, LLC Apr 25, 2025 Page 19

type rowid create time last access [expires [UT url or name params params tr extra fields

Safari Cache 1 03/17/2016 08/13/2020 08/13/2020 http://configuration.apple.com/ [[cfurl_cache blob data=["entry id":"1";response object=["Last
Safari Cache 2 08/13/2020 08/13/2020 http://clientsl.google.com/com "client":"safari"; " {cfurl_cache_blob_data=["entry_id":"2";response_object=["Expi
Safari Cache 3 08/13/2020 08/13/2020 http://ssl.gstatic.com/ui/vl/mer {cfurl_cache_blob_data=["entry_id":"3";response_object=["Expi

1 3
! extra fields expanded !

extra fields
{cfurl_cache_blob data}["entry_id":"1":response_ob;ect:["Last~Mod|fied":"03/17/16 04:47:24.000";"Expires":"08/13/20
11:31:17.000";"CFURLString":"http://configuration.apple.com/configurations/internetservices/safari/ConfigurationsWin-5.1.4.plist.signed";"Server":"Apache";"Content-
Type":"application/x-troff-man";"Content-Length":"2148";"Etag":"4ca7-52e3753966f00";"__hhaa__byte
count":"0"];request_object=["CFURLString":"http://configuration.apple.com/configurations/internetservices/safari/Configurationswin-5.1.4.plist.signed";"__hhaa__byte
count":"o"]l["entry_sd":"1";"hash_va|ue":"Oxb188e527";"request_key":"http://configuration.apple.com/conflgurations/internetservices/safan/Confngurat
ionsWin-5.1.4.plist.signed";"time_stamp":"2020-08-13 11:30:26"Jfcfurl_cache_receiver_dataj["entry_id":"1";"receiver_data":"<?xml version="1.0" encoding="UTF-

One thing to note about this artifact. It goes without saying the above parsing assumes the tool can
extract much of the field data as possible. Since this particular artifact is larger in size, when compared
to some of the other artifacts, many of the records usually span more than one SQLite page. While this
is not a problem for the -carve or default options, this does present more challenges for -parse_chunk
option. Why? Per the discussion previously... “The pitfall with the signature-based scan [eg. -
parse_chunk] ... is [it] will truncate the data if a record overflows into multiple databases pages; the
signature-based scan will only report on data found in the initial page”.

This is something to keep in mind when looking to parse Cache.db files.

3.6 <url>_0.localstorage related Databases

There are a number of SQLite databases associated with the LocalStorage. These databases are located
in the <user’s subdir>/Library/Safari/LocalStorage/ folder. Each database in this folder will be named
with the URL that was visited with an index number and the localstorage extension. These databases
contain various key/value pairs that relate to the metadata of the cookies of that webpage. The
schema of the database is very simple in that it only contains a key and a value as shown below. The
value field, however, can contained a number of nested separate key/value pairs in a JSON format.

<URL>_0.localstorage

1] ltemTable
les] key
|=) value

4 Property Lists Targeted by this tool

Property Lists (or plists) are used throughout all the applications that run on Apple products. They are
used for all sorts of things, like configuration data about bundles/applications, user’s settings, and
logging state information. There are various formats used in property lists, the two formats that are
most prevalent are either: XML, which is text, or binary which is much more efficient from a storage

Copyright © TZWorks, LLC Apr 25, 2025 Page 20

standpoint. The XML format is able to be read by any text viewer, however, the binary version requires
a parser to translate the data packing into something human readable, whether that be in XML, JSON, or
some other viewable format.

Originally the intent of sap was to target SQLite database files, but after researching the fields in various
Safari SQLite databases, it became apparent that certain fields in these SQLite structures contained
blobs of data. Some of these blobs when looked at with a hex-editor, were embedded plists. Therefore,
adding a plist parser to this tool was essential. After the decision was made to add plist parsing, the
next logical step was to modify the tool to parse both embedded and file plist data. The screenshots of
the plist structures shown in the next subsections were generated from Apples’ XCode tool. It is very
useful in viewing and/or editing plist files.

4.1 History.plist

This plist is used in older Safari browsers and acts like a database of visited websites. The History.plist is
located in the <user’s subdir>/Library/Safari/ folder. It contains the URL of the website that was visited,
the number of times the website was viewed, the last visited timestamp, and which website it was
redirected from. The History.plist file was later replaced by the SQLlite History.db database file with the
new version of the browsers. To ensure that both the older and newer versions of Safari could be
handled, sap can parse either one if it is passed as a source database. Below is the structure of this plist
file.

History.plist
History.plist) No Selection
Key Type Value
v Root Dictionary
v WebHistoryDates Array
> Item 0 Dictionary
v Item 1 Dictionary
String http://www.yahoo.com/
title String Yahoo
lastVisitedDate String 630521994.8
vD Array 1it
Item O Number 1
v redirectURLs Array
Item O String https://www.yahoo.com/?guccou
visitCount Number 1
> Item 2 Dictionary
> Item 3 Dictionary

Above is a sample output from the fields in the History.plist database. For the plist output, sap uses the
same field headers that were used for the SQLite output. In this way, the SQLite data and the plist data
can co-exist in the same output.

For this case, the content of fields in the History.plist are not as extensive as those in the SQLite
counterpart (History.db), however much of the pertinent data is still there. Since ‘rowid’ for plists does

Copyright © TZWorks, LLC Apr 25, 2025 Page 21

not apply (since this field was originally geared toward SQLite data), it is used to store the subpath of the
plist entry. For an array datatype, an index is appended to the subpath.

For those fields in the plist that don’t have a designated field name, they are lumped into the ‘extra
fields’ column. In this way, all the data can be represented for each record.

type rowid create last access [UTC] expires url or name extra fiel
History (plist) _000/ 12/24/2020 17:00:00 {"URL":"http://www.apple.com/"} /,,r./'i"'lza'stVisi
History (plist) _001/ 12/24/2020 16:59:54 {"URL":"http://www.yahoo.com/"} _— {"lastVisi
History (plist) _002/ 12/24/2020 16:59:39 {"URL":"https://www.googlg,/com"/""}' {"lastVisi
History (plist) 003/ 12/24/2020 16:51:14 {"URL":"https://wwyu.goé'g/ire.com/search?q:safari {"lastVisi

o

extra fields

{"lastVisitedDate":"12/24/2020 17:00:00";"title":"Apple";"visitCount":"0x02"}
{"lastVisitedDate":"12/24/2020 16:59:54";"title":"Yahoo";"visitCount":"0x01"}
{"lastVisitedDate":"12/24/2020 16:59:39";"title":"Google";"visitCount":"0x03"}
{"lastVisitedDate":"12/24/2020 16:51:14";"title":"safari for windows 10 - Google Search";"visitCount":"0x01"}

4.2 Downloads.plist

This plist is used in both the older and new Safari browsers and acts like a database of downloaded files.
Even though it is available with the newer browser, it appears from empirical data that it does not
account for every download. This database contains the (a) URL of the file that was downloaded, (b)
time it started, (c) time it finished, (d) number of bytes it took and (e) where the file was stored.

The Downloads.plist file is located in the <user’s subdir>/Library/Safari/ folder. Below is the structure of
this plist file.

