

Abstract
cafae is a standalone, command-line tool to extract file and

application metadata associated with any Windows user

account activity. It can operate on a live target or on

separately captured registry hives. All artifacts can be

outputted in one of three formats for easy inclusion with

other forensics artifacts.

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v0.80 of cafae

Updated: Apr 25, 2025

TZWorks® Computer Account
Forensic Artifact Extractor (cafae)
Users Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 25, 2025 Page 1

Table of Contents

 Introduction .. 4

 Location of Hives ... 5

 How to use cafae .. 5

3.1 Volume Shadow Copies .. 7

 Example User Hive Artifacts that are Extracted and Parsed ... 8

4.1 Metadata Associated with Running a Program .. 8

4.1.1 Open -> Run Dialog ... 8

4.1.2 UserAssist Key ... 9

4.1.3 ProgramsCache Key .. 11

4.1.4 MUICache Key ... 12

4.1.5 Run Key and Miscellaneous Applications .. 13

4.1.6 FeatureUsage .. 14

4.2 Metadata Associated with Viewing/Opening/Editing Files .. 15

4.2.1 Recent Documents and Associated Keys .. 15

4.2.2 JumplistData Key ... 17

4.2.3 StreamMRU Key .. 17

4.2.4 Open -> Save Dialog .. 19

4.2.5 Keys Associated with Office Documents ... 20

4.2.6 OpenWithList Key .. 21

4.2.7 ShellBag Keys... 22

4.3 Metadata Associated with Searching/Browsing ... 22

4.3.1 Search History ... 22

4.3.2 TypedURLs Key .. 23

4.3.3 Favorites Key ... 25

4.4 Network Related Artifacts found in User Hives .. 26

4.5 Volume Related Artifacts found in User Hives .. 26

4.6 Computer Metadata Related Artifacts found in User Hives ... 26

Copyright © TZWorks LLC Apr 25, 2025 Page 2

4.7 Persistence Related Artifacts found in User Hives .. 27

 System Hive Artifacts .. 27

5.1 Timezone ... 27

5.2 Devices .. 28

5.3 Shimcache ... 29

5.4 Computer Related Artifacts found in System Hives .. 30

5.5 Network Related Artifacts found in System Hives .. 31

5.6 System Restore Related Artifacts found in System Hives ... 32

5.7 Services Related Artifacts found in System Hives ... 33

5.8 Persistence Related Artifacts found in System Hives ... 33

5.9 Background/Desktop Activity Moderator ... 34

5.10 All System artifacts .. 34

 Software Hive Artifacts ... 35

6.1 Operating System .. 35

6.2 Class Identifiers (CSLIDs) ... 35

6.3 In Process Servers (InProcServers) .. 36

6.4 Codecs ... 36

6.5 Desktop related keys (Explorer) .. 36

6.6 Installed Software ... 37

6.7 EmdMgmt ... 37

6.8 Shell Spawning of an Application .. 37

6.9 Run key Related Artifacts found in Software Hives .. 37

6.10 Network Related Artifacts found in Software Hives ... 38

6.11 Volume Related Artifacts found in Software Hives ... 39

6.12 System Restore Related Artifacts found in Software Hives .. 39

6.13 Web Browsing Related Artifacts found in Software Hives .. 39

6.14 Service Related Artifacts found in Software Hives ... 39

6.15 Persistence Related Artifacts found in Software Hives... 40

6.16 All Software artifacts ... 40

 Security hive Artifacts ... 41

 Sam Hive Artifacts ... 41

 AmCache Hive Artifacts ... 42

Copyright © TZWorks LLC Apr 25, 2025 Page 3

 Carving Keys from hives [experimental] ... 43

10.1 Carving keys .. 43

10.2 Carving Values ... 43

10.3 Hive Statistics .. 45

 Merging Transactional Log files into its Associated Hive (Experimental) 46

 Comparing Hives – Experimental .. 47

 Scripting cafae – Experimental ... 48

13.1 Command line Quick Parse of any Key/Value – Experimental ... 49

13.2 User Defined Templates (or cmdfiles) - Experimental .. 52

13.2.1 Template Rules .. 53

13.2.2 Mapping Template parameters to Log2Timeline Output ... 53

13.2.3 Template Examples ... 54

 Converting Segmented CSV formats into Database Friendly Formats ... 55

 Handling Corrupt Hives ... 55

 List of Options ... 56

 Authentication and the License File .. 59

17.1 Limited versus Demo versus Full in the tool’s Output Banner .. 60

 References .. 60

Copyright © TZWorks LLC Apr 25, 2025 Page 4

TZWorks® Registry Parser (cafae) Users
Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=19

Contact Information: info@tzworks.com

 Introduction

cafae, which is short for Computer Account Forensic Artifact Extractor, is a Windows registry parser that

targets specific registry keys that help identify user activity as it pertains to files and program execution.

Chosen are a handful of registry entries that are specific to an account's registry hive(s). This includes

both a user's ntuser.dat hive and the usrclass.dat hive for Vista and later. Collectively, these two registry

hives contain artifacts useful in piecing together some sort of file/program activity that occurred on a

specific account.

 Why build another Windows registry parser when there are plenty of good registry parsers freely

available on the Internet? The answer is simple. We listened to the feedback that was submitted to our

shop by the forensics community; specifically, to take some of the yaru functionality [1] and make an

easy to use command line tool. The desire was to be able to use it in a batch processing mode while

outputting the data into one of the more common formats so that it could be 'somewhat easily' fused

together with varying artifacts from other sources. Prior to v0.17, we focused on ntuser.dat and

usrclass.dat hives. Starting with v0.17, we extended report generation to include software, system and

security hives.

cafae consists of the same parsing engine that is in yaru, but it is packaged into a console application.

Consequently, the reports that are generated will look similar to those of yaru’s, but will have more

output options, such as a couple of CSV variants, the ability to change the date format and to set the

time precision, among others.

Other useful aspects of cafae include the following:

a. Can parse hives from a live system (same as yaru).

b. Is ubiquitous across WinXP through Win8 (meaning it figures what version of the hive it is

working on, and then automatically adjusts which registry keys should be used).

c. In some cases, it can parse deeper into the metadata and pull out additional artifacts than

current registry parsers available.

d. Non-Windows versions are available for those that choose to process Windows artifacts on a

non-Windows operating system.

e. The architecture is extremely extensible to include additional registry subkeys.

mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 25, 2025 Page 5

 Location of Hives

Some of the more common registry hives can be found in the following locations:

Hive Location

Ntuser.dat %userprofile%\ntuser.dat

UsrClass.dat (xp) %userprofile%\Local Settings\Application Data\Microsoft\Windows\UsrClass.dat
(vista and later) %userprofile%\AppData\Local\Microsoft\Windows\UsrClass.dat

System %systemroot%\system32\config\system

Sam %systemroot%\system32\config\sam

Software %systemroot%\system32\config\software

Security %systemroot%\system32\config\Security

Components (vista and later) %systemroot%\system32\config\Components

BCD (vista and later) %systemdrive%\boot\bcd

Syscache.hive (vista and later) System Volume Information\ Syscache.hive

Schema.dat %systemroot%\System32\SMI\Store\Machine\schema.dat

AmCache.hve (win 8 and later) %systemroot%\AppCompat\Programs\AmCache.hve

ELAM (win8 and later) %systemroot%\system32\config\elam

BBI (win8 and later) %systemroot%\system32\config\bbi

DRIVERS (win8 and later) %systemroot%\system32\config\drivers

 How to use cafae

cafae is a console application that targets user registry hives (eg. ntuser.dat and usrclass.dat files), as

well as software, system and security hives. To use this tool on a live system, one will need to open the

command prompt with administrator privileges. One can display the menu options by typing in the

executable name without parameters. A screen shot of the menu is shown below. The menu groups

the available artifacts by area of analysis, where each artifact can be extracted independently, or

combined per command issued. If an artifact comes from a specific type of user hive, the option will

identify which hive (either ntuser.dat or usrclass.dat) it expects to receive as input for it to successfully

extract data.

Copyright © TZWorks LLC Apr 25, 2025 Page 6

The user registry artifacts are grouped into various categories, depending on what is of interest. The

report generation for the operating system hives (e.g. software, system, sam, security, etc) are all-in-one

type options. This means that they pull all the predefined parsers embedded into cafae into one report.

