

Abstract
sap is a standalone, command-line tool that parses artifacts

associated with the Safari desktop browser. The tool can

target certain SQLite databases, property lists (plists) and

cookies that are used in Safari. The data can be reported

into either CSV or Log2Timeline formats. This tool has

working versions for Windows, Linux and OS-X.

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v0.19 of sap

Updated: Apr 25, 2025

TZWorks® Safari Artifact Parser
(sap) Users Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 25, 2025 Page 1

Table of Contents

1 Introduction .. 3

1.1 Location of Safari Artifacts .. 3

2 How to Use sap ... 6

2.1 Targeting Specific files .. 6

2.2 Integrated Parsing Algorithms (SQLite) ... 7

2.2.1 Algorithms and their Pros/Cons .. 8

2.3 Modified CSV Output .. 9

2.4 Type Designations ... 9

2.5 Processing Multiple Databases ... 10

2.6 Merging SQLite Data between Tables ... 10

2.7 Bypassing the Embedded SQLite library ... 11

2.7.1 Signature parsing logic .. 12

2.8 Parsing Safari SQLite Artifacts from Memory or a Disk Image ... 12

2.9 Splitting the Safari Sessions into Separate Files ... 13

3 Databases Targeted by sap ... 13

3.1 History.db Database .. 14

3.2 Favicons.db or WebpageIcons.db Database ... 16

3.3 TouchIconCacheSettings.db Database .. 17

3.4 CloudTabs.db Database ... 18

3.5 Cache.db Database .. 19

3.6 <url>_0.localstorage related Databases ... 20

4 Property Lists Targeted by this tool .. 20

4.1 History.plist ... 21

4.2 Downloads.plist ... 22

4.3 TopSites.plist ... 23

4.4 RecentlyClosedTabs.plist ... 24

4.5 UserNotificationPermissions.plist ... 25

4.6 SearchDescriptions.plist .. 26

Copyright © TZWorks, LLC Apr 25, 2025 Page 2

4.7 com.apple.Safari.plist ... 27

4.8 Permissions.plist .. 28

4.9 LastSession.plist .. 29

4.10 CacheSettings.plist .. 30

4.11 Miscellaneous plist files .. 31

4.11.1 Bookmarks.plist ... 31

4.11.2 KnownExtensions.plist ... 32

4.11.3 CloudHistoryRemoteConfiguration.plist ... 32

4.11.4 SitesAllowedToAutoPlay.plist .. 33

5 Cookies .. 34

5.1 Cookies.plist .. 34

5.2 HSTS.plist ... 35

5.3 binarycookies file .. 36

6 Verification and Validation (for SQLite files only) ... 36

7 Use of the SQLite Library .. 37

8 CSV Field Names / Meaning .. 38

9 Limitations... 38

10 Available Options .. 39

11 Authentication and the License File .. 41

12 References .. 41

Copyright © TZWorks, LLC Apr 25, 2025 Page 3

TZWorks® Safari Artifact Parser (sap) Users
Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=51

Contact Information: info@tzworks.com

1 Introduction

As background, the WebKit engine is used in the current Safari architecture. Other common browser
engines include Gecko and WebKit. Below is a table to showing where the Safari architecture is used,
and consequently, which browsers and the respective SQLite tables, the sap tool targets.

Tool Browser Type SQLite Tables Targeted by Tool Notes

csp Chromium based that
use the Blink engine
(e.g. Edge, Chrome,
Brave, Vivaldi, etc.)

urls, visits, keyword_search_terms, visit_source, downloads,
downloads_url_chains, clusters_and_visits, content_annotations,
context_annotations, cookies, autofill, thumbnails, top_sites,
omni_box_shortcuts, logins, favicons, favicon_bitmaps, nel_policies,
bounces

The csp tool just targets
the SQLite data and the
ccp tool is used to parse
the cache

msp Mozilla based that use
the Gecko engine (e.g.
Firefox, SeaMonkey,
Tor Browser, etc.)

moz_places, moz_origins, moz_bookmarks, moz_historyvisits,
moz_inputhistory, moz_keywords, moz_annos, moz_items_annos,
moz_anno_attributes, moz_cookies, moz_downloads, moz_icons,
moz_icons_to_pages, moz_pages_w_icons, moz_favicons,
moz_formhistory

The msp tool just targets
the SQLite data and the
mcp tool is used to parse
the cache

sap WebKit based browsers
(e.g. Safari)

history_items, history_visits, history_items_to_tags, history_tags,
icon_info, page_url, cache_settings, cloud_tabs, cloud_tab_devices,
cfurl_cache_blob_data, cfurl_cache_receiver_data,
cfurl_cache_response, ItemTable

The sap tool also parses
the cache, as well as,
some plists containing
useful data

As shown in the last row above, The Safari Browser has many artifacts available that the forensics
examiner can use in identifying a user’s Internet activity. This includes Safari’s SQLite databases, local
storage, associated property lists (plists), cookies and cache. This tool focuses on those artifacts
associated with the desktop version of the browser, however many of these same artifacts appear in the
mobile version of the browser as well.

1.1 Location of Safari Artifacts

Safari leverages files in the local user’s subdirectory; starting with the Library/Safari folder there are

various files that are related to Safari in some aspect. The locations and diversity types of files are

shown in the diagram below.

mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 25, 2025 Page 4

Many of the SQLite files listed are parsed with the sap tool. However, if a particular file listed is not

parsed, it is usually due to a lack of artifact test data (therefore left out of the parser).

When looking at the cookies used on a MacOS, there are two types to be aware of. The newer versions

consist of a combination of a HSTS.plist file along with a number of files that have the binarycookies

extension. Alternatively, the older version of Safari consists of mostly plist files. Both of these types are

shown in the image below.

Cached webpages reside in the user’s subdirectory/Library/Cache folder. For Safari related cached
webpages, one targets the com.apple.Safari subfolder and parses the Cache.db file. One point to note -
there are many Cache.db files located in the Caches subfolder. Given that all the Cache.db files appear
to all use the same schema, it stands to reason that sap should be able to parse any of them even if they
are unrelated to Safari. While this may be true to some extent, this tool has not been tested on the non-
Safari specific ones.

Copyright © TZWorks, LLC Apr 25, 2025 Page 5

Copyright © TZWorks, LLC Apr 25, 2025 Page 6

2 How to Use sap

The screenshot below shows the options available. The output options are similar to the rest of the

TZWorks tools, and can be rendered in one of the three formats: CSV, Log2Timeline, or BodyFile

(Sleuthkit format).

To process artifact files, sap can either target a folder, individual SQLite database files, individual plist

files, or binarycookies files. The tool will automatically determine the file type version and adjust the

parsing engine accordingly. When parsing many subdirectories at once, where each subdirectory is a

different account or machine, the tool will dynamically adjust for the type and version of the file so as to

preserve the record content when interleaved from one record type to another.