88 Downloads.plist
Downloads.plist) No Selection
Key Type Value
M Root Dictionary 1 item)
v DownloadHistory Array 1item)

v Item 0 Dictionary 10 items
DownloadEntryProgressBytesSoFar Number 31,132,316
DownloadEntryProgressTotalToLoad Number 31,132,316
DownloadEntryBookmarkBlob Data <626F6F6B10030000000004103
DownloadEntryDateAddedKey Date 2020-11-05T18:31:48Z
DownloadEntryDateFinishedKey Date 2020-11-05T18:31:52Z
DownloadEntryldentifier String 3D7A0088-5ADF-4DF5-AD8C-79
DownloadEntryURL String https://www.python.org/ftp/python
DownloadEntryRemoveWhenDoneKey Boolean 0
DownloadEntryPath String [Users[tzworks/Downloads/python
DownloadEntryShouldUseRequestURLAsOriginURLIfNecessaryKey Boolean 0

Below is a sample output from the fields in the Downloads.plist database. Similar to the History plist
output, the ‘extra fields’ column has the complete set of data for the record. For binary data, the value
of the key/value pair is listed as the number of bytes as shown in for the key name

Copyright © TZWorks, LLC Apr 25, 2025 Page 22

“DownloadEntryBookmarkBlob”. To see all the raw bytes, use the option -show_all_data. This will

output the raw data shown in the third screen shot. The date shown for the ‘create time’ is the time

value associated with “DownloadEntryDateFinishedKey” .

type rowid create time [UTC] last acces expires url or name extra fiel
Download (plist) /DownloadHistory/_000/ 11/05/2020 18:31:52 {"DownloadEntryURL":"https://www.python.org/ftp/pythef] {"Downiq
Download (plist) /DownloadHistory/_001/ 03/03/2018 20:27:34 {"DownloadEntryURL":"https://cache.saurik.com/impactor/r {"Dawnld
Download (plist) /DownloadHistory/_002/ 03/03/2018 20:26:26 {"DownloadEntryURL":"http://newosxbook.com/libérios/Lit {"Djwnlc
Lextra fields / ’
{"DownloadEntryDateAddedKey":"11/05/2020 18:31:48";"DownloadEntryDateFinishedKey":"11/05/2020 Default option [

18:31:52";"DownloadEntryProgressBytesSoFar":"0x1db0asc";"DownloadEntryProgressTotalToLoad":"0x1db0asc";" ’
DownloadEntryBookmarkBlob":"784 bytes“I“DownIoadEntryldentifier":"3D7A0088-5ADF-4DF5-A08C- |
79ACCBDF6E38";"DownloadEntryRemoveWhenDoneKey":"false";"DownloadEntryPath":"/Users/tzworks/Downlo ‘
ads/python-3.9.0-macosx10.9.pkg";"DownloadEntryShouldUseRequestURLAsOriginURLIfNecessaryKey":"false"} -show_all_data ‘

A 4

extra fields

{"DownloadEntryDateAddedKey":"11/05/2020 18:31:48";"DownloadEntryDateFinishedKey":"11/05/2020
18:31:52";"DownIoadEntryProgressBytesSoFar":"Ox1db039c";"DownIoadEntryProgressTotaIToLoad":"Ox1db0a9c"}"DownloadEntryBookmarkBIob|
"':"62-6f-6f-6b-10-03-00-00-00-00-04-10-30-00-00-00-6b-09-77-23-4a-c4-fe-dc-a6-bb-58-bb-31-06-72- 37-36-34-70-99-f2-86-66-2e-9b-8f-b6-06-4b-6¢-
7¢-9f-0c-02-00-00-04-00-00-00-03-03-00-00-00-08-00-28-05-00-00-00-01-01-00-00-55-73-65-72-73-00-00-00-07-00-00-00-01-01-00-00-74- 7a- 77-6f-72-,
6b-73-00-03-00-00-00-01-01-00-00-44-6f-77-6e-6¢-6f-61-64-73-00-00-00-24-00-00-00-01-01-00-00- 70- 79- 74-68-6f-6e-2d-33-2e-39-2e-30-2d-6d-61-
63-6f-73-78-31-30-2e-39-2e-70-6b-67-2e-64-6f-77-6e-6¢-6f-61-64-1b-00-00-00-01-01-00-00-70- 79- 74-68-6f-6e-2d-33-2e-39-2e-30-2d-6d-61-63-6f-
73-78-31-30-2e-39-2e-70-6b-67-00-14-00-00-00-01-06-00-00-10-00-00-00-20-00-00-00- 30-00-00-00-44-00-00-00- 70-00-00-00-08-00-00-00-04-03-00-
00-92-53-00-00-00-00-00-00-08-00-00-00-04-03-00-00-69-80-05-00-00-00-00-00-08-00-00-00-04-03-00-00-9c-80-05-00-00-00-00-00-08-00-00-00-04-
03-00-00-94-a0-48-00-00-00-00-00-08-00-00-00-04-03-00-00-97-a0-48-00-00-00-00-00- 14-00-00-00-01-06-00-00-b0-00-00-00-c0-00-00-00-d0-00-00-
00-e0-00-00-00-f0-00-00-00-08-00-00-00-00-04-00-00-41-c2-aa- 3e-4b-c3-a5-f4-18-00-00-00-01-02-00-00-01-00-00-00-00-00-00-00-0f-00-00-00-00-00-
00-00-00-00-00-00-00-00-00-00-08-00-00-00-04-03-00-00-03-00-00-00-00-00-00-00-04-00-00-00-03-03-00-00-f5-01-00-00-08-00-00-00-01-09-00-00-
66-69-6¢-65-3a-2f-2f-2f-0c-00-00-00-01-01-00-00-4d-61-63-69-6e-74-6f-73-68-20-48-44-08-00-00-00-04-03-00-00-00- 70-c4-d8-d 1-01-00-00-08-00-00-
00-00-04-00-00-41-c1-b0-a5-b4-33-31-40-24-00-00-00-01-01-00-00-46-33-41-30-41-32-41-36-2d-38-38-45-33-2d-34-32-37-30-2d-42-44-43-45-2d-43-
37-42-37-33-33-30-37-31-39-38-39-18-00-00-00-01-02-00-00-81-00-00-00-01-00-00-00-ef-13-00-00-01-00-00-00-00-00-00-00-00-00-00-00-01-00-00-
00-01-01-00-00- 2f-00-00-00-00-00-00-00-01-05-00-00-cc-00-00-00-fe-ff-ff-ff-01-00-00-00-00-00-00-00- 10-00-00-00-04-10-00-00-94-00-00-00-00-00-
00-00-05-10-00-00-00-01-00-00-00-00-00-00-10- 10-00-00-2c-01-00-00-00-00-00-00-40-10-00-00- 1c-01-00-00-00-00-00-00-02-20-00-00-f8-01-00-00-00-
00-00-00-05-20-00-00-68-01-00-00-00-00-00-00-10-20-00-00-78-01-00-00-00-00-00-00-11-20-00-00-ac-01-00-00-00-00-00-00-12-20-00-00-8¢c-01-00-
00-00-00-00-00-13-20-00-00-9¢-01-00-00-00-00-00-00-20-20-00-00-d8-01-00-00-00-00-00-00- 30- 20-00-00-04-02-00-00-00-00-00-00-01-c0-00-00-4c-
01-00-00-00-00-00-00-11-c0-00-00-20-00-00-00-00-00-00-00-12-c0-00-00-5¢-01-00-00-00-00-00-00-10-d0-00-00-04-00-00-00-00-00-00-
00";"DownloadEntryldentifier":"3D7A0088-5ADF-4DF5-AD8C-
79ACCBDF6E38";"DownloadEntryRemoveWhenDoneKey":"false";"DownloadEntryPath":"/Users/tzworks/Downloads/python-3.9.0-
macosx10.9.pkg";"DownloadEntryShouldUseRequestURLAsOriginURLIfNecessaryKey":"false"}

4.3 TopsSites.plist

This plist is used in both the older and new Safari browsers and contains the most visited websites. This
database stores the URL of the website visited, the websites title, and the last time it was updated.

The TopSites.plist file is located in the <user’s subdir>/Library/Safari/ folder. Below is the structure of

this

plist file.