The output options include: (a) the default output, where each record is on a separate line and each

field is separated by the pipe character, (b) the SleuthKit body-file format [7] and (c) the log2timeline CSV

(comma separated value) format. [8]

Copyright © TZWorks LLC Apr 25, 2025 Page 7

To process a specified user hive, one uses the -hive <location of hive to process> option with the
specific artifact one is interested in. For example, assuming a user hive was extracted to the c:\dump
directory, one could issue the following command to review all the Microsoft Office documents
accessed.

 cafae -hive c:\dump\ntuser.dat -office_docs > office_docs.txt

Since the output that is generated is very wide, it is recommended that one redirect the output of the

command into a file as show above. Then, it can be reviewed in any text editor by turning off the word

wrap option to view each record on a separate line.

3.1 Volume Shadow Copies

For starters, to access Volume Shadow copies, one needs to be running with administrator privileges.

Also, Volume Shadow copies, as is discussed here, only applies to Windows Vista, Win7, Win8 and

beyond. It does not apply to Windows XP.

To make it easier with the syntax, we’ve built in some shortcut syntax to access a specified Volume

Shadow copy, via the %vss% keyword. This internally gets expanded into

\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy. Thus, to access index 1 of the volume shadow

copy, one would prepend the keyword and index, like so, %vss%1 to the normal path of the hive. For

example, to access a user hive located in the testuser account from the HarddiskVolumeShadowCopy1,

the following syntax can be used:

 cafae -hive %vss%1\Users\testuser\ntuser.dat -office_docs > office_docs.txt

To determine which indexes are available from the various Volume Shadows, one can use the Windows

built-in utility vssadmin, as follows:

 vssadmin list shadows

To filter some of the extraneous details out, type

 vssadmin list shadows | find /i "volume"

While the amount of data can be voluminous, the keywords one needs to look for are names that look

like this:

 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1

 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy2

 ...

From the above, notice the number after the word HarddiskvolumeShadowCopy. It is this number that

is appended to the %vss% keyword.

Copyright © TZWorks LLC Apr 25, 2025 Page 8

 Example User Hive Artifacts that are Extracted and Parsed

As a disclaimer, this version of cafae does not contain all the requisite registry keys that may be of

interest to a computer forensic analyst, but it does encompasses some of the more common ones.

Furthermore, every attempt has been made to ensure that this tool parses data correctly; however,

there may be cases where the parsing of the data fails. If this happens, please report it to our staff at:

info@tzworks.com.

Below are examples of some of the registry artifacts cafae can extract. Each subsection includes which

registry keys are examined, the command line syntax that was used, and when available, a sample

output with annotations.

4.1 Metadata Associated with Running a Program
This is a collection of registry keys that show which program, or application, was used by this user

account. If a file was being viewed or edited during this process, the details of the file are listed with

this collection of registry keys.

4.1.1 Open -> Run Dialog

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\LastVisitedMRU

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\LastVisitedPidlMRU

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\LastVisitedPidlMRULegacy

These keys track the program that was last used to access the files listed in the Open/Save dialog box
MRU subkey. With Vista and later, most of these entries record the timestamp of when the program
was executed. The MRU (Most Recently Used) value will show the order of the entries, from the most
recently used. cafae makes use of this MRU value to sort the output from most to least recently
accessed.

Example: cafae –hive user.win7.hive –openrun_mru > out.txt

mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 25, 2025 Page 9

For reference purposes, below is a screenshot of the raw data for item#4 (iexplore.exe) as viewed with

yaru. One can see there is some readable data in the hexadecimal output, but forming a complete path

to the application as well as extracting temporal metadata requires some additional parsing.

4.1.2 UserAssist Key

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist

This key contains values that identify programs executed by a user account. Entries are a mix of

executable files and an associated link entry. Many of the entries contain the last execution time along

with the number of times the application was run. While the last execution time seems reliable, the run

count data is still under evaluation and is based on empirical data. Therefore the results of this output

should be considered experimental.

Example: cafae –hive user.win7.hive –userassist > out.txt

Copyright © TZWorks LLC Apr 25, 2025 Page 10

Below is a view of the raw data of the first entry above. One can see the names are scrambled in the

native form and require a form of ROT-13 (rotate by 13 places) unscrambling to de-obfuscate the data.

The listing order is changed in the final output above and is based on most recent modify date.

Copyright © TZWorks LLC Apr 25, 2025 Page 11

4.1.3 ProgramsCache Key

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\StartPage\ProgramsCache

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\StartPage2\ProgramsCache

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\StartPage2\ProgramsCacheTBP

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\StartPage2\ProgramsCacheSMP

The ProgramsCache key records which application was launched as well as when it was launched. The

size of the file refers to the link file, and not the target file the link points to. Not shown in the diagram

below, but included in the truncated section on the right, are additional parameters that may have been

present in the data.

Example: cafae –hive user.winxp.hive –programs_cache > out.txt

The raw ProgramsCache registry entry contains one very large binary chunk of data that contains the

links, target applications associated with the links, the timestamps for each link and any parameters that

point to an icon.

Copyright © TZWorks LLC Apr 25, 2025 Page 12

4.1.4 MUICache Key

• ntuser.dat\Software\Microsoft\Windows\ShellNoRoam\MUICache

• usrclass.dat\Local Settings\MuiCache

• usrclass.dat\Local Settings\Software\Microsoft\Windows\Shell\MuiCache

The operating system records what applications are launched by a particular user account. The

MUIcache subkey records the name of the application and the File Description information. This

description is taken from the version information stored in the portable executable of the binary that

was launched. Unfortunately, there is no execution timestamp information associated with each entry.

Example: cafae –hive user.winxp.hive –muicache > out.txt

The raw data for the MUICache is rather is straight forward to parse. Each entry is a separate value

name/data pair. The value data is in UTF-16 format.

Copyright © TZWorks LLC Apr 25, 2025 Page 13

4.1.5 Run Key and Miscellaneous Applications

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Run

• ntuser.dat\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Run

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\RunOnce

• ntuser.dat\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\RunOnce

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\RunServices

• ntuser.dat\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\RunServices

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run

• ntuser.dat\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run

• ntuser.dat\Software\Microsoft\Windows NT\CurrentVersion\Terminal
Server\Install\Software\Microsoft\Windows\CurrentVersion\Run

• ntuser.dat\Software\Microsoft\Windows NT\CurrentVersion\Terminal
Server\Install\Software\Microsoft\Windows\CurrentVersion\Runonce

• ntuser.dat\Software\Microsoft\Windows NT\CurrentVersion\Terminal
Server\Install\Software\Microsoft\Windows\CurrentVersion\RunonceEx

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Policies\System\Shell

• ntuser.dat\Software\Microsoft\Windows NT\CurrentVersion\Load

• ntuser.dat\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Load

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\RunMRU

• ntuser.dat\Software\Microsoft\IntelliPoint\AppSpecific

• ntuser.dat\Software\Sysinternals

The Run and RunOnce keys cause programs to run when a user logs on. It is a common and well known

way for applications to remain persistent across reboots.

For this example, however, we highlighted the SysInternals subkey along with its EulaAccepted value. If

the value is set to a 1, then the user accepted the EULA and the tool ran. This is a good way to tell which

SysInternals tools have been run on the system.

Copyright © TZWorks LLC Apr 25, 2025 Page 14

Example: cafae -hive user.win7.hive -runkeys > out.txt

Example: cafae -hive user.win7.hive -otherapps_run > out.txt

The raw data for this set of subkeys is straight forward to parse. Each entry is a separate value

name/data pair. All the value data is either a flag (1 or 0), or straight null terminated strings.

4.1.6 FeatureUsage

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\FeatureUsage\AppBadgeUpdated

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\FeatureUsage\AppLaunch

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\FeatureUsage\AppSwitched

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\FeatureUsage\ShowJumpView

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\FeatureUsage\TrayButtonClicked

These set of subkeys track events associated with the Task Bar when a user has an application pinned to

it. Many of the subkeys are meant to be self-explanatory in their reporting metric. For example:

• AppBadgeUpdated provides the number of times an application had badge updates on the taskbar.

• AppLaunch shows the number of times an application is launched from the taskbar.

• AppSwitch shows the number of times an application switched focus.

• ShowJumpView shows the number of times an application was right-clicked on the taskbar

• TrayButtonClicked shows the number of times the built-in taskbar buttons were clicked.

Copyright © TZWorks LLC Apr 25, 2025 Page 15

4.2 Metadata Associated with Viewing/Opening/Editing Files

This is a collection of registry keys that show some metadata of the file viewed or edited.