2.1 Targeting Specific files

To target a specific SQLite file, plist file, or cookie file, use the -db option. From sap’s perspective all

the file types are treated as if they are a database. If targeting an SQLite file, without any specific

parsing parameters, the default parser uses the Structured Query Language (SQL) in combination with

Copyright © TZWorks, LLC Apr 25, 2025 Page 7

the statically linked SQLite library to extract the records in the various tables in the database. Below is

an example of doing this.

The default output is rendered in pipe delimited text and has a fixed set of fields. These fields are

explained in the section on CSV Field Names/Meaning. To allow flexibility rendering differing data types

across the tables and databases in the output, some of the fields in the CSV output make use of a quasi-

JSON like format; this allows records with different fields across various tables to be rendered in one

CSV/delimited format. Below is a sample output.

sap will try to show all the associated fields for each record. Fields that do not have a dedicated

column, are shown in the ‘extra fields’ column; each field in this column is annotated by a ‘name of

field/value of data’ pair. Many of the items of interest such as timestamps and URL have their own

dedicated columns.

If running sap with either the -carve or the -parse_chunk options, the ‘data record sources’ field will be

populated with the offset of the record. For example, running the same command above while

specifying carve as the parse algorithm yields the same data above, but with the data record sources

field populated.

This gives one the location information necessary to analyze the data in a hex editor to verify the results,

should a manual verification of the results be required.

2.2 Integrated Parsing Algorithms (SQLite)

sap offers three possible parsing algorithms to choose from when dealing with SQLite databases; these

are outlined below:

1. Default option. This option uses the internal SQLite library that is statically linked into sap to

perform a SQL-Select statement on the database under analysis. It is sensitive to corrupt

databases.

Copyright © TZWorks, LLC Apr 25, 2025 Page 8

2. Carve option. (-carve). This option uses a TZWorks based set of algorithms to traverse the SQLite

data structures to parse the records in the database. It relies on the database’s schema and

internal tree-based structures to find the data. When corruption is present, this option will

skip bad records and will attempt to parse the next one. It also looks at unused space for any

records that may be present using the -incl_slack option.

3. Signature-base option. (-parse_chunk). This option does not make use of the SQLite schema or

tree-based structures in the database to locate records. Instead, it looks for pre-defined

signatures in order to locate records and parse them. Empirical testing has shown this approach

works from either a fully intact database, a corrupted database or a partial blob of a database.

While this option can pull valid records, it truncates the data when a record spans multiple

SQLite-pages. For any records that are truncated, the output will be annotated with a flag

identifying it as such.

2.2.1 Algorithms and their Pros/Cons

The benefit of the default option is its usefulness for verification and validation purposes. Given that

sap can produce the same output for any of the three available parsing options, one can use the default

option as the base option to compare other parsing algorithm results. In this way, one can easily verify

whether the carve option and/or signature-based option works, simply by comparing the results to that

of the default SQL-Select option.

In most cases, the carve option (-carve) is a better choice over the default option, simply because it

returns the same, if not more, results. If invoking the sub-option -incl_slack, the tool has the ability to

detect unused space and switches to a signature-based scan for those areas.

Surprisingly, the signature-base option (-parse_chunk) competes very well with the other two options

with some exceptions. Keep in mind, the -parse_chunk option strictly relies on unique signatures being

accurate for its success. Also, just because a signature is available, one needs to ensure the signature

isn’t too simple in the sense it generates many false-positives. While the other two options can

dynamically adjust their parsing engine based on the schema identified in the database, the signature-

based option cannot. Depending on the number of recoverable records in the database, it is possible for

signature-based option to extract more records than the other options, however, the user is cautioned

that more records do not necessarily mean accurate data. For example, if one passes in a file that

contains the contents of a disk volume, with the intent of extracting all the Safari artifacts from that

image, then there may be multiple false positives on certain table records. sap does a good job of

statistically pulling out table entries that have many fields versus those tables that only have a few

fields. Therefore, certain table entries will have less false positives than others.

The other issue to consider with the signature-base option is the merging operation from data in one

table to another table (based on some relationship between the tables) may or may not make sense.

For example, if a timestamp from one table is merged with data from another table, and the data is not

in sync (from a chronological point of view), then the resulting merged record will mislead the

investigator of an event’s occurrence time-wise. The other pitfall with the signature-based scans, which

Copyright © TZWorks, LLC Apr 25, 2025 Page 9

was mentioned earlier, is that approach will truncate the data if a record overflows into multiple

databases pages; the signature-based scan will only report on data found in the initial page.

To handle the data accuracy issue, refer to the section on “Merging of Data between Tables”.

In conclusion, despite the negatives for the signature-based parse, it is the only choice if analyzing

partial chunks of database fragments, whether from memory or disk images.

2.3 Modified CSV Output

When parsing various databases, where a database type can have differing tables and each table

translates to differing schemas or fields, one of the challenges in report generation is rendering all the

various data fields into a common CSV format. The simple solution is to invoke the Log2Timeline

option (-csvl2t), or the Sleuthkit BodyFile option (-bodyfile). These are excellent options to achieve this,

since these formats have custom pre-defined fields. They are defined in such a way that the format

allows for dissimilar datasets by assuming all records will have at least a timestamp and description of

the event that occurred. These formats also contain fields for generic data such as notes and comments.

The above formats, because of their nature, can take one record and create multiple CSV entries if an

entry contains multiple differing timestamps. Therefore, if one desires to output a single CSV line per

record, then some of the fields need to be designated as variable in nature. Leveraging off of the

concept of the -csvl2t format, one can accomplish this by creating some static fields as well as some

general-purpose fields. For the default or the -csv option, sap does just that. Specifically, there are a

few static fields where the types are set, but there are others where a JSON like format is used. In this

way, many of the fields of a record can be outputted in a way where similar fields, such as Type of

record, RowID, Timestamp, and URL are static, but the other general-purpose fields can contain differing

types of data. For general-purpose data, the JSON like format used by sap consists of outputting the

data in a name/value pairing relationship.