Copyright © TZWorks, LLC Apr 25, 2025 Page 23

B TopSites.plist
TopSites.plist) No Selection
Key Type Value
+ Root Dictionary (4 items)
~ TopSites Array (12 items)
> ltem 0 Dictionary (2 items)
v Item 1 Dictionary (3 items)
TopSitelsBuiltin Boolean 1
TopSiteURLString String https:/fwww.icloud.com
TopSiteTitle String iCloud
> Item 2 Dictionary (3 items)
> Item 3 Dictionary (3 items)
DisplayedSitesLastModified Date 2020-01-01T700:33:22
> DemoSites Array (0 items)
> BannedURLStrings Array (0 items)

Below is a sample output from the fields in the TopSites.plist database. Aside from the single
timestamp that references the last modification, there contains no timestamp for the individual entries.

type rowid create tin last access [expires [l url or name __—lextra field

TopSites (plist) _000/ 01/01/20201 {“TopSiteURLString":"https://www.apple.}zm/ﬁartpag {"Displayed

TopSites (plist) _001/ 01/01/20201 {"TopSiteURLString":"https://wvs{vﬂdoﬁd.com/"} {"Displayeq

TopSites (plist) _002/ 01/01/20201 {"TopSiteURLString":"htt/;ﬁ:j/wfli'/w.yahoo.com/"} {"Displayed

TopSites (plist) _003/ 01/01/2020 {"TopSiteURLStrirlg;"/"hftps://www.bing.com/"} {"Displayed
L

extra fields

{"DisplayedsSitesLastModified":"01/01/2020 00:33:22";"TopSitelsBuiltin":"true"}
{"DisplayedSitesLastModified":"01/01/2020 00:33:22";"TopSitelsBuiltin":"true";"TopSiteTitle":"iCloud"}
{"DisplayedSitesLastModified":"01/01/2020 00:33:22";"TopSitelsBuiltin":"true";"TopSiteTitle":"Yahoo"}
{"DisplayedsSitesLastModified":"01/01/2020 00:33:22";"TopSitelsBuiltin":"true";"TopSiteTitle":"Bing"}

4.4 RecentlyClosedTabs.plist

This plist is used in both the older and new Safari browsers and contains the browser tabs that were
recently closed. This database stores the URL of the website visited, the tab title, and the time the tab

was closed.

The RecentlyClosedTabs.plist file is located in the <user’s subdir>/Library/Safari/ folder. Below is the
structure of this plist file.

Copyright © TZWorks, LLC Apr 25, 2025 Page 24

B8

RecentlyClosedTabs. plist

RecentlyClosedTabs.plist :} Mo Selection

Key Type Value
~ Root Dictionary (2 items)
ClosedTabOrWindowPersistentStatesVersion String 1
w ClosedTabOrWindowPersistentStates Array (94 items)
w |tem O Dictionary (2 items)
PersistentStateType Number a
« PersistentState Dictionary {12 items)
lsDisposable Boolean]
» AncestorTabldentifers Array {1 item)
DateClosed Date 2020-09-20T23:48:
SafeTolead Boolean 1
Tablindex Number 5
WindowUUID String 0845CE40-9B19-48
lsMuted Boolean 0
TabUUID String BCOOF440-2943-48
TabURL String https:/fwww.amazon
Tabldentifier Number 139
TabStateVersion Number 1
TabTitle String Amazon.com : Prese
» Item 1 Dictionary {2 items)
» Item 2 Dictionary {2 items)
> Item 3 Dictionary (2 items)

Below is a sample output from the fields in the RecentlyClosedTabs.plist database.

column is expanded for the first entry as well.

The ‘extra fields’

type

Recently Closed Tabs
Recently Closed Tabs
Recently Closed Tabs

rowid

/ClosedTabOrWindowPersistentStates/_000, 09/20/2020
/ClosedTabOrWindowPersistentStates/_001, 09/20/2020
/ClosedTabOrWindowPersistentStates/ 002, 09/20/2020

create time last acces expires [l url or name

params

{"TabURL":"https://www.amazon.c args=["k":"PreserVision"}—
{"TabURL":"https://www.amazon.c args=["crid":"T2847W8XB2U"; "d¢ {"DateClose

extra fields

" | {"DateClos¢

extra fields

{"DateClosed":"09/20/2020
23:48:56";"IsDisposable":"false";"SafeToLoad":"true";"Tabindex":"5";"WindowUUID":"0645CE40-9819-48D1.
ADBO-D3FB694E0927";"IsMuted":"false";"TabUUID":"BCOOF440-2943-484A-91F2-
48FDD78108B4";"Tabldentifier":"139";"TabStateVersion":"1";"TabTitle":"Amazon.com : PreserVision"}

4.5 UserNotificationPermissions.plist

This plist is used in both the older and new Safari browsers and contains the specific permissions
associated with a URL/domain. This database stores the URL, the permission in the form of a number,

and the time the permission was added.

The UserNotificationPermissions.plist file is located in the <user’s subdir>/Library/Safari/ folder.

is the structure of this plist file.

Copyright © TZWorks, LLC

Apr 25, 2025

{"TabURL":"https://www.amazon.c érgs:["k":"foot#massager"; "crid' {"DateClose

Below

Page 25

88 UserNotificationPermissions.plist

UserNotificationPermissions.plist) No Selection

Key Type Value
v Root Dictionary (1 item)
v https://aoschat.apple.com Dictionary (2 items
Permission Number 1
Date Added Date 2020-10-02T710:12:30Z

Below is a sample output from the fields in the UserNotificationPermissions.plist database.

type ~ | rowid | create time [UTC] ~ | last acces expire url or name ~ extra fields
UserNotification (plist) 10/02/2020 10:12:30 {"URL":"https://aoschat.apple.com/"} {"Date Added":"10/02/2020 10:12:30";"Notifications Allowed":"Yes"}

4.6 SearchDescriptions.plist

This plist is used in both the older and new Safari browsers and contains the search description used.
This database stores the URL, and in WebsiteSpecificSearchDescriptions listing, the timestamp that it was
added.

The SearchDescriptions.plist file is located in the <user’s subdir>/Library/Safari/ folder. Below is the
structure of this plist file.

EE SearchDescriptions. plist
SearchDescriptions.plist :}- No Selection
Key Type Value
« Root Dictionary (2 items)
v DpenSearchDescriptions Array (3 items)
~ ltem O Dictionary (2 items)
DescriptionDocument URLString String https:{/community.wd.com/op
SearchURLTemplateString String https://eommunity.wd.com/se
> ltem 1 Dictionary (2 items)
> Item 2 Dictionary (2 items)
~ WebsiteSpecificSearchDescriptions Array (4 items)
~ Item O Dictionary (3 items)
DateAdded Date 2020-11-06T01:35:13Z
SourcePagelURLString String https:{fawwyoutube.compwat
OpenSearchDescriptionURLString String https:{fwww.youtube.comope|
> Item 1 Dictionary (3 items)
> ltem 2 Dictionary (3 items)
> Iltem 3 Dictionary (3 items)

Below is a sample output from the fields in the SearchDescriptions.plist database. Notice that this
artifact contains 2 categories: (a) OpenSearchDescriptions and the related (b)
WebsiteSpecificSearchDescriptions. For the purposes of the output, each category is broken out
separately.

Copyright © TZWorks, LLC Apr 25, 2025 Page 26

type

Open Search Descriptions
Open Search Descriptions
Open Search Descriptions
Webite Search Descriptions
Webite Search Descriptions
Webite Search Descriptions
Webite Search Descriptions

rowid create time last acces expires url orname

/OpenSearchDescriptions/_000/
/OpenSearchDescriptions/_001/
/OpenSearchDescriptions/_002/
/WebsiteSpecificSearchDescriptions/_000/ 11/05/2020
/WebsiteSpecificSearchDescriptions/_001/ 11/04/2020
/WebsiteSpecificSearchDescriptions/_002/ 11/04/2020
/WebsiteSpecificSearchDescriptions/_003/ 11/04/2020

params

{"SearchURLTemplateString":"https://community.wd.cc args=["q":"{searchTerr|

{"SearchURLTemplateString":"https://stackoverflow.co args=["
{"SearchURLTemplateString":"https://www.youtube.co args
"https://www.youtube.com/w args
ttps://www.google.com/sez args=["client":"safari";
ttps://community.wd.com/t
{"SourcePageURLString":"https://stackoverflow.com/qt

{"SourcePageURLStrin,
{"SourcePageURLStrin,
{"SourcePageURLStrin,

:"{searchTerr|
search_query":
:"50BBBwYt5)

4.7 com.apple.Safari.plist

This plist is used for Safari preferences, and thus contains a list of settings as well as some timestamps
for certain items. The data of key/values is displayed in the ‘extra fields’ in the output since it was not
conducive to fit into any of the other fields.