4.2.1 Recent Documents and Associated Keys

• ntuser.dat\Software\Adobe\?*\?*\AVGeneral\cRecentFiles

• ntuser.dat\Software\America Online\AOL Instant Messenger (TM)\CurrentVersion\Users

• ntuser.dat\Software\BreakPoint\?*\Recent File List

• ntuser.dat\Software\Microsoft\Dependency Walker\Recent File List

• ntuser.dat\Software\Microsoft\MediaPlayer\Player\RecentFileList

• ntuser.dat\Software\Microsoft\Microsoft Management Console\Recent File List

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Applets\?*\Recent

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Applets\?*\Recent File List

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Applets\Regedit

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Applets\RegEdit\Favorites

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\RecentDocs

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Search\RecentApps

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Search\JumplistData

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\TypedPaths

• ntuser.dat\Software\Nico Mak Computing\WinZip\extract

• ntuser.dat\Software\Nico Mak Computing\WinZip\mru\archives

• ntuser.dat\Software\Symantec\Symantec Ghost\?*\Recent File List

• ntuser.dat\Software\WinRAR\ArcHistory

For the standard ‘Explorer\RecentDocs’ item, this key contains the recent documents as identified in the

Windows "My Recent Documents" menu. Within the key is a MRUListEx value that identifies the most

recently viewed items. If one parses the MRUListEx, one can display the items in the order that they

were accessed relative to each other. cafae will output this list of items in the proper order starting

with the most recently viewed first. While there is no temporal information associated with each entry,

one can use registry last modification time associated with the subkey to determine when the most

recent item was opened.

Example: cafae –hive user.win7.hive –recent_docs > out.txt

Copyright © TZWorks LLC Apr 25, 2025 Page 16

cafae sorts these entries by folder subkey and then by most recently used. The output includes an

arrow to designate which item was the last one modified. When looking at the raw entries, one can see

each extension represented by a separate subkey and each file is a separate child value within the

subkey.

For other keys that this option parses, a variant of the MRU list is used. Some have a MRU value that

can be used to sort the proper order, but others just use an index number as part of the name. See the

figure below for how WinZip artifacts are displayed.

These entries are straight forward to parse, since the value data is in UTF-16 format, and the value

names are either indexed by a MRUList value or by index number in the name to show the most recently

used.

Copyright © TZWorks LLC Apr 25, 2025 Page 17

4.2.2 JumplistData Key

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Search\JumplistData

This is a new key that is available with the Win10 April 2018 update. It can be invoked explicitly with –

jumplistdata or included with the -recent_docs option.

Example: cafae –hive user.win10.hive –jumplistdata > out.txt

Example: cafae –hive user.win10.hive –recent_docs > out.txt

4.2.3 StreamMRU Key

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\StreamMRU

Per the MSDN article 235994, the Streams registry entries store the size and location information for

closed windows. The article states that Windows saves this information for up to 28 different windows.

The association for the Streams subkey with a particular window is stored in the StreamMRU subkey. As

one can see there are embedded timestamps for many of the entries.

Example: cafae –hive user.winxp.hive –stream_mru > out.txt

Copyright © TZWorks LLC Apr 25, 2025 Page 18

The StreamMRU data has a value per entry. Each entry is not straight forward to read with just a hex

editor and requires custom parsing.

Copyright © TZWorks LLC Apr 25, 2025 Page 19

4.2.4 Open -> Save Dialog

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\OpenSaveMRU

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\OpenSavePidlMRU

The operating system tracks files that have been opened or saved, from an "Open/Save As" shell dialog

box through these registry keys. They contain multiple subkeys that represent different extensions.

Each subkey that represents an extension contains values sorted by a MRU list. With Vista and later,

most of these entries record the timestamp when the action occurred. cafae sorts these entries by

folder subkey, and then by most recently used. The output includes an arrow to designate which item

was the last one modified.

Example: cafae –hive user.win7.hive –opensave_mru > out.txt

The raw data of the subkey structure is shown below. One of the entries under the ‘dll’ subkey is

highlighted to show an example of the raw value data and the name it is parsed to.

Copyright © TZWorks LLC Apr 25, 2025 Page 20

4.2.5 Keys Associated with Office Documents

• ntuser.dat\Software\Microsoft\Office\?*\?*\File MRU

• ntuser.dat\Software\Microsoft\Office\?*\?*\Place MRU

• ntuser.dat\Software\Microsoft\Office\?*\?*\Recent File List

• ntuser.dat\Software\Microsoft\Office\?*\?*\Security\Trusted Documents\TrustRecords

• ntuser.dat\Software\Microsoft\Office\?*\Recent Files

• ntuser.dat\Software\Microsoft\Office\Common

Per the MSDN article 826208, many Microsoft Office programs maintain a list of the most recently used

(MRU) files. Additionally, the various Office programs display this MRU list on the File menu and in

several other locations. These locations include the Open dialog box, the Save As dialog box, and the

Insert Hyperlink dialog box. The purpose of this feature is to provide quick access to files that a user is

working on. When extracting this data from the relevant subkeys, one will be able to not only see the

file that was used, but the actual timestamp that file was accessed.

Example: cafae –hive user.win7.hive –office_docs > out.txt

The raw data is UTF-16 in nature, and the timestamp information is prepended to the filename.

Copyright © TZWorks LLC Apr 25, 2025 Page 21

4.2.6 OpenWithList Key

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\FileExts\?*\OpenWithList

The OpenWithList artifact has a separate subkey for each extension of a file that was opened. Within

each extension subkey, the list associates which application is used to open a file with that specific

extension. Each of the items within an extension is ranked by a letter, which indicates the order of

application execution.

Example: cafae –hive user.win7.hive –open_with > out.txt

The raw data is straight forward to parse since the data is UTF-16 in nature

Copyright © TZWorks LLC Apr 25, 2025 Page 22

4.2.7 ShellBag Keys

For completeness, this important set of registry keys is just mentioned here. This option, however, was

not made available with cafae, since the sbag [2] tool was developed to specifically parse these registry

artifacts.

4.3 Metadata Associated with Searching/Browsing

Previously, the options for Search History, TypedURLs and Favorites were broken out as separate

options. Now they are combined into one option using the -web switch.

Example: cafae –hive user.win7.hive –web > out.txt

4.3.1 Search History

• ntuser.dat\Software\Microsoft\Search Assistant\ACMru

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\WordWheelQuery

For Windows XP, there is the ACMru key, which stores search terms that have been typed into a

Windows search dialog box. The presence of subkeys, defined below, indicate where the search term

was used:

• 5001 - List of terms used for the Internet Search Assistant

• 5603 - List of terms used for the Windows XP files and folders search

• 5604 - List of terms used in the "word or phrase in a file" search

• 5647 - List of terms used in the "for computers or people" search

Copyright © TZWorks LLC Apr 25, 2025 Page 23

Unfortunately, Vista did not include a registry key for user searches. Windows 7, however, defines the

WordWheelQuery subkey to record information about user searches. Below is an example of the

WordWheelQuery data.

The WordWheelQuery data is straight forward to parse since it is in standard UTF-16 format.

4.3.2 TypedURLs Key

• ntuser.dat\Software\Microsoft\Internet Explorer\TypedURLs

When a user types, or adds via a copy/paste, a URL directly into the browser, the TypedURLs subkey is

updated. The list of URLs is sorted by number. The lowest number is the last, or most recently typed,

URL.

Copyright © TZWorks LLC Apr 25, 2025 Page 24

Every new URL will contain a separate entry and the contents of the URL are in UTF-16 format. The

names are indexed based on the most recently used as the lowest index. Conversely, the highest index

equates to the oldest entry.

Copyright © TZWorks LLC Apr 25, 2025 Page 25

4.3.3 Favorites Key

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\StartPage\Favorites

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\StartPage2\Favorites

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\Taskband\Favorites

This set of keys covers the shortcuts on the Windows Start Menu and the TaskBar, respectively. Shown

below, is an example of the parsed output of the TaskBar shortcuts. Some of the data in the figure is

truncated to the right of the output. The truncated data includes extra metadata that was available that

could be parsed out.

The raw data of the TaskBar is shown below. The binary data is one blob containing all the shortcuts

and related metadata.