2.4 Type Designations

For SQLite artifacts, the output will render two types of designations. The first is a result of merging

records from tables in accordance with the schema of the database. For this case, the following

designations are used:

SQLite Record Type Table(s) where the data resides Database where the table(s)
reside

favicon (new) icon_info, page_url, rejected_resources,
(older) iconData, IconInfo, PageURL

favicons.db, WebpageIcons.db

url history_items, history_visits,
history_items_to_tags, history_tags

History.db

xxx.localstorage ItemTable <url>_0.localstorage

Copyright © TZWorks, LLC Apr 25, 2025 Page 10

CloudTab cloud_tab_devices, cloud_tabs CloudTabs.db

Cache cfurl_cache_blob_data,
cfurl_cache_receiver_data,
cfurl_cache_response

Cache.db

Icon Cache cache_settings TouchIconCacheSettings.db

<plist type> based
on filename

Not applicable For plist type file

Cookie Not applicable For <filename>.binarycookies
type files

Alternatively, if merging table records is turned off (via -no_table_merge), then the type designations

may specify the actual table name where the data came from. These table names are shown above as

well as in the section on “Databases targeted by sap”.

In addition to the record types shown above, there are some cases were the type is supplemented with

an extra word, such as Trunc, which means the data was truncated.

2.5 Processing Multiple Databases

If desiring to process many database files in one pass, one can put the artifact databases in separate

subdirectories that share a common parent folder (or just enumerate them on a live system) and use

the -pipe option like so:

To be more discriminating one can use the -enumdir option along with the sub options -num_subdirs and

-filter. This allows one to target the specified level of subdirectories and files with a certain extension.

The above command will process all databases contained in the c:\dump\safari_dbs folder and the 10th

level of subfolders. The results of parsing the databases found will be put into the file results.csv. To

help distinguish which lines corresponds to which database file, an extra field is appended to each

record identifying the source database.

2.6 Merging SQLite Data between Tables

Certain tables contain relationships between them, where data from one table is meant to be combined

with another table in order to populate all the fields for a record. The relationships between the Safari

database tables are shown in the section on “Databases Targeted by sap.” By default, sap will try to use

Copyright © TZWorks, LLC Apr 25, 2025 Page 11

these relationships and merge the data between the tables. Each merged dataset will be treated as a

separate record to be output into the report. For example, if the records from three tables make two

records after the data is merged, only the two merged records will be output by sap in the report.

On the flip side, if one has two tables to be merged and they have a ‘one to many’ or ‘many to one’

relationship, then the tool will try to create a ‘one-to-one’ relationship in the results that are output.

Unfortunately, this gives the perception that there are a large number of duplicate records. Whether it

be with some other table to table relationship, inevitability there will be duplicates where some of the

outputted records will match each other. This is especially true when considering parsing deleted

records out of unallocated space. sap does not make the determination whether the records it parses

are duplicated or not; it just outputs all the data.

In some cases, one may not want this merging to take place, and may want to see all the un-merged

data from each table separately output as a separate record. This behavior can be done by invoking the

-no_table_merge switch. This option only works with the default or -csv output modes (and does not

work with -csvl2t or -bodyfile). This is because not all table records that are parsed by this tool have a

timestamp associated with them, which the -csvl2t and -bodyfile formats rely on.

The main use-case for the -no_table_merge is when processing chunks of data (i.e. consider a partial

memory dump, volume dump or a partial database file) that contain Safari artifacts. In this case, any

records extracted from partial tables may relate to one user’s account Safari data, but not to another

account. Alternatively, using the same example, assume there is only one user account on the

computer; what could happen is that a parsed timestamp from one table may be out of sequence, from

a chronological perspective, from data in another related table. Therefore, any merge operation in the

above cases is dubious at best, since there is really no good way to tell if the merge operation will yield

accurate results.

2.7 Bypassing the Embedded SQLite library

sap has the SQLite library embedded into the binary. More information about this is discussed in the

section Use of the SQLite Library. The tool makes use of this library in the default mode when parsing.

Sometimes, however, one may not wish to use the SQLite library for analyzing tables and extracting

records, so an option was added to bypass the SQLite library and use the TZWorks internal SQLite

algorithms to parse the database. This functionality can be invoked in one of two ways: (a) with

the -carve option or (b) the -parse_chunk option. Out of the two options, one should opt for the former,

the -carve option. This option will try to traverse the internal SQLite data structures in the database

(even corrupted ones), and should extract all the same information as if using the normal SQLite library.

The difference here is the -carve option is more immune to database corruption or database lockdown,

than the default option.

Copyright © TZWorks, LLC Apr 25, 2025 Page 12

The purpose of the second option -parse_chunk, is to go a step further and operate on only a subset of

the database. More specifically, if at least a page of the database is available, this option will try to

make sense of any records it finds. The limitations of this option include: (a) it will not be able to handle

overflow records between SQLite pages, and (b) it may not be able to provide joins between tables that

have a relational aspect. The -carve option discussed earlier, however, will handle the overflow of data

between pages and perform the necessary joins between tables that have dependencies between them.

The benefit of the -parse_chunk option is that it can handle pulling out records from a journal file

independently of the main database file, whereas the other two options cannot.

2.7.1 Signature parsing logic

When invoking the -parse_chunk flag, the internal parser resorts to a signature-based parsing logic.

When considering the number of different Safari SQLite databases, where each database can have one

or more tables and each table having a unique schema, the number of signatures the tool can look at

can be quite a few. Therefore, to restrict the number of signatures the tool targets the filename of the

database that is passed in to determine which signatures to use to find candidate records. This results in

two things: (a) it restricts the number of signatures to scan for, and (b) it reduces the number of false

positives, in the case where multiple signatures are similar.

In those situations where the file being passed in was carved from disk or taken from memory, the

filename approach described above does not work; specifically, one needs to tell sap to scan the file for

all the signatures internally available. To tell sap to do this, use the -blob option in conjunction

with -parse_chunk, and the tool will scan through the file looking for various possible records by trying to

match a dictionary set of signatures.

2.8 Parsing Safari SQLite Artifacts from Memory or a Disk Image

To parse artifacts from a file-based archive that contains a memory or a disk image, one would use

the -parse_chunk option along with the -blob option. This tells sap not to use the filename to determine

which signatures to use. Instead, the tool will use any unique signatures it has to scan for a broad set of

record types. The term unique is used here to mean the signature doesn’t produce a large set of false

positives.

Even though the tool will allow the user to run it in either the 32-bit or 64-bit version of the binary, one

is encouraged to use the 64-bit version. The reason is with a scan that spans a very large disk image, it

may be possible to extract a large number of records. The larger the number of records that are

extracted, the more memory the tool will consume; using the 64-bit binary can grow the memory

needed appropriately, whereas the 32-bit version is limited.

Below is an example of performing this operation on a VMWare memory image. Notice we

incorporated the -no_table_merge option as well, since we do not want to merge table data together.

This is done as a precaution in case there are multiple instances of Safari artifacts at one time or

Copyright © TZWorks, LLC Apr 25, 2025 Page 13

another; each instance, in this case, would represent a different user account on the system. Merging

table data from one user to another user would yield incorrect and misleading results.