The com.apple.Safari.plist file is either located in the <user’s subdir>/Library/Preferences/ folder. Below
is the structure of this plist file. It contains many key/value pairs mostly unrelated to one another.
There is however, a section on RecentWebSearches that include the search string and the timestamp.

6%} com.apple.Safari.plist

Key Type Value
v Root Dictionary (59 items)
> NSToolbar Configuration NSPreferences Dictionary (4 items)
SkipLoadingExtensionsAtLaunch Boolean 1
DidMigrateToCoreSpotlightBasedHistorySearch Boolean 1
LastApplicationCacheMessageTraceTime Number 547,911,012.8332
SuccessfulLaunchTimestamp Number 547,911,008.6916
LocalFileRestrictionsEnabled Boolean 1
UniversalSearchFeatureNotificationHasBeenDisplayed Boolean 1
DidMigrateToMoreRestrictiveFileURLPolicy Boolean 1
v RecentWebSearches Array (10 items)
> Item 0 Dictionary (2 items)
> Item 1 Dictionary (2 items)
> Item 2 Dictionary (2 items)
> Item 3 Dictionary (2 items)
> Item 4 Dictionary (2 items)
> Item 5 Dictionary (2 items)
> Item 6 Dictionary (2 items)
> Item 7 Dictionary (2 items)
> Item 8 Dictionary (2 items)
v Item 9 Dictionary (2 items)
SearchString String download system n
Date Date 2018-05-07T23:4
L > cloudKitBookmarksMiarationRampState Dictionary (4 items)

Copyright © TZWorks, LLC

Apr 25, 2025

Page 27

4.8 Permissions.plist

The Permissions.plist file is located in the <user’s subdir>/Library/Safari/RemoteNotifications/ folder.
Below is the structure of this plist file.

88 Permissions.plist
Permissions.plist) No Selection
Key Type
v Root Dictionary
v web.com.cnn.redalert Dictionary
v Allowed Domains Array 8 items)
Item O String http://www.cnn.com
Item 1 String http://us.cnn.com
Item 2 String http://dev.next.cnn.com
Item 3 String http://ref.next.cnn.com
Date Added Date 2018-01-21715:42:442Z
Display Name String CNN Breaking News
Remote Notifications Allowed Boolean 0
Package File Name String web.com.cnn.redalert.safaripush

Below is a sample output from the fields in the Permissions.plist database. There is one timestamp
(Date Added) per dictionary item, which contains an array of domain names. Each line in the output is
one domain name with the associated ‘common’ metadata that goes with the dictionary item (which in
this example is web.com.cnn.redalert).

type rowid create time last acces expires url or name extra fields

Permission (plist) web.com.cnn.redalert/Allowed Domains/_000 01/21/2018: {"Allowed Domain":"http://www.cnn.com"} " l{"

Permission (plist) web.com.cnn.redalert/Allowed Domains/_001 01/21/2018: {"Allowed Domain":"http://us.cnn.con;V {"Date Addé

Permission (plist) web.com.cnn.redalert/Allowed Domains/_002 01/21/2018: {"Allowed Domain":"http://dev.next,crin.com"} {"Date Adds
extra fields d

{"Date Added":"01/21/2018 15:42:44";"Display Name":"CNN Breaking News";"Package File e
Name":"web.com.cnn.redalert.safaripush”;"Remote Notifications Allowed":"false"}

Copyright © TZWorks, LLC Apr 25, 2025 Page 28

4.9 LastSession.plist

The LastSession.plist file is located in the <user’s subdir>/Library/Safari/ folder. The structure of the
data is shown below. While some of the URLs are enumerated directly in each ‘TabStates’ item index,
there are cases where the URLs are nested in the ‘BackForwardList’ element of the item index. Both are
shown below.

=i ® | LastSession.plist
i L ion.plist) No ion
Key Type Value
+ Root Dictionary (2 items)
SessionVersion String 1.0
v SessionWindows Array (1 item)
v Item Q Dictionary (13 items)
SelectedTabindex Number 5
TabBarHidden Boolean 0
DateClosed Date 2018-03-03T21:31:392 &8 B CeatSession:piist
FavoritesBarHidden Boolean 1 B LastSession.plist) No Selection
IsPopupWindow Boolean 1]
PrefersReadingListSidebarVisible Boolean 0 Key Type Value
Miniaturized Boolean 0 Root Dictionary 2 items)
WindowStateVersion String 2.0 SassionVarsion String
WindowUUID String 79656C17-4F41-4C16-8B1E-F5| « SessionWindows Array
WindowContentRect String {{0, 45}, {1280, 732}} « Item 0 Dictionary
v TabStates Array (6 items) WindowStateVersion String
> Item 0 Dictionary (14 items) 7 .
3 Item 1 Dictionary (14 items) LocationBarHidden Boolean
« Item 2 Dictionary (14 items) v TabStates Array
IsDisposable Boolean 1] v Item 0 Dictionary
SessionState Data <0E2B747F08B15A2F 12F5F7E2 v BackForwardList Array (1
> AncestorTabldentifers Array (0 items) v Item O Dictionary 2 items)
DateClosed Date 2018-03-03T21:31:39Z URL String file:/j/Users/tztester/docs/te
SessionStatelsEncrypted Boolean 1 Title String Test doc
Tablndex Number 2 CurrentBackForwardListindex Number 0
WindowUUID string 79656C17-4F41-4C16-8B1E-F5 Miniaturized Boolean 0
LastVisitTime Number 541,801,639.70774 SelectedTabindex Number 0
TabUUID String FO9F1DEB-EAEE-4E61-B70B-A3| TabBarHidden Boolean 1
I:::';::ﬂﬁer i‘;‘::sr ::tp:”ww“"“dia"""a“""'“""' WindowContentRect String ({149, 127), {983, 600))
TabTitle String Cydia Impactor ::z:;:?:g:::en 2:::::: [:
Processldentifier Number 6,528
lsMuted Boolean 0 > Item 1 Dictionary (9 items)

Below is a sample output from the fields in the LastSession.plist database. The ‘create time’ column
shows the ‘DateClosed’ timestamp. The details of the other metadata aside from timestamps and URL,
are shown in the ‘extra fields’ column.