Copyright © TZWorks LLC Apr 25, 2025 Page 26

4.4 Network Related Artifacts found in User Hives

• ntuser.dat\Software\Microsoft\Terminal Server Client\Servers

• ntuser.dat\Software\Microsoft\Terminal Server Client\Default\AddIns\RDPDR

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\Map Network Drive MRU

• ntuser.dat\Network\Z

• ntsuer.dat\Network\Software\Martin Prikryl\WinSCP 2\Sessions

• ntuser.dat\Network\Software\SimonTatham\PuTTY\Sessions

Example: cafae -hive user.win7.hive -network > out.txt

4.5 Volume Related Artifacts found in User Hives

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2

Example: cafae -hive user.win7.hive -volumes > out.txt

4.6 Computer Metadata Related Artifacts found in User Hives

This last subsection is just a catch-all for other useful artifacts that pertain to the computer

configuration as set by, or indirectly affected by, the user. Some of the registry keys include:

• ntuser.dat\Environment

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Desktop

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\ControlPanel

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\BitBucket\LastEnum

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\BitBucket\Volume\?*\MaxCapacity

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\Wallpaper\MRU

• ntuser.dat\Software\Microsoft\Windows NT\CurrentVersion\Windows

• ntuser.dat\Software\Microsoft\Windows NT\CurrentVersion\PrinterPorts

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\Logon User Name

• ntuser.dat\Software\Microsoft\Windows NT\CurrentVersion\Winlogon

• ntuser.dat\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Winlogon

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Explorer\ComputerDescriptions

• ntuser.dat\Software\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Compatibility Assistant

• ntuser.dat\Software\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Layers

• ntuser.dat\Control Panel\don't load

• ntuser.dat\Software\Microsoft\Windows\CurrentVersion\Internet Settings

Example: cafae –hive user.win7.hive –computer > out.txt

Copyright © TZWorks LLC Apr 25, 2025 Page 27

4.7 Persistence Related Artifacts found in User Hives

This includes a combination of a number of previous keys used for other options as well as some new

ones collected in one place to pull persistence type data.

Example: cafae -hive user.win7.hive -persistence > out.txt

 System Hive Artifacts

5.1 Timezone

• HKLM\SYSTEM\CurrentControlSet\Control\TimeZoneInformation

Example: cafae -hive system_hive -timezone > out.txt

Copyright © TZWorks LLC Apr 25, 2025 Page 28

To use the above information, one can used the following relationships:

Local Time = UTC – ActiveTimeBias
Standard Time = Bias +StandardBias
Daylight Time = Bias + DaylightBias

5.2 Devices

• HKLM\SYSTEM\CurrentControlSet\Enum

Example: cafae -hive system_hive -devices > out.txt

Copyright © TZWorks LLC Apr 25, 2025 Page 29

5.3 Shimcache

• HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\AppCompatibility\AppCompatCache

o Used for WinXP

• HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\AppCompatCache\AppCompatCache

o Used for Win2003 and beyond

Example: cafae -hive system_hive -shimcache > out.txt

The -shimcache option looks at the CurrentControlSet. To explicitly look at a specific ControlSet (eg.
ControlSet001, ControlSet002, ..), one could use the following command:

cafae -hive system_hive -key “HKLM\System\ControlSet001\Control\Session

Manager\AppCompatCache\AppCompatCache” -arg “-shim_cache”

Copyright © TZWorks LLC Apr 25, 2025 Page 30

The -key option tells cafae which key to target and more specifically which ControlSet00x to look at.

The -arg “-shim_cache” is tells cafae to use one of the internal script engine commands to parse the

value data at the key as if it were in a shim cache format.

5.4 Computer Related Artifacts found in System Hives

• HKLM\System\CurrentControlSet\Control\TimeZoneInformation

• HKLM\System\CurrentControlSet\Control\Windows

• HKLM\System\CurrentControlSet\Control\CrashControl

• HKLM\System\CurrentControlSet\Control

• HKLM\System\CurrentControlSet\Control\Watchdog\Display

• HKLM\System\CurrentControlSet\Control\FileSystem

• HKLM\System\CurrentControlSet\Control\ComputerName\ComputerName

• HKLM\System\CurrentControlSet\Control\Session Manager\Memory Management

• HKLM\System\CurrentControlSet\Control\SecurityProviders

• HKLM\System\CurrentControlSet\Control\Lsa

Example: cafae -hive system_hive -computer > out.txt

Copyright © TZWorks LLC Apr 25, 2025 Page 31

5.5 Network Related Artifacts found in System Hives

• HKLM\System\CurrentControlSet\Control\Network\{4D36E972-E325-11CE-BFC1-

08002BE10318}\?*\Connection

• HKLM\System\CurrentControlSet\Control\Network\{4d36e973-e325-11ce-bfc1-08002be10318}

• HKLM\System\CurrentControlSet\Control\Network\{4d36e974-e325-11ce-bfc1-08002be10318}

• HKLM\System\CurrentControlSet\Control\Network\{4d36e975-e325-11ce-bfc1-08002be10318}

• HKLM\System\CurrentControlSet\Services\Tcpip\Parameters\Interfaces

• HKLM\System\CurrentControlSet\Control\Terminal Server

• HKLM\System\CurrentControlSet\Control\Terminal Server\WinStations

• HKLM\System\CurrentControlSet\Control\Terminal Server\WinStations\RDP-Tcp

• HKLM\System\CurrentControlSet\Services\TermService\Parameters

• HKLM\System\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy

Copyright © TZWorks LLC Apr 25, 2025 Page 32

• HKLM\System\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\FirewallRules

• HKLM\System\CurrentControlSet\Control\Terminal Server\Wds\rdpwd

• HKLM\System\CurrentControlSet\Services\LanmanServer\Shares

• HKLM\System\CurrentControlSet\Services\LanmanWorkstation\Linkage

• HKLM\\System\\CurrentControlSet\\Control\\NetworkSetup2\\Interfaces\\{373CA98A-0E76-4A8D-97CD-

9AD7DCB8C8D8}\\Kernel

Example: cafae -hive system_hive -network > out.txt

5.6 System Restore Related Artifacts found in System Hives

• HKLM\SYSTEM\CurrentControlSet\Control\BackupRestore\FilesNotToSnapshot

• HKLM\SYSTEM\CurrentControlSet\Control\BackupRestore\FilesNotToBackup

• HKLM\SYSTEM\CurrentControlSet\Control\BackupRestore\KeysNotToRestore

Example: cafae -hive system_hive -restore > out.txt

Copyright © TZWorks LLC Apr 25, 2025 Page 33

5.7 Services Related Artifacts found in System Hives

The services are sorted by Start type. Any service without a start value is not shown in the output.

• HKLM\System\CurrentControlSet\Services

Example: cafae -hive system_hive -services > out.txt

5.8 Persistence Related Artifacts found in System Hives

• HKLM\System\CurrentControlSet\Control

• HKLM\System\CurrentControlSet\Control\BootVerificationProgram

• HKLM\System\CurrentControlSet\Control\Control\Session Manager

• HKLM\System\CurrentControlSet\Control\Lsa

• HKLM\System\CurrentControlSet\Control\NetworkProvider\Order

• HKLM\System\CurrentControlSet\Control\Print\Monitors

• HKLM\System\CurrentControlSet\Control\SafeBoot

• HKLM\System\CurrentControlSet\Control\SecurityProviders

• HKLM\System\CurrentControlSet\Control\Session Manager

• HKLM\System\CurrentControlSet\Control\Session Manager\KnownDlls

• HKLM\System\CurrentControlSet\Control\Terminal Server\Wds\rdpwd

• HKLM\System\CurrentControlSet\Services

• HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\Protocol_Catalog5

• HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\Protocol_Catalog9

Example: cafae -hive system_hive -persistence > out.txt

Copyright © TZWorks LLC Apr 25, 2025 Page 34

5.9 Background/Desktop Activity Moderator

• HKLM\System\CurrentControlSet\Services\bam\UserSettings

• HKLM\System\CurrentControlSet\Services\bam\State\UserSettings

• HKLM\System\CurrentControlSet\Services\dam\UserSettings

• HKLM\System\CurrentControlSet\Services\dam\State\UserSettings

Example: cafae -hive system_hive -bam > out.txt

5.10 All System artifacts

One can parse artifacts from a system hive using the -all_system switch.