Notice in the command shown, that we still use the -db <file> syntax even though the file we are parsing

is not a database, but an image of physical memory stored as a file.

The same type of scan can be done on any image that is not encrypted. The only restriction here is that

the image (memory, volume, disk or chunk of data) has to be identical to the system it came from. The

key here is the SQLite records being scanned/parsed need to be preserved in their original form.

The last point to mention is if sap detects a very large file being processed for analysis, it will complain if

you are not using the option -parse_chunk. Also, sap will complain if either the -csvl2t or -bodyfile output

options are used for large file analysis, since only the -csv (or the default) output option is allowed for

this situation. This limitation is hardcoded into the tool. Furthermore, it will automatically switch into

the mode -no_table_merge for very large files. The term ‘very large’ in this context are sizes not normal

for individual Safari databases, so an arbitrary size above 130 MB is used for this threshold.

2.9 Splitting the Safari Sessions into Separate Files

One of the use-cases is to run sap against a system with multiple accounts, and breakout the parsing

results by account into separate files. To do this, use the option -split_sessions. It can be used with

either of the directory enumeration options (-enumdir or -pipe). The behavior of sap will take whatever

was specified as the output file to be appended with a session number. For this to work properly, the

tool is assuming that the starting folder includes the user’s account folder/subfolders. Below is an

example using this syntax.

When the processing is done, a number of files (one per Safari session) will be generated. The output

notation will the output name specified (in this case “results”) prepended with an incremented number

along with the folder name used by Safari for that session.

3 Databases Targeted by sap

sap currently targets the following SQLite databases: (a) History.db, (b) Favicons.db (or

WebpageIcons.db), (c) TouchIconCacheSettings.db, (d) CloudTabs.db, (e) Cache.db and (f) localstorage

related files. This tool focuses on the desktop platform (MacOS) of Safari artifacts and not the device

versions run with iOS.

Copyright © TZWorks, LLC Apr 25, 2025 Page 14

When looking across the various versions of the Safari Browser over time, the schemas of the databases

have changed somewhat. The database schema can be thought of as the roadmap that defines the

fields and the type of data in each field that comprise a record in the table (where one or more tables

reside in a database). More often, however, the older browser versions made more extensive use of

plist (property list) files; the newer browser versions have evolved some of the plist files into SQLite files.

The change in schemas across different browser versions as well as the use of plists in some of the older

versions is something that needed to be taken into account when designing sap. The design allows the

tool to dynamically detect and adjust to varying schemas and/or plist usage as they are encountered

during the processing.

In addition to the auto-schema detection, sap allows the user to parse a target SQLite database in three

ways. (1) The first way makes use of the standard SQL (Structure Query Language) to parse the records.

The SQL syntax is internal to the tool, so the user is not required to have any knowledge about SQL or its

syntax. For this option to be available, the SQLite library was statically linked into sap, which eliminates

the need for the SQLite dynamic library to be present to run the tool. (2) The second approach allows

the user to instruct the tool to parse each record by traversing the internal SQLite structures as they are

encountered. This option does not use any part of the standard SQLite library, but utilizes the TZWorks’

internally designed libraries. The library allows sap to extract records from a corrupted database and

annotate the exact offset of the data where it was found. This enables one to easily validate it later with

a hex-editor. (3) The third, and final approach, uses a signature-based parse. While this option is more

limited in merging records from one table to another, this turns out to be a unique way in parsing a blob

of data whether it be from memory or from a fragment of a database. All three approaches are

designed into sap for the analyst to use.

3.1 History.db Database

Safari’s History.db database located in the <user’s subdir>/Library/Safari/ folder has a number of tables

of interest to the analyst. Below is a diagram of these tables and their relationships to each other. Keep

in mind not all the tables, as well as fields in the tables, may be present in the older Safari browser

versions. The same can be said of the fields that comprise each of the tables.

Copyright © TZWorks, LLC Apr 25, 2025 Page 15

The table relationships are shown by the lines connecting one table to another. These relationships will

have an effect on the number of records that will be outputted by sap. For example, the tables

history_items and history_visits have what is called a ‘one to many’ relationship. The history_visits may

have many linked records to only one entry in the history_items table. Therefore, after merging the

data from the history_visits table to the history_items table, one most likely will get more records in the

output of the report then the number of records in the history_items table. This is because each parsed

line in the output has taken the ‘one to many’ relationship and converted it to a ‘one to one’

relationship; where each line in the output shows one history_items entry and one history_visits entry.

If there was a second history_visits entry for the same history_items entry, that would constitute a

separate output line. Outputting the data this way allows the various timestamps recorded to be

digested better by other tools.

This behavior exists across other tables as well, assuming there are multiple entries from one table

referencing a single entry in another table.

Below is a sample output from the fields in the History.db database. One should note, while the

timestamps shown are for create and last access, the timestamps can come from a number of sources

with this database. (a) history_visits::visit_time, (b) history_tags::modification_timestamp or (c)

history_items_to_tags::timestamp. The visit_time is used for the create time and the others (if

available) are used for the last access time.

Copyright © TZWorks, LLC Apr 25, 2025 Page 16

If desiring to know which timestamp is represented, one can examine the ‘extra fields’ which has the

raw data for each of the fields. An example of an expanded ‘extra fields’ is shown in the screenshot

below.

3.2 Favicons.db or WebpageIcons.db Database

Depending on the Safari version, there will be one of two website icon datatypes. The primary data of

interest are the timestamps and the URL that was visited.

The Favicons.db database is found in the newer version of the browser and is located in the <user’s

subdir>/Library/Safari/Favicon Cache/ folder. It has 3 tables of interest to the analyst. Below is a

diagram of these tables and their relationships to each other.

Below is a sample output from the fields in the Favicons.db database.

Copyright © TZWorks, LLC Apr 25, 2025 Page 17

The older version of the website icon database is the WebpageIcons.db. This is located in the <user’s

subdir>/Library/Safari/ folder. The tables of interest as well as their relationships are shown below.

The sample output is shown below. As one can see, the main fields are similar from the new browser

version; the only real changes between the versions are in the data reflected in the ‘extra_fields’

column.

3.3 TouchIconCacheSettings.db Database

The TouchIconCacheSettings.db is located in the <user’s subdir>/Library/Safari/Touch Icon Cache/ folder.

Fields of interest are the host that was visited, the last request date, and the request count. One can

also pull the images from the next level subdirectory labeled Images. Below are the fields of the

cache_settings table.

Copyright © TZWorks, LLC Apr 25, 2025 Page 18

Below is a sample output from the fields in the TouchIconCacheSettings.db database.