Copyright © TZWorks, LLC Apr 25, 2025 Page 29

type

Last Session
Last Session
Last Session
Last Session
Last Session
Last Session
Last Session

rowid

/_000/

/_000/TabStates/_000/
/_000/TabStates/_001/
/_000/TabStates/_002/
/_000/TabStates/_003/
/_000/TabStates/_004/
/ 000/TabStates/ 005/

create time [UTC]

03/03/2018 21:31:39
03/03/2018 21:31:39
03/03/2018 21:31:39
03/03/2018 21:31:39
03/03/2018 21:31:39
03/03/2018 21:31:39
03/03/2018 21:31:39

last access [UTC]

03/03/2018 20:24:02
03/03/2018 20:26:51
03/03/2018 20:27:19
03/03/2018 20:36:26
03/03/2018 21:28:31
03/03/2018 21:31:28

expires url orname

ateClq

{"TabURL":"http://www.redmondpie.com/lib¢ {"DateCld
{"TabURL":"http://newosxbook.com/libertv/" {"DateClq
{"TabURL":"http://www.cydiaimpactor.cogj[i', {"DateCld
{"TabURL":"hnps://www.maodrlq,comfﬁfog/Z(DateCld
{"TabURL":"https://Wﬂ/w‘th'éi'ﬁhonewiki.com/ {"DateCld

{"TabURL";"h,ttps:ﬂén.wikipedia.org/wiki/Spi {"DateCld

extra fields |

{"DateClosed":"03/03/2018 21:31:39";"LastVisitTime":"03/03/2018 20:27:19";"IsDisposable":"false";"SessionState":"1223
bytes";"SessionStatelsEncrypted":"true";"Tabindex":"2";"WindowUUID":"79656C17-4F41-4C16-8B1E-
F585E6A64D1B";"TabUUID":"FOSF1DEB-EAEE-4E61-B70B-A3B1177C3C9C";"Tabldentifier":"44";"TabTitle":"Cydia
Impactor";"Processidentifier":"6528";"IsMuted":"false"}

4.10 CacheSettings.plist

The CacheSettings.plist file is located in the <user’s subdir>/Library/Safari/Touch Icons/ folder. It is
found in the older versions of Safari; the newer artifact is the TouchlconCacheSettings.db which was
discussed previously in the SQLite artifact section. The structure of this plist type is shown below.

B @ CacheSettings.plist
I CacheSettings.plist) No Selection
Key Type Value
~ Root Dictionary (2 items)
TouchlconCacheVersion Number 9
~ Touchlcons Dictionary (21 items)
v en.wikipedia.org Dictionary (6 items)
TouchlconRequestCount Number 2
TouchlconTransparencyAnalysisResult Number 1
TouchlconLastRequestDate Date 2016-01-15T17:0
TouchlconinCache Boolean 1
TouchlconRequestDidSucceed Boolean 1
TouchlconLastRequestWasinUserLoadedWebpage Boolean 1
> www.flickr.com Dictionary (6 items)
> www.usatoday.com Dictionary (6 items)
> www.yelp.com Dictionary (6 items)
> allthingsd.com Dictionary (6 items)

Below is a sample output from the fields in the CacheSettings.plist database. The ‘last access time’
column shows the ‘TouchlconLastRequestDate’ timestamp. The other metadata aside from timestamp
and domain, are shown in the ‘extra fields’ column.

Copyright © TZWorks, LLC Apr 25, 2025 Page 30

type row create last access [UTC] expires url orname extra field
Icon Cache (plist) 01/15/2016 17:07:56 {"Domain":"en.wikipedia.gg/!’—r"" {"Touchlcol
Icon Cache (plist) 10/28/2015 10:31:01 {“Domain":"www.jljckr:’é"dm/“} {"Touchlco
Icon Cache (plist) 09/29/2020 17:02:46 {"Domair]";fwww;usatodav.com/" {"Touchlco|

extra fields
{"TouchlconLastRequestDate":"01/15/2016
17:07:56";"TouchlconRequestCount":"2";"TouchlconTransparencyAnalysisResult":"1";"TouchlconRequestD|

"o,

idSucceed":"true";"TouchlconLastRequestWasinUserLoadedWebpage":"true";"TouchiconIinCache":"true"}

4.11 Miscellaneous plist files

These are a category of plist files that are parsed by sap but the fields in these plist files do not contain
any explicit timestamps. Therefore, when the tool parses these specific files, the output would not
show up in timestamp dependent output such as Log2Timeline using the option -csvi2t. For these files,
therefore, one can only use the default output or the -csv option.

4.11.1 Bookmarks.plist

This plist is used in both the older and new Safari browsers and stores the configuration of the
bookmarks for the browser. It has the URL of the website, the parent bookmark title, the item’s title
and various other universally unique identifiers (UUIDs). There are no timestamp fields identifying when
the bookmark was added.

The Bookmarks.plist file is located in the <user’s subdir>/Library/Safari/ folder. Below is the structure
of this plist file.

88 Bookmarks.plist
Bookmarks.plist) No Selection
Key Type Value
v Root Dictionary 4 items
WebBookmarkUUID String BF8BE8058-1426-4E2E
v Children Array 6 items
> Item 0 Dictionary 4i
v Item 1 Dictionary 4 items
WebBookmarkUUID String 50B89D4F-F178-406E
v Children Array 7 items
v Item O Dictionary 4 items)
WebBookmarkUUID String AF6EAABC-8B82-4023
URLString String http://www.apple.com/
WebBookmarkType String WebBookmarkTypelLeaf|
v URIDictionary Dictionary 1 item)
title String Apple
> ltem 1 Dictionary 4 items)
> Item 2 Dictionary 4 items
Title String BookmarksBar
WebBookmarkType String WebBookmarkTypeList
> Item 2 Dictionary 3 items
> Item 3 Dictionary 4 items
WebBookmarkType String WebBookmarkTypeList
WebBookmarkFileVersion Number 1

Copyright © TZWorks, LLC Apr 25, 2025 Page 31

Below is a sample output from the fields in the Bookmarks.plist database.

Bookmark (plist) /_001/_000/
Bookmark (plist) /_001/_001/
Bookmark (plist) /_001/_002/

type ¥ rowid v | create tim v | last acces v | expire| v | url or name
{"URLString":"https://www.apple.cow {"Parent Ti
{"URLString":"https://www.iclou/d,com/"} {"Parent Ti
{"URLString":"https://www.yahoo.com/"} {"Parent Ti

4

extra fieldi‘
i

S

o

extra fields

{"Parent

Title":"BookmarksBar";"neverFetchMetadata":"true";"WebBookmarkUUID":"EBA57793-133B-
4EF5-B937-3BC57C55C06B";"WebBookmarkType":"WebBookmarkTypeLeaf"}

4.11.2 KnownEXxtensions.plist

This plist is used in just the older Safari browsers and it is used to identify the application bundle and

identifier of the developer.

The KnownExtensions.plist file is located in the <user’s subdir>/Library/Safari/ folder. Below is the

structure of this plist file.

Key
v Root
v Item 0
Bundle Identifier
Developer Identifier
> Item 1
> Item 2
> Item 3

88 KnownExtensions.plist

KnownExtensions.plist) No Selection

Type

Array
Dictionary
String
String
Dictionary
Dictionary
Dictionary

com.ci.LetyShg
8SY8U2YJ38

2 items)

Below is a sample output from the fields in the KnownExtensions.plist database.

type rowid create lastacces expires url orname extra fields

Known Extension (plist) 000/ {"Bundle Identifier":"com.ci.LetyShops"} {"Developer Identifier":"8SY8U2YJ38"}
Known Extension (plist) 001/ {"Bundle Identifier":"com.stopallads.stopalladss {"Developer Identifier":"W5672G9B78"}
Known Extension (plist) 002/ {"Bundle Identifier":"com.ci.MyPointsScore"} {"Developer Identifier":"PV79DKGWSE"}

4.11.3 CloudHistoryRemoteConfiguration.plist

The CloudHistoryRemoteConfiguration.plist file is located in the <user’s subdir>/Library/Safari/ folder.

Below is the structure of this plist file.