Copyright © TZWorks LLC Apr 25, 2025 Page 35

 Software Hive Artifacts

6.1 Operating System

• HKLM\Software\Microsoft\Windows NT\CurrentVersion

• HKLM\Software\Microsoft\Windows NT\CurrentVersion\ProfileList

Example: cafae -hive software_hive -computer > out.txt

6.2 Class Identifiers (CSLIDs)

• HKLM\Software\Classes\CLSID

• HKLM\Software\Wow6432Node\Classes\CLSID

Example: cafae -hive software_hive -clsid > out.txt

Copyright © TZWorks LLC Apr 25, 2025 Page 36

6.3 In Process Servers (InProcServers)

• HKLM\Software\Classes\CLSID\?*\InProcServer32

• HKLM\Software\Wow6432Node\Classes\CLSID\?*\InProcServer32

Example: cafae -hive software_hive -inprocservers > out.txt

6.4 Codecs

• HKLM\Software\Microsoft\Windows NT\CurrentVersion\Drivers32

• HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Drivers32

• HKLM\Software\Classes\Filter

• HKLM\Software\Classes\CLSID\?*\Instance

• HKLM\Software\Wow6432Node\Classes\CLSID\?*\Instance

Example: cafae -hive software_hive -codecs > out.txt

6.5 Desktop related keys (Explorer)

• HKLM\Software\Microsoft\Driver Signing

• HKLM\Software\Microsoft\Windows NT\CurrentVersion\AeDebug

• HKLM\Software\Microsoft\RemovalTools\MRT

• HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\BitBucket

• HKLM\Software\Classes\Protocols

• HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\ShellExecuteHooks

• HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\ShellExecuteHooks

• HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\ShellIconOverlayIdentifiers

• HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\ShellIconOverlayIdentifiers

• HKLM\Software\Classes\?*\ShellEx\ContextMenuHandlers

• HKLM\Software\Wow6432Node\Classes\?*\ShellEx\ContextMenuHandlers

• HKLM\Software\Classes\?*\ShellEx\DragDropHandlers

• HKLM\Software\Wow6432Node\Classes\?*\ShellEx\DragDropHandlers

• HKLM\Software\Classes\?*\ShellEx\PropertySheetHandlers

• HKLM\Software\Wow6432Node\Classes\?*\ShellEx\PropertySheetHandlers

• HKLM\Software\Classes\?*\ShellEx\CopyHookHandlers

• HKLM\Software\Wow6432Node\Classes\?*\ShellEx\CopyHookHandlers

• HKLM\Software\Microsoft\Windows\CurrentVersion\Shell Extensions\Approved

• HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Shell Extensions\Approved

• HKLM\Software\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad

• HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad

• HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\AutoplayHandlers\Handlers

• HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution Options

• HKLM\Software\WoW6432Node\Microsoft\Windows NT\CurrentVersion\Image File Execution Options

Example: cafae -hive software_hive -explorer > out.txt

Copyright © TZWorks LLC Apr 25, 2025 Page 37

6.6 Installed Software

• HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall

• HKLM\Software\Microsoft\Windows\CurrentVersion\App Paths

• HKLM\Software\Microsoft\Active Setup\Installed Components

• HKLM\Software\Wow6432Node\Microsoft\Active Setup\Installed Components

• HKLM\Software\Classes\Installer\Products

• HKLM\Software\Microsoft\Windows\CurrentVersion\Installer\UserData\?*\Products

Example: cafae -hive software_hive -installed_sw > out.txt

6.7 EmdMgmt

• HKLM\Software\Microsoft\Windows NT\CurrentVersion\EMDMgmt

Example: cafae -hive software_hive -emdmgmt > out.txt

6.8 Shell Spawning of an Application

• HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows

• HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Windows

• HKLM\Software\Microsoft\Windows NT\CurrentVersion\Accessibility

• HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Accessibility

• HKLM\Software\Classes\Folder\shellex\ColumnHandlers

• HKLM\Software\Classes\?*\shell\?*\command

Example: cafae -hive software_hive -emdmgmt > out.txt

6.9 Run key Related Artifacts found in Software Hives

• HKLM\Software\Microsoft\Windows\CurrentVersion\Run

• HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Run

• HKLM\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce

• HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\RunServicesOnce

• HKLM\Software\Microsoft\Windows\CurrentVersion\RunServices

• HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\RunServices

• HKLM\Software\Microsoft\Windows\CurrentVersion\RunOnce

• HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\RunOnce

• HKLM\Software\Microsoft\Windows\CurrentVersion\RunOnceEx

• HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\RunOnceEx

• HKLM\Software\Microsoft\Windows NT\Terminal Server\Install\Software\Microsoft\Windows\CurrentVersion\Run

• HKLM\Software\Microsoft\Windows NT\Terminal

Server\Install\Software\Microsoft\Windows\CurrentVersion\Runonce

Copyright © TZWorks LLC Apr 25, 2025 Page 38

• HKLM\Software\Microsoft\Windows NT\Terminal

Server\Install\Software\Microsoft\Windows\CurrentVersion\RunonceEx

• HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run

• HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run

• HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\System

• HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon

• HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Winlogon

Example: cafae -hive software_hive -runkeys > out.txt

6.10 Network Related Artifacts found in Software Hives

• HKLM\Software\Microsoft\Windows NT\CurrentVersion\NetworkCards

• HKLM\Software\Microsoft\WZCSVC\Parameters\Interfaces

• HKLM\Software\Microsoft\Windows\CurrentVersion\HomeGroup\NetworkLocations

• HKLM\Software\Microsoft\Windows NT\CurrentVersion\NetworkList\Profiles

• HKLM\Software\Microsoft\Windows NT\CurrentVersion\NetworkList\Signatures

• HKLM\Software\Microsoft\MSSQLServer\Client\SuperSocketNetLib\LastConnect

Example: cafae -hive software_hive -network > out.txt

Copyright © TZWorks LLC Apr 25, 2025 Page 39

6.11 Volume Related Artifacts found in Software Hives

• HKLM\Software\Microsoft\Dfrg\Statistics

• HKLM\Software\Microsoft\Windows Search\VolumeInfoCache

Example: cafae -hive software_hive -volumes > out.txt

6.12 System Restore Related Artifacts found in Software Hives

• HKLM\Software\Microsoft\Windows NT\CurrentVersion\SystemRestore

• HKLM\Software\Microsoft\Windows NT\CurrentVersion\SPP\Clients

Example: cafae -hive software_hive -restore > out.txt

6.13 Web Browsing Related Artifacts found in Software Hives

• HKLM\Software\Microsoft\Internet Explorer

• HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects

• HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects

• HKLM\Software\Microsoft\Internet Explorer\Toolbar

• HKLM\Software\Wow6432Node\Microsoft\Internet Explorer\Toolbar

• HKLM\Software\Microsoft\Internet Explorer\Explorer Bars

• HKLM\Software\Wow6432Node\Microsoft\Internet Explorer\Explorer Bars

• HKLM\Software\Microsoft\Internet Explorer\Extensions

• HKLM\Software\Wow6432Node\Microsoft\Internet Explorer\Extensions

• HKLM\Software\Microsoft\Internet Explorer\Version Vector

• HKLM\Software\Microsoft\Internet Explorer\Extensions\?*\ButtonText

• HKLM\Software\Clients\?*\?*\Capabilities\FileAssociations

• HKLM\Software\Clients\?*\?*\Capabilities\URLAssociations

• HKLM\Software\Clients\?*\?*\shell\open\command

• HKLM\Software\Classes\HTTP\shell\open\command

Example: cafae -hive software_hive -web > out.txt

6.14 Service Related Artifacts found in Software Hives

• HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\SharedTaskScheduler

• HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\SharedTaskScheduler

• HKLM\Software\Microsoft\SchedulingAgent

• HKLM\Software\Wow6432Node\Microsoft\SchedulingAgent

• HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall\SchedulingAgent

• HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall\SchedulingAgent

• HKLM\Software\Microsoft\Windows NT\CurrentVersion\Schedule\TaskCache\Tasks

• HKLM\Software\Microsoft\Windows NT\CurrentVersion\Svchost

• HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Svchost

Copyright © TZWorks LLC Apr 25, 2025 Page 40

Example: cafae -hive software_hive -services > out.txt

6.15 Persistence Related Artifacts found in Software Hives

• All the keys from -runkeys option

• All the keys from the -shell_spawn option

• All the keys from the -inprocservers option

• A portion of the keys from the -web option

• A portion of the keys from the -explorer option

Example: cafae -hive software_hive -persistence > out.txt

6.16 All Software artifacts

One can parse artifacts from a software hive using the -all_software switch.

Copyright © TZWorks LLC Apr 25, 2025 Page 41

 Security hive Artifacts

One can parse artifacts from a security hive using the -all_security switch.

The security hive artifacts analyzed and reported on includes:

• HKLM\SECURITY\Policy\PolAcDmS

• HKLM\SECURITY\Policy\PolAdtEv

The report generated contains a breakout of the security policies that are set. Currently, this is only

readable when using it with the long (non-csv) output.

 Sam Hive Artifacts

There are 2 options to process artifacts with the SAM hive. The first just pulls the account information,

such as: (a) password reset date, (b) username, (c) encrypted password hashes, (d) lockout time (if

present), user ID, group ID, etc. These can be parsed using the -all_sam switch.