3.4 CloudTabs.db Database

The CloudTabs.db is located in the <user’s subdir>/Library/Safari/ folder. This also documents URL and

timestamps related to a device. The tables shown below are connected via the device’s universal

unique identifier and exhibits a one-to-many relationship; there can be one or more cloud_tabs entries

for a single cloud_tab_device entry. The fields for these tables are shown below:

Below is a sample output from the fields in the CloudTabs.db database.

Copyright © TZWorks, LLC Apr 25, 2025 Page 19

3.5 Cache.db Database

A number of Cache.db exist. All of them are located in the <user’s subdir>/Library/Caches folder. The

one specific for Safari is located in a lower subdirectory, at <user’s

subdir>/Library/Caches/com.apple.Safari/ or for newer versions of the OS it is located in the

subdirectory <user’s subdir>/Library/Containers/Safari/Data/Library/Caches/com.apple.Safari/. All the

Cache.db in the various subfolders have the same schema and therefore could be parsed by this tool.

However, sap was only tested against the Safari specific Cache.db. The tables and their respective fields

used (for schema version 202) are shown below.

The Cache.db records both the request from the browser and the response from the server handling the

requested webpage. These fields are the request_object and the response object, respectively. sap

parses out this data and renders the data to the analyst, including: URL, timestamps and type of data

that was transmitted/received.

Below is a sample output from the fields in this database. Many of the other parameters not shown in

their dedicated column but are collected into the ‘extra fields’ column. This allows the analyst to review

any details that may become pertinent if a finer examination is required. Due to the large amount of

data packed into the ‘extra fields’ column, the output may have problems rendering in Excel or another

spreadsheet tool.

Copyright © TZWorks, LLC Apr 25, 2025 Page 20

One thing to note about this artifact. It goes without saying the above parsing assumes the tool can

extract much of the field data as possible. Since this particular artifact is larger in size, when compared

to some of the other artifacts, many of the records usually span more than one SQLite page. While this

is not a problem for the -carve or default options, this does present more challenges for -parse_chunk

option. Why? Per the discussion previously… “The pitfall with the signature-based scan [eg. -

parse_chunk] … is [it] will truncate the data if a record overflows into multiple databases pages; the

signature-based scan will only report on data found in the initial page”.

This is something to keep in mind when looking to parse Cache.db files.

3.6 <url>_0.localstorage related Databases

There are a number of SQLite databases associated with the LocalStorage. These databases are located

in the <user’s subdir>/Library/Safari/LocalStorage/ folder. Each database in this folder will be named

with the URL that was visited with an index number and the localstorage extension. These databases

contain various key/value pairs that relate to the metadata of the cookies of that webpage. The

schema of the database is very simple in that it only contains a key and a value as shown below. The

value field, however, can contained a number of nested separate key/value pairs in a JSON format.

4 Property Lists Targeted by this tool

Property Lists (or plists) are used throughout all the applications that run on Apple products. They are

used for all sorts of things, like configuration data about bundles/applications, user’s settings, and

logging state information. There are various formats used in property lists, the two formats that are

most prevalent are either: XML, which is text, or binary which is much more efficient from a storage

Copyright © TZWorks, LLC Apr 25, 2025 Page 21

standpoint. The XML format is able to be read by any text viewer, however, the binary version requires

a parser to translate the data packing into something human readable, whether that be in XML, JSON, or

some other viewable format.

Originally the intent of sap was to target SQLite database files, but after researching the fields in various

Safari SQLite databases, it became apparent that certain fields in these SQLite structures contained

blobs of data. Some of these blobs when looked at with a hex-editor, were embedded plists. Therefore,

adding a plist parser to this tool was essential. After the decision was made to add plist parsing, the

next logical step was to modify the tool to parse both embedded and file plist data. The screenshots of

the plist structures shown in the next subsections were generated from Apples’ XCode tool. It is very

useful in viewing and/or editing plist files.

4.1 History.plist

This plist is used in older Safari browsers and acts like a database of visited websites. The History.plist is

located in the <user’s subdir>/Library/Safari/ folder. It contains the URL of the website that was visited,

the number of times the website was viewed, the last visited timestamp, and which website it was

redirected from. The History.plist file was later replaced by the SQLite History.db database file with the

new version of the browsers. To ensure that both the older and newer versions of Safari could be

handled, sap can parse either one if it is passed as a source database. Below is the structure of this plist

file.

Above is a sample output from the fields in the History.plist database. For the plist output, sap uses the

same field headers that were used for the SQLite output. In this way, the SQLite data and the plist data

can co-exist in the same output.

For this case, the content of fields in the History.plist are not as extensive as those in the SQLite

counterpart (History.db), however much of the pertinent data is still there. Since ‘rowid’ for plists does

Copyright © TZWorks, LLC Apr 25, 2025 Page 22

not apply (since this field was originally geared toward SQLite data), it is used to store the subpath of the

plist entry. For an array datatype, an index is appended to the subpath.

For those fields in the plist that don’t have a designated field name, they are lumped into the ‘extra

fields’ column. In this way, all the data can be represented for each record.

4.2 Downloads.plist

This plist is used in both the older and new Safari browsers and acts like a database of downloaded files.

Even though it is available with the newer browser, it appears from empirical data that it does not

account for every download. This database contains the (a) URL of the file that was downloaded, (b)

time it started, (c) time it finished, (d) number of bytes it took and (e) where the file was stored.

The Downloads.plist file is located in the <user’s subdir>/Library/Safari/ folder. Below is the structure of

this plist file.

Below is a sample output from the fields in the Downloads.plist database. Similar to the History plist

output, the ‘extra fields’ column has the complete set of data for the record. For binary data, the value

of the key/value pair is listed as the number of bytes as shown in for the key name

Copyright © TZWorks, LLC Apr 25, 2025 Page 23

“DownloadEntryBookmarkBlob”. To see all the raw bytes, use the option -show_all_data. This will

output the raw data shown in the third screen shot. The date shown for the ‘create time’ is the time

value associated with “DownloadEntryDateFinishedKey”.

4.3 TopSites.plist

This plist is used in both the older and new Safari browsers and contains the most visited websites. This

database stores the URL of the website visited, the websites title, and the last time it was updated.

The TopSites.plist file is located in the <user’s subdir>/Library/Safari/ folder. Below is the structure of

this plist file.

Copyright © TZWorks, LLC Apr 25, 2025 Page 24

Below is a sample output from the fields in the TopSites.plist database. Aside from the single

timestamp that references the last modification, there contains no timestamp for the individual entries.

4.4 RecentlyClosedTabs.plist

This plist is used in both the older and new Safari browsers and contains the browser tabs that were

recently closed. This database stores the URL of the website visited, the tab title, and the time the tab

was closed.

The RecentlyClosedTabs.plist file is located in the <user’s subdir>/Library/Safari/ folder. Below is the

structure of this plist file.