Copyright © TZWorks, LLC Apr 25, 2025

Page 32

88 CloudHistoryRemoteConfiguration.plist
CloudHistoryRemoteConfiguration.plist) No Selection
Key Type Value

v Root Dictionary (10 items)
SingleDeviceSaveChangesThrottlingPolicy String 1:1440
MultipleDeviceSaveChangesThrottlingPolicy String 50:1]110:2|10:5] 10:30 | 9:40
SingleDeviceFetchChangesThrottlingPolicy String 11:15] 1:1275
MultipleDeviceFetchChangesThrottlingPolicy String 50:1|50:3]20:4| 20:5] 20:15
SyncCircleSizeRetrievalThrottlingPolicy String 1:1440
MaximumRequestLimitCharacterCount Number 100,000
SyncWindow Number 1,209,600
HistoryModificationldleDelayBeforeSyncAttemptKey = Number 90
HistoryRemovalldleDelayBeforeSyncAttempt Number 6
SaveChangesBeforeTerminationTimeout Number 1

Below is a sample output from the fields in the CloudHistoryRemoteConfiguration.plist database. There
are no explicit timestamps or URLs in the record data. The data is strictly configuration data as its
filename suggests. In this case, all the data key/value pairs are put into the ‘extra fields’ column.

type rowid create last acces expires url ¢ extra fields

Remote Cloud History {"SingleDeviceSaveChangesThrottlingPolicy":"1:1440"}
Remote Cloud History {"MultipleDeviceSaveChangesThrottlingPolicy":"50:1 ; 10:2
Remote Cloud History {"SingleDeviceFetchChangesThrottlingPolicy":"11:15 ; 1:127
Remote Cloud History {"MultipleDeviceFetchChangesThrottlingPolicy":"50:1 ; 50:3
Remote Cloud History {"SyncCircleSizeRetrievalThrottlingPolicy":"1:1440"}
Remote Cloud History {"MaximumRequestLimitCharacterCount":"100000"}
Remote Cloud History {"SyncwWindow":"1209600"}

Remote Cloud History {"HistoryModificationldleDelayBeforeSyncAttemptKey":"9
Remote Cloud History {"HistoryRemovalldleDelayBeforeSyncAttempt":"6"}
Remote Cloud History {"SaveChangesBeforeTerminationTimeout":"1"}

4.11.4 SitesAllowedToAutoPlay.plist

The SitesAllowedToAutoPlay.plist file is located in the <user’s subdir>/Library/Safari/ folder. Below is
the structure of this plist file. This plist only contains a listing of domains that are allowed to have auto-
play enabled.

88 SitesAllowedToAutoplay.plist
SitesAllowedToAutoplay.plist) No Selection
Key Type Value

v Root Array (165 items)
Item O String 6play.fr
Item 1 String 9now.com.au
Item 2 String aarp.org
Item 3 String abc.go.com

Below is a sample output from the fields in the SitesAllowedToAutoPlay.plist database. Each domain is
listed on a separate line in the output.

Copyright © TZWorks, LLC Apr 25, 2025 Page 33

type

rowid create last acces expires url or name
{"item_URL":"6play.fr"}
{"item_URL":"9now.com.au"}
{"item_URL":"aarp.org"}

Autoplay Allowed (plist) _000
Autoplay Allowed (plist) _001
Autoplay Allowed (plist) 002

5 Cookies

sap also parses Safari cookie files. Depending on whether the Safari browser artifacts are from the
older or newer versions, these files can either be of the form: (a) Cookies.plist and
<reverse_domain_name>.plist, or (b) Cookies.binarycookies and <reverse_domain_name>.binarycookies
The first type are used in the older Safari browsers. The second type are found in the newer Safari
versions. Both of these types of files are located in the <user’s subdir>/Library/Cookies subfolder.

5.1 Cookies.plist

Below is the structure of the plist version of the cookie file. One can see the format for the Cookies.plist
is the similar to the <reverse-domain-name>.plist files.

Value

(7 itemns)

(6 itemns)

422,256 929.648096
porco.apple.com
4001-01-01T00:00:00Z
applelD

!

davet@tzworks.net

(7 items)

EE Cookies.plist
Cookies.plist) No Selection
Key Type
~ Root Array
w Item O Dictionary
Created Number
Domain String
Expires Date
Mame String
Path String
Value String
> Item 1 Dictionary
> Item 2 Dictionary

(6 itemns)

B8

Key

Root o

~ ltem 0
Creatad
Domain
Expires
MName
Path
Value

> tem 1

> Item 2

com.apple.appsiore. plist

Type
Array
Dictionary
Number
String
Date
String
String
String
Dictionary
Dictionary

com.apple.appstore.plist :} Mo Selection

Value

S (9 items)
(6 items)
422,256,929.644457
.apple.com
2014-05-20T06:03:43Z
mzf_ode
/WebObjects
5T
(6 items)
(6 items)

Below are the outputs for both plist file types. The data should be similar, since they both use the same

structure.

Cookie.plist

type rowid
Cookie (plist) 000/
Cookie (plist) 001/
Cookie (plist) 002/

create time [UTC] last acces expires [UTC]

05/20/2014 05:35:29
06/17/2015 01:59:48
04/17/2014 04:20:46

01/01/2055 00:00:00

url or name
{"Domain":"porco.apple.com”} —
{ Domaln“:".stacqu,erﬂﬁ\'}i.com"}

extra fiel:
{"Createc

{"Createc

04/17/2050 04:20:46 {"

Domain":".apple.com"}

extra fields

{"Created":"05/20/2014 05:35:29";"Expires":"4001-01-
01T00:00:00Z";"Path":"/";"Name":"applelD";"Value":"davet@tzworks.net"

Copyright © TZWorks,

LLC

Apr 25, 2025

Page 34

com.apple.appstore.plist

type

Cookie (plist)
Cookie (plist)
Cookie (plist)

rowid create time [UTC]

000/ 05/20/2014 05:35:29
001/ 05/20/2014 05:35:41
002/ 05/20/2014 05:35:29

last acces expires [UTC]
05/20/2014 06:03:43
06/20/2014 05:33:55 {“Domain":/"‘apple.com"}
06/19/2014 05:33:43 {"Domain":".apple.com"}

url or name

{"Domain":".apple.

g

extra fields
{"Created":'
{"Created™:"
{"Created":’

/

/

/

[extra fields

{"Created":"05/20/2014 05:35:29";"Expires":"05/20/2014 06:03:43";"Path":"/WebObjects";"Name":"mzf_odc";"Value":"ST1"}
{"Created":"05/20/2014 05:35:41";"Expires":"06/20/2014 05:33:55";"Path":"/";"Name":"itspod";"Value":"3"}
{"Created":"05/20/2014 05:35:29";"Expires":"06/19/2014 05:33:43";"Path":"/";"Name":"mz_at0_fr";"Value":"AWQAAAIBAAANE;

5.2 HSTS.plist

The HSTS in the filename is short for HTTP Strict Transport Security Request and is present on the new

versions of Safari. This file is also located in the <user’s subdir>/Library/Cookies folder. Below are the

fields present in this plist file.

B8 HSTS.plist
HSTS.plist) No Selection

Key

v Root
HSTS Preload Entries Signature
HSTS Store Schema Version
HSTS Content Version

v wiz.biz
Include Subdomains
Create Time
Expiry
HSTS Host

> www.logentries.com

> webmail.onlime.ch

~ com.apple.CFNetwork.defaultStora...