The Sam hive artifacts analyzed and reported on includes:

• HKLM\SAM\SAM\Domains\Account\Users

• HKLM\SAM\SAM\Domains\Builtin\Aliases\?*\C

Copyright © TZWorks LLC Apr 25, 2025 Page 42

• HKLM\SAM\SAM\Domains\Builtin\Aliases\Members

Below is a truncated report to show the type of user account and logon stats that are given.

The second option pulls the similar information that the -all_sam switch provides, but allows one to

decrypt the encrypted hashes. In this case, the System hive is required. This option is the -pull_hashes

option, which also uses the parameters: -sam <location of SAM hive>, and -system <location of

System hive>. Note: this option does not try to find the plain text version of the password; it just

decrypts the encrypted hash. From this decrypted hash, one can use another tool to find the plain text

of the password, if desired. Below is the type of output that is produced (verbose mode is shown).

 AmCache Hive Artifacts

One can parse artifacts from an AmCache hive using the -all_amache switch.

The AmCache hive artifacts analyzed and reported on includes:

▪ Amcache.hve\Root\File

▪ Amcache.hve\Root\Programs

▪ Amcache.hve\Root\InventoryApplicationFile

▪ Amcache.hve\Root\InventoryDeviceContainer

▪ Amcache.hve\Root\InventoryDevicePnp

▪ Amcache.hve\Root\InventoryDriverBinary

▪ Amcache.hve\Root\InventoryDriverPackage

Copyright © TZWorks LLC Apr 25, 2025 Page 43

▪ Amcache.hve\Root\InventoryApplicationShortcut

▪ Amcache.hve\Root\InventoryApplicationFramework

Some of the above artifacts depend on what version of the Windows operating system is analyzed.

 Carving Keys from hives [experimental]

10.1 Carving keys

Included with cafae are two experimental carving options: (a) -carve and (b) -carve_deleted. Both

options will work with partial or corrupted hives. The -carve option will show both good and deleted

entries, while the -carve_deleted will only display those entries that are deleted. Using these switches

will extract registry keys, their last modified timestamp and the offset where they were found.

A good example of a partial hive, are the registry logs that are used by the operating system to record

transactions before committing them to the hives. Below is an example of running this option and the

type of output it produces.

Note, that since this type of file this is really a transaction log, where only pieces of the hive blocks are

present.

10.2 Carving Values

An additional option one can use when carving keys (via the -carve or -carve_deleted), is the -vals

switch. This tells cafae to also try to extract any values it finds associated with the keys that are carved.

Running it on the same log as above yields the same keys, but will value data populated.

Copyright © TZWorks LLC Apr 25, 2025 Page 44

One can use the above switches in combination with the vssenum tool to enumerate the registry

transaction logs from the various volume shadow copies and pipe them into cafae’s carving option. The

first figure shows how to use vssenum to enumerate just the log files from volume shadow copy 1. The

second figure shows one how to chain this command to the cafae command using the -pipe and -carve

options.

Copyright © TZWorks LLC Apr 25, 2025 Page 45

If one cannot use the -pipe option, one can use the experimental -enumdir option, which has similar

functionality with more control. The -enumdir option takes as its parameter the folder to start with. It

also allows one to specify the number of subdirectories to evaluate using the -num_subdirs <#> sub-

option.

10.3 Hive Statistics

One can pull statistics from a hive or transaction log backing a hive via the -stats switch. This option

dumps some of the header information from the hive and carves out all the keys (normal keys and any

deleted keys that are found). The purpose of the key carving is to generate a histogram of the

frequency of keys modified over time. This allows a quick view into which periods of time the registry

was most and least active. The histogram time unit shows activity in 1 day increments. Below is a

sample output of analyzing the software hive transaction log.

Copyright © TZWorks LLC Apr 25, 2025 Page 46

 Merging Transactional Log files into its Associated Hive

(Experimental)

Transaction logs are used to enhance the reliability of the Windows operating system when updating the

registry files. Basically, these log files are journals that record the registry data that is to be updated

prior to the OS actually committing the final writes to the registry hive. These logs can have the

following extensions: .LOG, .LOG1 and .LOG2. The LOG1 and LOG2 extensions are when Windows is in a

dual logging mode (and applies to the newer versions of Windows) and the .LOG is when Windows is in

the single logging mode. Many times, when looking in the directory containing the hive, one will see all

three extensions present.

The terminology “dirty” can be used to designate when the hive is out of date and needs to be updated.

Conversely, the term “clean” can be used to designate that the hive has been updated and is in sync

with all the data. To determine when a registry hive is ‘dirty’ and needs to be updated from the

transaction log(s) information, one can look at either the associated hive’s checksum or the primary and

secondary sequence numbers or both. An incorrect checksum usually implies the hive is corrupted and

a mismatch of the primary and secondary sequence numbers implies the registry hive needs to be

updated with the transaction log data.

When analyzing a random transaction log, one can usually see there are multiple sequence numbers

associated with interspersed records. This is because a transaction log is constantly updated with new

information and when it runs into a space boundary uses a wrap technique to overwrite older records.

The sequence number is the indicator used to help order the information so it can be updated properly

Copyright © TZWorks LLC Apr 25, 2025 Page 47

to the appropriate hive accurately. Therefore, when updating a registry hive, the algorithm keys off the

secondary sequence number of the hive to determine which records from the log are appropriate to

accurately update the hive. Therefore, when using the merge option with cafae, the tool may

determine that no updates are required for a number of reasons: (a) the hive is clean and not dirty, or

(b) the hive is dirty, but the appropriate sequence number for updates were not found in one or more of

the log files.

To see the statistics of a hive, one can use the -stats option in cafae. This will do a number of things,

but of importance to this section, are the primary and secondary sequence numbers. If these sequence

numbers match, then there is no need to perform the merge option with cafae.

To use the merge option, it is advisable to include all log files in the command line. In this way, cafae

will be able to parse each of the log files, order all the data extracted by sequence number and only act

on those records that are appropriate for the update. Below is an example of doing this:

If the target hive is already up to date, the following message is displayed.

If the target hive is dirty and can be updated, then the following message will be displayed if the merge

is successful.

 Comparing Hives – Experimental

One of the newer options is the ability to difference 2 hives. This option is useful when trying to

determine the changes over time between an older hive snapshot with that of a newer one.

The output will only show the changes, whether they are deleted, added or modified entries. The

algorithm only looks at changes of subkeys, value names and value data. It does not look at changes in:

(a) subkey timestamp changes, (b) entries in slack space or (c) registry metadata, such deltas in offsets,

etc.

Copyright © TZWorks LLC Apr 25, 2025 Page 48

Each change is shown on a separate CSV type delimited line, identifying if there was a new subkey, value

added or modified. One can either use the -csv or -csvl2t options for output. This is particularly useful

when trying to determine the changes made to a hive prior to an installation of some software and after

the installation.

To compare a hive from two different timeframes, the syntax is -diff “hive1|hive2”. Below is an

example of running this compare option against 2 ntuser.dat hives. The output shows the ‘change type’

field as either: (a) new key, (b) new value, (c) modified value, (d) deleted key or (e) deleted value.

The first timestamp shown is the original last modified timestamp. The second timestamp in the next

field only appears if there is a modified value, and in which case, it is the timestamp associated with the

modification that took place. The ‘data’ and ‘prev data’ fields are the values for the latest data, and if it

was a modification, the previous data as well.

There are a couple of sub-options with the -diff option, and they are: -retain_order which says to the

tool to keep the ordering of the files compared in the same order passed in. Otherwise, without this

option, the tool internally tries to determine the oldest hive and put that hive first and then compares it

to the newest hive. The algorithm to determine oldest to newest is down by examining the hive’s

sequence numbers. The other sub-option is -diff_metadata, in which the output is annotated with the

name of the files compared along with their respective sequence numbers and MD5 hashes.

 Scripting cafae – Experimental

As new registry artifacts are discovered, or as certain artifacts become more important to some clients

over others, it would be nice to use cafae to just parse those new artifacts without any coding

experience.

cafae has always had an internal quasi-scripting interface that can translate specially formatted strings

to tell the engine which registry subkeys to analyze and/or which values to extract. Up until now, it just

has not been available as an option for the outside user.

The two main options include: (a) quick parse using the -key option, and (b) parsing using a user defined

template via the -cmdfile option. The first is useful when exploring the registry, while the second is

useful for repeatable analysis by running a script that has been vetted by a qualified security team.

Copyright © TZWorks LLC Apr 25, 2025 Page 49

These options are labeled as experimental for two reasons. The first is that they are geared more for

the tinkerer or reverser, and it was not meant to be used for the occasional user. The second reason is

these options will most likely to be in the beta mode for a long time. This is not because they are new,

since the internal engine has been around since the tool was created; it is because the engine is always

evolving as new requirements are generated. The main downfall of experimental options is there is less

time in the development cycle spent on checking whether various combinations of conflicting options

causes boundary conditions.