Copyright © TZWorks, LLC Apr 25, 2025 Page 25

Below is a sample output from the fields in the RecentlyClosedTabs.plist database. The ‘extra fields’

column is expanded for the first entry as well.

4.5 UserNotificationPermissions.plist

This plist is used in both the older and new Safari browsers and contains the specific permissions

associated with a URL/domain. This database stores the URL, the permission in the form of a number,

and the time the permission was added.

The UserNotificationPermissions.plist file is located in the <user’s subdir>/Library/Safari/ folder. Below

is the structure of this plist file.

Copyright © TZWorks, LLC Apr 25, 2025 Page 26

Below is a sample output from the fields in the UserNotificationPermissions.plist database.

4.6 SearchDescriptions.plist

This plist is used in both the older and new Safari browsers and contains the search description used.

This database stores the URL, and in WebsiteSpecificSearchDescriptions listing, the timestamp that it was

added.

The SearchDescriptions.plist file is located in the <user’s subdir>/Library/Safari/ folder. Below is the

structure of this plist file.

Below is a sample output from the fields in the SearchDescriptions.plist database. Notice that this

artifact contains 2 categories: (a) OpenSearchDescriptions and the related (b)

WebsiteSpecificSearchDescriptions. For the purposes of the output, each category is broken out

separately.

Copyright © TZWorks, LLC Apr 25, 2025 Page 27

4.7 com.apple.Safari.plist

This plist is used for Safari preferences, and thus contains a list of settings as well as some timestamps

for certain items. The data of key/values is displayed in the ‘extra fields’ in the output since it was not

conducive to fit into any of the other fields.

The com.apple.Safari.plist file is either located in the <user’s subdir>/Library/Preferences/ folder. Below

is the structure of this plist file. It contains many key/value pairs mostly unrelated to one another.

There is however, a section on RecentWebSearches that include the search string and the timestamp.

Copyright © TZWorks, LLC Apr 25, 2025 Page 28

4.8 Permissions.plist

The Permissions.plist file is located in the <user’s subdir>/Library/Safari/RemoteNotifications/ folder.

Below is the structure of this plist file.

Below is a sample output from the fields in the Permissions.plist database. There is one timestamp

(Date Added) per dictionary item, which contains an array of domain names. Each line in the output is

one domain name with the associated ‘common’ metadata that goes with the dictionary item (which in

this example is web.com.cnn.redalert).

Copyright © TZWorks, LLC Apr 25, 2025 Page 29

4.9 LastSession.plist

The LastSession.plist file is located in the <user’s subdir>/Library/Safari/ folder. The structure of the

data is shown below. While some of the URLs are enumerated directly in each ‘TabStates’ item index,

there are cases where the URLs are nested in the ‘BackForwardList’ element of the item index. Both are

shown below.

Below is a sample output from the fields in the LastSession.plist database. The ‘create time’ column

shows the ‘DateClosed’ timestamp. The details of the other metadata aside from timestamps and URL,

are shown in the ‘extra fields’ column.

Copyright © TZWorks, LLC Apr 25, 2025 Page 30

4.10 CacheSettings.plist

The CacheSettings.plist file is located in the <user’s subdir>/Library/Safari/Touch Icons/ folder. It is

found in the older versions of Safari; the newer artifact is the TouchIconCacheSettings.db which was

discussed previously in the SQLite artifact section. The structure of this plist type is shown below.

Below is a sample output from the fields in the CacheSettings.plist database. The ‘last access time’

column shows the ‘TouchIconLastRequestDate’ timestamp. The other metadata aside from timestamp

and domain, are shown in the ‘extra fields’ column.

Copyright © TZWorks, LLC Apr 25, 2025 Page 31

4.11 Miscellaneous plist files

These are a category of plist files that are parsed by sap but the fields in these plist files do not contain

any explicit timestamps. Therefore, when the tool parses these specific files, the output would not

show up in timestamp dependent output such as Log2Timeline using the option -csvl2t. For these files,

therefore, one can only use the default output or the -csv option.

4.11.1 Bookmarks.plist

This plist is used in both the older and new Safari browsers and stores the configuration of the

bookmarks for the browser. It has the URL of the website, the parent bookmark title, the item’s title

and various other universally unique identifiers (UUIDs). There are no timestamp fields identifying when

the bookmark was added.

The Bookmarks.plist file is located in the <user’s subdir>/Library/Safari/ folder. Below is the structure

of this plist file.

Copyright © TZWorks, LLC Apr 25, 2025 Page 32

Below is a sample output from the fields in the Bookmarks.plist database.

4.11.2 KnownExtensions.plist

This plist is used in just the older Safari browsers and it is used to identify the application bundle and

identifier of the developer.

The KnownExtensions.plist file is located in the <user’s subdir>/Library/Safari/ folder. Below is the

structure of this plist file.

Below is a sample output from the fields in the KnownExtensions.plist database.

4.11.3 CloudHistoryRemoteConfiguration.plist

The CloudHistoryRemoteConfiguration.plist file is located in the <user’s subdir>/Library/Safari/ folder.

Below is the structure of this plist file.

Copyright © TZWorks, LLC Apr 25, 2025 Page 33

Below is a sample output from the fields in the CloudHistoryRemoteConfiguration.plist database. There

are no explicit timestamps or URLs in the record data. The data is strictly configuration data as its

filename suggests. In this case, all the data key/value pairs are put into the ‘extra fields’ column.

4.11.4 SitesAllowedToAutoPlay.plist

The SitesAllowedToAutoPlay.plist file is located in the <user’s subdir>/Library/Safari/ folder. Below is

the structure of this plist file. This plist only contains a listing of domains that are allowed to have auto-

play enabled.

Below is a sample output from the fields in the SitesAllowedToAutoPlay.plist database. Each domain is

listed on a separate line in the output.

Copyright © TZWorks, LLC Apr 25, 2025 Page 34

5 Cookies

sap also parses Safari cookie files. Depending on whether the Safari browser artifacts are from the

older or newer versions, these files can either be of the form: (a) Cookies.plist and

<reverse_domain_name>.plist, or (b) Cookies.binarycookies and <reverse_domain_name>.binarycookies

The first type are used in the older Safari browsers. The second type are found in the newer Safari

versions. Both of these types of files are located in the <user’s subdir>/Library/Cookies subfolder.

5.1 Cookies.plist

Below is the structure of the plist version of the cookie file. One can see the format for the Cookies.plist

is the similar to the <reverse-domain-name>.plist files.

Below are the outputs for both plist file types. The data should be similar, since they both use the same

structure.