Type
Dictionary
String
Number
Number
Dictionary
Dictionary
Boolean
Number
Number
Boolean
Dictionary
Dictionary

Value

(4 items)
1a10b4aa92ff232a8
3

10

(744 items)

(4 items)

1
6535,682,980.29641
oo

1

(3 items)

(4 items)

When displaying the output, the create timestamp is rendered correctly. The expiration time, however,

sometimes uses an invalid timestamp value to represent infinity. For these cases, no expiration time is

shown, but the raw data (or invalid value used for the timestamp) is still represented in the ‘extra fields’

column.

type rowid create time [UTC] last acces expires [UTC] url or name N /{extra fig
Cookie HSTS (plist) 12/23/2017 00:49:40 ("dict_key_url":"com.apple.CFNetwork.defaultStorageSessigpj,wiz;bizf’} {"Create
Cookie HSTS (plist) 12/23/2017 00:49:40 ("dict_key_url":"com.apple.CFNetwork.defauIt§torage$es§ion/www.logemrie {"Create
Cookie HSTS (plist) 12/23/2017 00:49:40 {"dict_key_url":"com.apple.CFNetwork.defaultStorageSession/webmail.onlim {"Create

Cookie HSTS (plist)

12/23/201701:12:13

P

06/23/2018 13:12:13 ("dict_key_urI":"com.apple.CFNefWork.defauItStorageSession/airbnb.com/"} {"Create

extra fields|
Create Time":"12/23/2017 00:49:40";"Expiry":"7ff0000000000000";"Include Subdomains":"true";"HSTS Host":"true"}

{"Create Time":"12/23/2017 00:49:40";"Expiry":"7ff0000000000000"; "HSTS Host":"true"}

{"Create Time":"12/23/2017 00:49:40";"Expiry":"7ff0000000000000";"Include Subdomains":"true";"HSTS Host":"true"}

{"Create Time":"12/23/2017 01:12:13";"Expiry":"06/23/2018 13:12:13";"Include Subdomains":"true";"HSTS Host":"true"}

Copyright © TZWorks, LLC

Apr 25, 2025

Page 35

5.3 binarycookies file

The binarycookies output makes use of the ‘params’ column. It uses this column to display details about
the cookie. The ‘extra fields’ column is used to display information about the cookie offset within the
binary file, as well as any embedded bplist data contained in the cookie. From the empirical tests that
were run on the embedded bplist data, it usually has information about the StoragePartition. In some
cases, this embedded bplist data was not present. Below is a sample output from this cookie format.

type rowid create time [UTC] last acces expires [UT url or name params extra fields
cookie 02/25/2018 20:03:38 02/26/2018 .segaarcade.us.com cookie=["path":"/";", ":"_gid";"value":"GA1.3.163895: {"offset":"2990"}

cookie 02/26/2018 00:58:13 02/26/2019 .pippio.com cookie=["pat ":"did";"value":"nsCjx9DyI8F2N {bplist_data=["StoragePartition":"desktopnexus.com"];"offset":"3128"
cookie 02/25/2018 19:19:55 02/26/2018 .twitter.com cookie=["patl ":"tfw_exp";"value":"0"] {bplist_data=["StoragePartition":"tetris.com"];"offset":"6009"}
cookie 02/25/2018 19:32:10 02/25/2020 .twitter.com cookie=["path":"/";"name":"personalization_id";"value": {bplist_data=["StoragePartition":"segaarcade.us.com"];"offset":"6194"

6 Verification and Validation (for SQLite files only)

All tools need to be tested with some form of verification to ensure their results are accurate. Part of
that testing is to validate the tool’s functionality across different artifact versions. If the tool developer
can automate this testing, then it allows the developer to test the tool across many datasets quickly.
This in turn quickly identifies inconsistencies and problems so that a wide range of bugs can be
diagnosed and fixed.

Normally, the developer tries to do as much of this testing before sending a tool out to clients. In the
case of Safari, however, since it has a history of changing the schemas across versions so that they are
not backwards compatible, we decided to temporarily add an option for clients to run this type of
verification on their own, if they so choose. To this end, sap incorporates the -verify option to aid in this
purpose.

The -verify option internally invokes all three parsing engines in sequence to parse the same database in
order to compare the results of all three. Simplistically, if all the results match, then the confidence is
very high the tool is working as designed. If the results do not match, it will be because a version of
Safari is being analyzed where the tool may work with one of parsing engines, but not the others. The
first parsing engine most likely to have problems will be the signature-based parsing, since it is more
sensitive to schema changes. In contrast, the default SQL-Select type parsing engine should be the most
robust if there are schema changes because it will key off of specific field names, which typically are
more consistent across versioning. Either way, the purpose of the -verify option is to provide an internal
test to alert a user if any issues are found.

The nice thing about the way this option was implemented, is not only does it check the internal parsers
against themselves, but it also outputs critical diagnostic data that can be used by TZWorks to help
improve the tool. To ensure no personal information is outputted, the -verify option sanitizes the results
to not contain private/confidential information from the raw artifact. The output primarily contains
metadata from the SQLite internal structures. This causes the data generated to be cryptic and only

Copyright © TZWorks, LLC Apr 25, 2025 Page 36

useful for machine type learning/statistics. An additional sub-option was added (-add comments) to
annotate some additional commentary to the results; this provides some extra information for the user
if a test passed or failed and why.

5] Command Prompt

>sap64 -db History.db

As mentioned earlier, the data produced is mostly cryptic since it contains statistical information about
the database and records being parsed. This statistical information, if sent back to TZWorks, will help us
improve our parsing engines for future releases.

Below is a screenshot of one of the entries in the results after running this test. For each database
processed, there will be information about the various table schemas of interest. From this we can see
if the schema has been updated from one version to another. In addition, the output shows the
number of records parsed by each engine, the signatures found, and so on.

1_cache_response(y I PRI on INTEGER, hash_valt
time_stamp T CURRENT_T i 0
/ CREATE TABLE C 0 / (EY, response_ob reque object BLOB,
// CREATE TABLE cfu e s K) INTEGER PRIMARY K S . ata BLOB)
/1 : = E option ID'd same ds that SQL Select opt did.
// : g of fi nsistent.
: Quick look compa of values between each record of parsers found no misn
5-115] : [115-115-115]
00000a040d110411040f111412] : [8 8: 9-2] : 20; 10b3ce10]

tion ID'd the same records S elect o did.

compa (e f parsers found no misn

: [115-115-115]
e7f0000000e040d150407001213110413080f00] : 9- : [10e18a1346f18b2d
) 0 on did.

found no misn

> [115-115-115] : [115-115-115]
[115-115-115] : [0f0700000006040d08121104] : [4-38; 5-192] : [10e189a1cd]

One final comment on the -verify option. This is not a do-everything type built-in test. While it is very
capable and provides a wealth of information, the biggest limitation of this test is that it only compares
un-merged tables records. Therefore, if there is an error during a merge operation between some table-
to-table relationship, it is not included in the battery of tests used by the -verify option. The other
testing shortfall is the last (phase 3) test only compares the first two parsing engines resulting values and
doesn’t consider the third parsing engine (signature-type scan). These shortfalls may be something
added in the future, but for now the purpose of this automated testing is to: (a) capture differences in
various Safari formats, (b) identify issues with the various parsing engines in the tool so they can be
fixed quickly, and (c) get more empirical results as it pertains to signature-type scanning, since this
engine at its core relies on statistical data.

7 Use of the SQLite Library

Copyright © TZWorks, LLC Apr 25, 2025 Page 37

For the purposes of sap, we statically link in the SQLite library to ensure the tool has minimal
dependencies. The source code for the SQLite library is an amalgamation of the SQLite ‘C’ source files,
version 3.32.3. More information about SQLite, the documentation and the source code can be seen at
the official SQLite website [http://www.sqlite.org/].

Normally when we build a tool to parse a raw artifact, we prefer not to use outside libraries, however, in
this case, the SQLite library has an option to open a SQLite database in ‘read-only’ mode. From the
testing done and from the documentation, it appears that this is acceptable for this release.

8 CSV Field Names / Meaning

Below is a refence of all the CSV fields used and their meanings.

. De 0
field Cache version number
type Type of data based on the table the record comes from. Example of types
include: url, cookie, bookmark, favicon, download, etc
rowid Internal parameter to the SQLite table record identifier. If a plist file is

parsed, then this is the index or subkey of the record entry.

create time [UTC]

Date/Time the URL or item was created

last access [UTC]

Date/Time the URL or item was last visited or accessed

expires [UTC]

Date/Time the URL or item expires

url or name

URL or name of the item

params

Any HTTP parameters passed in with the URL (or can be used for other items
if not a URL).

params translation

Translation of any parameter passed in (or can be used for other items if not
some that require translation). Currently only used for SQLite files and not
used for plist files

extra fields

Any fields not covered by the previous fields that are part of the record

data record source(s)

The source table and record offset within the database where this record
was parsed (only applies to -carve and -parse_chunk parsing options)

file

Database file that was parsed

9 Limitations

This version of sap has a number of limitations. They are listed below.

o The tool is still a prototype in nature as this is the first version released. It still needs to be

tested against various types of files, corrupted files, etc. to ensure the tool can perform

consistently.

e The -split_session folder enumeration option relies on the Safari directory structure as well as

the naming convention used by Safari. Therefore, if either of these things are changed by Apple

Copyright © TZWorks, LLC

Apr 25, 2025 Page 38

http://www.sqlite.org/

or Safari or if changed by a user, the parsing engine will have unpredictable results or no results
at all.