The benefit, on the other hand, is that once you create a script that extracts the data you want, in the

format you want, then it is very easy to give that to a less experienced person to pull the desired data in

a repeatable manner.

13.1 Command line Quick Parse of any Key/Value – Experimental

Before getting into User Defined Templates, the easiest way to enumerate a set of child keys, or child

values, is to use the -key option. This is useful when investigating a certain key, or set of values, that

peaks your interest and there is not a canned template to use for the parsing. To use this option, one

needs to specify the hive one wishes to operate on via the -hive <registry hive>. Then, one needs to

specify which subkey to look at via the -key <subkey to analyze>. If one wants to enumerate the

children keys, then the command would look like:

 -key <subkey to analyze> -hive <registry hive> [-enumkeys]

Below is an example of enumerating the children subkeys for the Software hive at the root of the hive.

The default behavior will sort by date and show the most recently changed entry first.

To enumerate values, one leaves off the option -enumkeys, since value enumeration is the default.

Below is an example of enumerating the values in the HKLM\System\CurrentControlSet\Services\dhcp

subkey and redirecting the output to a text file. The timestamp is from the parent subkey which is the

same for all the values, and hence, the time is the same. The ‘value name’ and ‘value data’ columns

Copyright © TZWorks LLC Apr 25, 2025 Page 50

reflect the child values. Note: when the data is binary, only the beginning chunk of hex bytes is

displayed.

For more complex queries, one can use the wildcard option within the subkey path to tell cafae to pull

subkeys that match the desired pattern. When using wildcards, the number of records returned can be

massive. For this reason, cafae offers a filter to pull only those value names you are interested in. For

example, to pull all the services, but only extract the following values: “start and imagepath” one could

issue the following command line in screen dump below. Note: the entire command needs to be on one

line. It was edited for the output below to span two lines to fit the graphic on the screen. Secondly, the

names passed into the extract option are treated as case insensitive.

By specifying a wildcard (via the ‘?*’ in the path) or the extract option, (via -extract “start |

imagepath”), a couple of things happen: (a) the script engine allows for multiple subkey names per

value data and thus annotates the output with the subkey that equates to the position of the wildcard in

the path, and (b) the sort is also adjusted to look at the subkey name and use that as opposed to the

date. The extract option also adjusts the output so each extraction name specified is now its own

separate column.

Copyright © TZWorks LLC Apr 25, 2025 Page 51

Aside from the normal name extraction, there are two reserved names for value extraction that the

script engine will interpret as special, and perform the actions in the table below.

Reserved
Name

Meaning

(unnamed) Pulls the value data for ‘unnamed’ fields

(other fields) Pulls all the other value data and groups it into one column

If you want to sort, filter, or translate the data further, one can append qualifiers to each of the

extraction names. Some of the basic qualifiers are as follows:

Qualifier Type Meaning

!KP Sort Key to sort on – sort the data on this value

!R Filter Required field – meaning value must be present to display this record

!WP Filter Wildcard – meaning name is a partial string and match would be a partial match

!TF Translate Assume data is FILETIME and translate it to time UTC

!TU Translate Assume data is Unix time and translate it to time UTC

!TO Translate Assume date is OLE time and translate it to time UTC

!BG Translate Convert bytes to GUID string

!BU Translate Convert bytes to Unicode string

!BV Translate Convert bytes to value

To take the previous example of extracting values, if one wanted to sort, on the “start” key, which has

values 0, 1, 2, 3, 4, etc, one would use the following extract phrase in the script: via -extract “start!K |

imagepath”. The ‘!K’ instructs the script engine that the value name of “start” is the key to sort on.

In some cases you want to only pull out entries that have a certain value that is populated. You can tell

the script engine to do that via the qualifier ‘!R’. Again, taking the previous example, one could say they

only want service keys that contained a start value that is populated. This would be done via the

command: via -extract “start!K!R | imagepath”. The ‘!R’ and ‘!K’ qualifiers are mutually exclusive, so

it is up to the user whether or not to keep them together. With this example, the script engine would

only pull entries that had a “start” value populated, and then sort the entries on the “start” value.

Below is an example:

Copyright © TZWorks LLC Apr 25, 2025 Page 52

The next option is the -level <number of levels to traverse> option, which specifies the number of

levels you want cafae to look before ending. Keep in mind, the more levels you look at the longer it

takes and the more memory that is required. Below is an example that traverses many shell objects and

pulls out the handler used. Notice, in addition to -level 1 option, the wildcard in the path option was

used, as well as the -extract “(unnamed)” option. The resulting output gives one all the CLSIDs of the

ContextMenuHandlers.

13.2 User Defined Templates (or cmdfiles) - Experimental

To get more sophisticated, one can wrap the command line script options into a file, which is called a

“User Defined Template”. This is simply a text file generated in notepad identifying any combination of

registry paths/keys you are interested in. Using the syntax rules, one can add comments and have

various instructions to tell cafae to parse a hive in different ways. The template can be used in

combination with other arguments passed on the command line to specify additional output formatting

instructions and which hive to operate on.

This is what we use internally to perform regression testing and to test out new artifacts before

committing them to the canned reports in cafae. While extremely useful for us, since we know its

limitations and boundary conditions, this option may prove to be premature for public release, since it is

Copyright © TZWorks LLC Apr 25, 2025 Page 53

still rough around the edges for the new user, and hence, the name experimental at the top of this

section.

Below are the guidelines and rules to use this option.

13.2.1 Template Rules

As mentioned above, the templates are just text files, so they can be generated with any text editor.

Care must be taken to ensure that extra control characters are not inserted into the template files.

Having extra control characters will negatively affect the template parsing engine. For this reason, it is

recommended that a simple text editor be used when editing a template file.

The parsing rules for these templates are as follows:

1. General Rules

a. Each line is parsed separately.

b. A line that starts with a double forward slash (eg. //) is ignored and used for comments

c. A blank line is ignored

d. Any line not satisfying rule (1b) and (1c) above is assumed to be a command

e. All command lines are in CSV format, where the separator is a comma. This applies to

commands with parameters. So if a command has a keyword and argument(s), then the

keyword is listed, then a comma, then an argument, then another comma, then the next

argument. This simple rule allows all the keywords and arguments to be separated.

2. Command Lines

Must start with the sequence: !cmd, and the entire command must be on one line.

a. The command sequence can contain the following options, using comma delimiters (in

any order):

-enumreg

-key, < registry key path of parent key to operate on>

-level, < number of levels down to evaluate from the parent key>

-enumvalues [or -enumkeys]

-sort_by_name [or -sort_by_date]

-name <name of this artifact>

b. There are many other switches that can be used, but are not published here due to the

experimental nature of them. If you would like to use templates, contact us and we can

help you generate one.

13.2.2 Mapping Template parameters to Log2Timeline Output

Copyright © TZWorks LLC Apr 25, 2025 Page 54

If using the -csvl2t option, one can map the custom commands in a template file to Log2Timeline’s

output. The following guidelines are used.

• -name <name of artifact> equates to “sourcetype” field

• -append_subkey_auto equates to “short” field. The internal script engine will look at the location of

any wildcards and use that offset as the subkey to use as its data. If no wildcards exist, then it will

see if any levels to traverse are greater than 0. If there are, then it will use the offset of last segment

of the subkey to use as its data.

• -enumvalues or –enumkeys equates to name[data] pairs in “desc” field. More discussion on how to

control which values are extracted are discussed in the next section.

• -hive <name of hive> equates to “filename” field.

• -key <registry key path> equates to “extra” field.

• -user <username> equates to “user” field. [note, the -user command is not within the template but

part of the command line options for cafae and can be used in conjunction with the -cmdfile option]

• -hostname <name> equates to “host” field. [note, the - hostname command is not within the

template, but part of the command line options for cafae and can be used in conjunction with

the -cmdfile option]

13.2.3 Template Examples

There are some differences between the command line script examples and the templates that exist in
files. As stated earlier, the line needs to be preceded by the characters: !cmd, -enumreg,. Also,
everything is comma delimited; the commands as well as the command arguments. If a command can
take multiple arguments, then the arguments need to be delimited with a pipe character. Finally, you
should not to hardcode the -hive <path to registry hive> as part of the template command. That
portion of the information will come from the command line directly and will be more important when
you pipe in multiple hives for cafae to process.