Copyright © TZWorks, LLC Apr 25, 2025 Page 35

5.2 HSTS.plist

The HSTS in the filename is short for HTTP Strict Transport Security Request and is present on the new

versions of Safari. This file is also located in the <user’s subdir>/Library/Cookies folder. Below are the

fields present in this plist file.

When displaying the output, the create timestamp is rendered correctly. The expiration time, however,

sometimes uses an invalid timestamp value to represent infinity. For these cases, no expiration time is

shown, but the raw data (or invalid value used for the timestamp) is still represented in the ‘extra fields’

column.

Copyright © TZWorks, LLC Apr 25, 2025 Page 36

5.3 binarycookies file

The binarycookies output makes use of the ‘params’ column. It uses this column to display details about

the cookie. The ‘extra fields’ column is used to display information about the cookie offset within the

binary file, as well as any embedded bplist data contained in the cookie. From the empirical tests that

were run on the embedded bplist data, it usually has information about the StoragePartition. In some

cases, this embedded bplist data was not present. Below is a sample output from this cookie format.

6 Verification and Validation (for SQLite files only)

All tools need to be tested with some form of verification to ensure their results are accurate. Part of

that testing is to validate the tool’s functionality across different artifact versions. If the tool developer

can automate this testing, then it allows the developer to test the tool across many datasets quickly.

This in turn quickly identifies inconsistencies and problems so that a wide range of bugs can be

diagnosed and fixed.

Normally, the developer tries to do as much of this testing before sending a tool out to clients. In the

case of Safari, however, since it has a history of changing the schemas across versions so that they are

not backwards compatible, we decided to temporarily add an option for clients to run this type of

verification on their own, if they so choose. To this end, sap incorporates the -verify option to aid in this

purpose.

The -verify option internally invokes all three parsing engines in sequence to parse the same database in

order to compare the results of all three. Simplistically, if all the results match, then the confidence is

very high the tool is working as designed. If the results do not match, it will be because a version of

Safari is being analyzed where the tool may work with one of parsing engines, but not the others. The

first parsing engine most likely to have problems will be the signature-based parsing, since it is more

sensitive to schema changes. In contrast, the default SQL-Select type parsing engine should be the most

robust if there are schema changes because it will key off of specific field names, which typically are

more consistent across versioning. Either way, the purpose of the -verify option is to provide an internal

test to alert a user if any issues are found.

The nice thing about the way this option was implemented, is not only does it check the internal parsers

against themselves, but it also outputs critical diagnostic data that can be used by TZWorks to help

improve the tool. To ensure no personal information is outputted, the -verify option sanitizes the results

to not contain private/confidential information from the raw artifact. The output primarily contains

metadata from the SQLite internal structures. This causes the data generated to be cryptic and only

Copyright © TZWorks, LLC Apr 25, 2025 Page 37

useful for machine type learning/statistics. An additional sub-option was added (-add comments) to

annotate some additional commentary to the results; this provides some extra information for the user

if a test passed or failed and why.

As mentioned earlier, the data produced is mostly cryptic since it contains statistical information about

the database and records being parsed. This statistical information, if sent back to TZWorks, will help us

improve our parsing engines for future releases.

 Below is a screenshot of one of the entries in the results after running this test. For each database

processed, there will be information about the various table schemas of interest. From this we can see

if the schema has been updated from one version to another. In addition, the output shows the

number of records parsed by each engine, the signatures found, and so on.

One final comment on the -verify option. This is not a do-everything type built-in test. While it is very

capable and provides a wealth of information, the biggest limitation of this test is that it only compares

un-merged tables records. Therefore, if there is an error during a merge operation between some table-

to-table relationship, it is not included in the battery of tests used by the -verify option. The other

testing shortfall is the last (phase 3) test only compares the first two parsing engines resulting values and

doesn’t consider the third parsing engine (signature-type scan). These shortfalls may be something

added in the future, but for now the purpose of this automated testing is to: (a) capture differences in

various Safari formats, (b) identify issues with the various parsing engines in the tool so they can be

fixed quickly, and (c) get more empirical results as it pertains to signature-type scanning, since this

engine at its core relies on statistical data.

7 Use of the SQLite Library

Copyright © TZWorks, LLC Apr 25, 2025 Page 38

For the purposes of sap, we statically link in the SQLite library to ensure the tool has minimal

dependencies. The source code for the SQLite library is an amalgamation of the SQLite ‘C’ source files,

version 3.32.3. More information about SQLite, the documentation and the source code can be seen at

the official SQLite website [http://www.sqlite.org/].

Normally when we build a tool to parse a raw artifact, we prefer not to use outside libraries, however, in

this case, the SQLite library has an option to open a SQLite database in ‘read-only’ mode. From the

testing done and from the documentation, it appears that this is acceptable for this release.

8 CSV Field Names / Meaning

Below is a refence of all the CSV fields used and their meanings.

CSV Field Definition

field Cache version number

type Type of data based on the table the record comes from. Example of types
include: url, cookie, bookmark, favicon, download, etc

rowid Internal parameter to the SQLite table record identifier. If a plist file is
parsed, then this is the index or subkey of the record entry.

create time [UTC] Date/Time the URL or item was created

last access [UTC] Date/Time the URL or item was last visited or accessed

expires [UTC] Date/Time the URL or item expires

url or name URL or name of the item

params Any HTTP parameters passed in with the URL (or can be used for other items
if not a URL).

params translation Translation of any parameter passed in (or can be used for other items if not
some that require translation). Currently only used for SQLite files and not
used for plist files

extra fields Any fields not covered by the previous fields that are part of the record

data record source(s) The source table and record offset within the database where this record
was parsed (only applies to -carve and -parse_chunk parsing options)

file Database file that was parsed

9 Limitations

This version of sap has a number of limitations. They are listed below.

• The tool is still a prototype in nature as this is the first version released. It still needs to be

tested against various types of files, corrupted files, etc. to ensure the tool can perform

consistently.

• The -split_session folder enumeration option relies on the Safari directory structure as well as

the naming convention used by Safari. Therefore, if either of these things are changed by Apple

http://www.sqlite.org/

Copyright © TZWorks, LLC Apr 25, 2025 Page 39

or Safari or if changed by a user, the parsing engine will have unpredictable results or no results

at all.

10 Available Options

Option Description

-db
Specifies which database file to act on. The format is:

 -db <database or file to parse>

-csv

Outputs the data fields delimited by commas. Since filenames can have
commas, to ensure the fields are uniquely separated, any commas in the

filenames get converted to spaces.

-csvl2t Outputs the data fields in accordance with the log2timeline format.

-bodyfile

Outputs the data fields in accordance with the 'body-file' version3 specified in
the SleuthKit. The date/timestamp outputted to the body-file is in terms of
UTC. So if using the body-file in conjunction with the mactime.pl utility, one
needs to set the environment variable TZ=UTC.