10 Available Options

Option Description

Specifies which database file to act on. The format is:

-db .
-db <database or file to parse>

Outputs the data fields delimited by commas. Since filenames can have
-Csv commas, to ensure the fields are uniquely separated, any commas in the
filenames get converted to spaces.

-csvi2t Outputs the data fields in accordance with the log2timeline format.

Outputs the data fields in accordance with the 'body-file' version3 specified in
the SleuthKit. The date/timestamp outputted to the body-file is in terms of
UTC. So if using the body-file in conjunction with the mactime.pl utility, one
needs to set the environment variable TZ=UTC.

-bodyfile

Option is used to populate the output records with a specified username. This

-username only applies to the -csvi2t option. The format is:
-username <name to use>.

Option is used to populate the output records with a specified hostname. This
-hostname only applies to the -csvI2t option. The format is:
-hostname <name to use>.

pipe Used to pipe files into the tool via STDIN (standard input). Each file passed in
is parsed in sequence.

Experimental. Used to process files within a folder and/or subfolders. Each
file is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs <#>.

-enumdir

Filters data passed in via STDIN from the -pipe option. The syntax is -filter
filter <"*.ext | *partialname* [...">. The wildcard character '*' is restricted to

either before the name or after the name.

Used in conjunction with the default or -csv options to remove any
-no_whitespace whitespace between the field value and the CSV separator.

Only applies to -csv and -csvI2t options. Used in conjunction with the -csv

option to change the CSV separator from the default comma to something

_csv_separator else. Syntax is -csv_separator "|" to change the CSV separator to the pipe
character. To use the tab as a separator, one can use the -csv_separator "tab"

OR -csv_separator "\t" options.

datel . Output the date using the specified format. Default behavior is -dateformat
-datetormal
"yyyy-mm-dd". Using this option allows one to adjust the format to

Copyright © TZWorks, LLC Apr 25, 2025 Page 39

mm/dd/yy, dd/mm/yy, etc. The restriction with this option is the forward
slash (/) or dash (-) symbol needs to separate month, day and year and the
month is in digit (1-12) form versus abbreviated name form.

Output the time using the specified format. Default behavior is -timeformat

"hh:mm:ss.xxx". One can adjust the format to microseconds, via

"hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no
-timeformat fractional seconds, via "hh:mm:ss". The restrictions with this option is a colon
(:) symbol needs to separate hours, minutes and seconds, a period (.) symbol
needs to separate the seconds and fractional seconds, and the repeating

symbol 'x' is used to represent number of fractional seconds.

Experimental option. Bypass the SQLite embedded library and parse using
-carve TZWorks internal algorithms. This is useful when the database to be parsed is
corrupted and the SQLite library has trouble parsing it.

Experimental option to look at unused space to see if any records are present.
-incl_slack Not required with the -parse_chunk option. Use this in conjunction
with -carve or default option to look for discarded records.

Experimental option. Given a portion (chunk) of the database, this option will
examine the data to see if any records exist and parse out the contents. This

is a signature-based parse so it can parse out records from chunks of memory
or slack space (in the form of a file).

-parse_chunk

(sub option for -parse_chunk). Experimental option. The -parse_chunk option
will try to determine the type of data present in the SQLite file based on its
filename. Use this option, as a secondary approach, for those cases when the

-blob filename is unrelated to the file type for the artifact. For these cases, the
parser will try all the signatures to try to extract records. (Warning. This
option can create many false positives).

This option is for pulling records from an image. It is also used for testing and
-no_table_merge debugging purposes. If you want to see all the tables that were parsed
without merging any relationships, use this option.

This option is for testing and debugging purposes only. This option runs all 3
parsing engines in the tool (SQL Select parse, Carve parse and Signature-based

-verify parse) and reports whether the parsers work at least up to the level of the
SQL Select parse. Metadata is generated that can be used to help develop
more robust parsing algorithms.

-quiet Show no progress during the parsing operation.
-split_sessions Split the Safari sessions into separate files.
-show_all_data Do not on truncate long data runs

Copyright © TZWorks, LLC Apr 25, 2025 Page 40

-utf8_bom

All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8 byte
order mark to the CSV output using this option.

11 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macQOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

12 References

SQLite library statically linked into tool [Amalgamation of many separate C source files from SQLite version
3.32.3].

SQLite documentation [http://www.sqlite.org].
DB Browser for SQLite [http://sqlitebrowser.org/]
https://github.com/libyal/dtformats/blob/main/documentation/Safari%20Cookies.asciidoc

https://stackoverflow.com/questions/7545885/safari-5-1-cookie-format-specs

http://www.securitylearn.net/2012/10/27/cookies-binarycookies-reader/

https://opensource.apple.com/source/CF/CF-550/CFBinaryPList.c
https://medium.com/@karaiskc/understanding-apples-binary-property-list-format-281e6da00dbd

http://newosxbook.com/bonus/bplist.pdf

Copyright © TZWorks, LLC Apr 25, 2025 Page 41

http://sqlitebrowser.org/
https://github.com/libyal/dtformats/blob/main/documentation/Safari%20Cookies.asciidoc
https://stackoverflow.com/questions/7545885/safari-5-1-cookie-format-specs
http://www.securitylearn.net/2012/10/27/cookies-binarycookies-reader/
https://medium.com/@karaiskc/understanding-apples-binary-property-list-format-281e6da00dbd

	1 Introduction
	1.1 Location of Safari Artifacts

	2 How to Use sap
	2.1 Targeting Specific files
	2.2 Integrated Parsing Algorithms (SQLite)
	2.2.1 Algorithms and their Pros/Cons

	2.3 Modified CSV Output
	2.4 Type Designations
	2.5 Processing Multiple Databases
	2.6 Merging SQLite Data between Tables
	2.7 Bypassing the Embedded SQLite library
	2.7.1 Signature parsing logic

	2.8 Parsing Safari SQLite Artifacts from Memory or a Disk Image
	2.9 Splitting the Safari Sessions into Separate Files

	3 Databases Targeted by sap
	3.1 History.db Database
	3.2 Favicons.db or WebpageIcons.db Database
	3.3 TouchIconCacheSettings.db Database
	3.4 CloudTabs.db Database
	3.5 Cache.db Database
	3.6 <url>_0.localstorage related Databases

	4 Property Lists Targeted by this tool
	4.1 History.plist
	4.2 Downloads.plist
	4.3 TopSites.plist
	4.4 RecentlyClosedTabs.plist
	4.5 UserNotificationPermissions.plist
	4.6 SearchDescriptions.plist
	4.7 com.apple.Safari.plist
	4.8 Permissions.plist
	4.9 LastSession.plist
	4.10 CacheSettings.plist
	4.11 Miscellaneous plist files
	4.11.1 Bookmarks.plist
	4.11.2 KnownExtensions.plist
	4.11.3 CloudHistoryRemoteConfiguration.plist
	4.11.4 SitesAllowedToAutoPlay.plist

	5 Cookies
	5.1 Cookies.plist
	5.2 HSTS.plist
	5.3 binarycookies file

	6 Verification and Validation (for SQLite files only)
	7 Use of the SQLite Library
	8 CSV Field Names / Meaning
	9 Limitations
	10 Available Options
	11 Authentication and the License File
	12 References