-username

Option is used to populate the output records with a specified username. This

only applies to the -csvl2t option. The format is:
-username <name to use>.

-hostname

Option is used to populate the output records with a specified hostname. This
only applies to the -csvl2t option. The format is:
-hostname <name to use>.

-pipe
Used to pipe files into the tool via STDIN (standard input). Each file passed in

is parsed in sequence.

-enumdir
Experimental. Used to process files within a folder and/or subfolders. Each
file is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs <#>.

-filter

Filters data passed in via STDIN from the -pipe option. The syntax is -filter
<"*.ext | *partialname* | ...">. The wildcard character '*' is restricted to
either before the name or after the name.

-no_whitespace

Used in conjunction with the default or -csv options to remove any

whitespace between the field value and the CSV separator.

-csv_separator

Only applies to -csv and -csvl2t options. Used in conjunction with the -csv

option to change the CSV separator from the default comma to something

else. Syntax is -csv_separator "|" to change the CSV separator to the pipe

character. To use the tab as a separator, one can use the -csv_separator "tab"

OR -csv_separator "\t" options.

-dateformat
Output the date using the specified format. Default behavior is -dateformat

"yyyy-mm-dd". Using this option allows one to adjust the format to

Copyright © TZWorks, LLC Apr 25, 2025 Page 40

mm/dd/yy, dd/mm/yy, etc. The restriction with this option is the forward

slash (/) or dash (-) symbol needs to separate month, day and year and the

month is in digit (1-12) form versus abbreviated name form.

-timeformat

Output the time using the specified format. Default behavior is -timeformat

"hh:mm:ss.xxx". One can adjust the format to microseconds, via

"hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no

fractional seconds, via "hh:mm:ss". The restrictions with this option is a colon

(:) symbol needs to separate hours, minutes and seconds, a period (.) symbol

needs to separate the seconds and fractional seconds, and the repeating

symbol 'x' is used to represent number of fractional seconds.

-carve

Experimental option. Bypass the SQLite embedded library and parse using
TZWorks internal algorithms. This is useful when the database to be parsed is
corrupted and the SQLite library has trouble parsing it.

-incl_slack

Experimental option to look at unused space to see if any records are present.
Not required with the -parse_chunk option. Use this in conjunction
with -carve or default option to look for discarded records.

-parse_chunk

Experimental option. Given a portion (chunk) of the database, this option will
examine the data to see if any records exist and parse out the contents. This
is a signature-based parse so it can parse out records from chunks of memory
or slack space (in the form of a file).

-blob

(sub option for -parse_chunk). Experimental option. The -parse_chunk option

will try to determine the type of data present in the SQLite file based on its

filename. Use this option, as a secondary approach, for those cases when the

filename is unrelated to the file type for the artifact. For these cases, the

parser will try all the signatures to try to extract records. (Warning. This

option can create many false positives).

-no_table_merge

This option is for pulling records from an image. It is also used for testing and
debugging purposes. If you want to see all the tables that were parsed
without merging any relationships, use this option.

-verify

This option is for testing and debugging purposes only. This option runs all 3
parsing engines in the tool (SQL Select parse, Carve parse and Signature-based
parse) and reports whether the parsers work at least up to the level of the
SQL Select parse. Metadata is generated that can be used to help develop
more robust parsing algorithms.

-quiet Show no progress during the parsing operation.

-split_sessions Split the Safari sessions into separate files.

-show_all_data Do not on truncate long data runs

Copyright © TZWorks, LLC Apr 25, 2025 Page 41

-utf8_bom
All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8 byte
order mark to the CSV output using this option.

11 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

12 References
• SQLite library statically linked into tool [Amalgamation of many separate C source files from SQLite version

3.32.3].

• SQLite documentation [http://www.sqlite.org].

• DB Browser for SQLite [http://sqlitebrowser.org/]

• https://github.com/libyal/dtformats/blob/main/documentation/Safari%20Cookies.asciidoc

• https://stackoverflow.com/questions/7545885/safari-5-1-cookie-format-specs

• http://www.securitylearn.net/2012/10/27/cookies-binarycookies-reader/

• https://opensource.apple.com/source/CF/CF-550/CFBinaryPList.c

• https://medium.com/@karaiskc/understanding-apples-binary-property-list-format-281e6da00dbd

• http://newosxbook.com/bonus/bplist.pdf

http://sqlitebrowser.org/
https://github.com/libyal/dtformats/blob/main/documentation/Safari%20Cookies.asciidoc
https://stackoverflow.com/questions/7545885/safari-5-1-cookie-format-specs
http://www.securitylearn.net/2012/10/27/cookies-binarycookies-reader/
https://medium.com/@karaiskc/understanding-apples-binary-property-list-format-281e6da00dbd

	1 Introduction
	1.1 Location of Safari Artifacts

	2 How to Use sap
	2.1 Targeting Specific files
	2.2 Integrated Parsing Algorithms (SQLite)
	2.2.1 Algorithms and their Pros/Cons

	2.3 Modified CSV Output
	2.4 Type Designations
	2.5 Processing Multiple Databases
	2.6 Merging SQLite Data between Tables
	2.7 Bypassing the Embedded SQLite library
	2.7.1 Signature parsing logic

	2.8 Parsing Safari SQLite Artifacts from Memory or a Disk Image
	2.9 Splitting the Safari Sessions into Separate Files

	3 Databases Targeted by sap
	3.1 History.db Database
	3.2 Favicons.db or WebpageIcons.db Database
	3.3 TouchIconCacheSettings.db Database
	3.4 CloudTabs.db Database
	3.5 Cache.db Database
	3.6 <url>_0.localstorage related Databases

	4 Property Lists Targeted by this tool
	4.1 History.plist
	4.2 Downloads.plist
	4.3 TopSites.plist
	4.4 RecentlyClosedTabs.plist
	4.5 UserNotificationPermissions.plist
	4.6 SearchDescriptions.plist
	4.7 com.apple.Safari.plist
	4.8 Permissions.plist
	4.9 LastSession.plist
	4.10 CacheSettings.plist
	4.11 Miscellaneous plist files
	4.11.1 Bookmarks.plist
	4.11.2 KnownExtensions.plist
	4.11.3 CloudHistoryRemoteConfiguration.plist
	4.11.4 SitesAllowedToAutoPlay.plist

	5 Cookies
	5.1 Cookies.plist
	5.2 HSTS.plist
	5.3 binarycookies file

	6 Verification and Validation (for SQLite files only)
	7 Use of the SQLite Library
	8 CSV Field Names / Meaning
	9 Limitations
	10 Available Options
	11 Authentication and the License File
	12 References