Below are some examples of various commands that can be used in a template:

13.2.3.1 Example 1: Pull Services

// Pull services that have a start key

!cmd, -enumreg, -key, HKLM\SYSTEM\CurrentControlSet\Services\, -enumvalues, -extract,

Start!R!K | Type | ImagePath | ServiceDll, -level, 2, -comment, Services with start

key, -append_subkey_auto

13.2.3.2 Example 2: Pull Mounted Devices (using a custom option designed for Mounted

Devices)

// using the generic options

!cmd, -enumreg, -key, HKLM\SYSTEM\MountedDevices\, -enumvalues, -comment, Mounted

Devices

Copyright © TZWorks LLC Apr 25, 2025 Page 55

// using a custom option designed for the Mounted Devices data.

!cmd, -enumreg, -key, HKLM\SYSTEM\MountedDevices\, -enumvalues, -comment, Mounted

Devices, -mounted_devices

13.2.3.3 Example 3: Pull many of the Shell spawning entries
!cmd, -enumreg, -key,

HKLM\SOFTWARE\Classes\?*\Shell\?*\Command, -enumvalues, -extract,

(unnamed)!R, -comment, Shell spawning entries

Once the command is generated and saved as a text file, one can invoke the template file via the

command:

 cafae -hive <location of registry hive> -cmdfile <path of file>

 Converting Segmented CSV formats into Database Friendly Formats

When running cafae to pull many artifacts from a hive into one results file, the CSV output will vary

depending on artifact that is processed. While the -bodyfile and -csvl2t formats will preserve the CSV

structure, the default CSV output will show the results as segmented CSV sections. Each CSV section will

represent a different artifact type. This can create problems when trying to import the cafae results into

other databases for analysis.

To solve this problem, one can use the csvdx tool to take the segmented CSV results (or any CSV results)

and convert the artifact output it into either JSON or SQLite. See the csvdx webpage

(https://tzworks.com/prototype_page.php?proto_id=34) and/or user guide

(https://tzworks.com/prototypes/csvdx/csvdx.users.guide.pdf).

 Handling Corrupt Hives

There are cases when one will come across corrupt hives or be able to partially reconstruct a hive from

another tool. One case where this happens frequently is the reconstruction of hives from a memory

capture (reference the Volatility plugin dumpregistry). In some cases, the desired hive(s) can be

reconstructed. In other cases, however, the desired hive(s) may have portions of the data paged out

(eg. not in memory, but only on disk) at the time of the memory dump. In these cases, the

reconstruction of the hive(s) would be incomplete and can cause registry parsers to crash. While we

continue to strive to make cafae handle corrupt hives, there are always boundary conditions that come

up. Having said that, if any corrupt hives cause cafae to crash, please send them to us so we can

improve the robustness of cafae in this area.

https://tzworks.net/prototype_page.php?proto_id=34
https://tzworks.net/prototypes/csvdx/csvdx.users.guide.pdf

Copyright © TZWorks LLC Apr 25, 2025 Page 56

 List of Options

Option Extra Description

-hive
Use this option to specify which hive to process artifacts from. Syntax is -hive

<hive file>

-livehives List the local user hives available on the target machine.

-pull_hashes *

Given a SAM and SYSTEM hive via the options -sam <hive> and -system <hive>

will extract the encrypted hashes and decrypt them. Doesn't try to compute

the text password, but only shows the unencrypted hashes of the password.

Syntax is -pull_hashes -sam <hive> -system <hive>

-showkeys *

Display the registry keys extracted using the specified option. Syntax is

-showkeys [artifact option]

-showcmds *

Display the internal script used for the specified option. Syntax is

-showcmds [artifact option]. This can assist users in developing their own

custom scripts by seeing how we have used the internal scripting engine.

-all_software
Extract all software unique artifacts. Applies to the software hive.

-all_system
Extract all system unique artifacts. Applies to the system hive.

-all_security
Extract all security unique artifacts. Applies to the security hive.

-all_amcache

Extract all AmCache unique artifacts. Applies only to Win 8 and later

-all_sam

Extract all SAM unique artifacts.

-stats *
Experimental option. Quick view of registry stats including histogram of activity

-scan_size *

Scans registry entries locating those that are at or above a specified threshold

size. The syntax is -scan_size <minimum size>.

-scan_entropy *

Scans registry entries locating those that have an entropy value that is specified

or higher. Values above 80 through 95 yield useful results to give an indication

which entries have randomized data in them (which can either imply

compression or encryption, among other formats). The syntax is -scan_entropy

<percent entropy>.

Copyright © TZWorks LLC Apr 25, 2025 Page 57

-carve
*

Experimental option. Given any hive or partial hive, this option will try to

extract keys. Useful option if the hive is corrupted. If desiring to extract values

as well, use the -vals switch in conjunction with the option.

-carve_deleted
*

Experimental option. Given any hive or partial hive, this option will try to

extract all deleted keys. If desiring to extract values as well, use the -vals

switch in conjunction with the option.

-merge *

Experimental. Takes one or more log files and merges them into associated

base hive. The syntax is -merge "<log1>|<log2>" -hive <orig hive> -out

<new_hive>. Algorithm checks to ensure log files have the proper sequence

number entries available prior to merging.

-diff *

Experimental. Takes 2 or more hives and diffs them outputting the delta

changes. The syntax is -diff "hive1|hive2". Internally, this option will try to

compare the oldest hive to the latest hive. If that is not desired, one can force

the order of comparison by using the sub-option -retain_order. Sub-options

allowed for formatting the output include: -csv and -csvl2t. If wishing to see

which files are being compared with their sequence numbers, use the sub-

option: -diff_metadata.

-key *

Experimental option that allows the user to parse a specified registry subkey

path from a specified hive quickly. Since this option has a number of nested

options, and consequently allows one to specify many options at once, cafae

may become unstable, depending if various options are passed into it that are

in conflict. Also, since this is still beta, the format most likely will change in

future releases. The intent is to allow one to enumerate the child values or

keys. The default is to enumerate values. To enumerate keys, use the option [

-enumkeys]. The -level switch allows one to go zero or more levels deep. The

default is 0 levels (which means, just the first level). The [-extract

“val1|val2|...|valN”] option allows one to specify which value names to extract

to the output. The syntax is –key <subkey path> -hive <reg hive> [-enumkeys]

[-level <#>] [-extract "arg1 | arg2 | ... | argX"]

-cmdfile
*

Option that allows the user to customize which registry artifacts to extract as

well as which fields to output. The syntax is -cmdfile <filename>.

-csv

Outputs the data fields delimited by commas. Since filenames can have

commas, to ensure the fields are uniquely separated, any commas in the

filenames get converted to spaces.

Copyright © TZWorks LLC Apr 25, 2025 Page 58

-csvl2t Outputs the data fields in accordance with the log2timeline format.

-bodyfile

Outputs the data fields in accordance with the 'body-file' version3 specified in

the SleuthKit. The date/timestamp outputted to the body-file is in terms of

UTC. So if using the body-file in conjunction with the mactime.pl utility, one

needs to set the environment variable TZ=UTC.

-base10
Ensure all size/address output is displayed in base-10 format vice hexadecimal

format. Default is hexadecimal format.

-username
Option is used to populate the output records with a specified username. The

syntax is -username <name to use>.

-hostname
Option is used to populate the output records with a specified hostname. The

syntax is -hostname <name to use>.

-userstats
Pulls username account information from hive [ntuser.dat only] and populates

output with the extracted username.

-pipe

Used to pipe files into the tool via STDIN (standard input). Each file passed in is

parsed in sequence.

-enumdir
* Experimental. Used to process files within a folder and/or subfolders. Each file

is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs <#>.

-filter *

Filters data passed in via STDIN via the -pipe or -enumdir options. The syntax

is -filter <"*.ext | *partialname* | ...">. The wildcard character '*' is

restricted to either before the name or after the name.

-no_whitespace
Used in conjunction with -csv option to remove any whitespace between the

field value and the CSV separator.

-notrunc *

The default behavior is to truncate large datasets and only show the first part

of the data (applies to binary data). If you want change the default behavior,

then use this option to not use any truncation. Doing this, however, may not

render your data in a usable format.

-csv_separator

Used in conjunction with the -csv option to change the CSV separator from the

default comma to something else. Syntax is -csv_separator "|" to change the

CSV separator to the pipe character. To use the tab as a separator, one can use

the -csv_separator "tab" OR -csv_separator "\t" options.

-dateformat Output the date using the specified format. Default behavior is -dateformat

Copyright © TZWorks LLC Apr 25, 2025 Page 59

"yyyy-mm-dd". Using this option allows one to adjust the format to mm/dd/yy,

dd/mm/yy, etc. The restriction with this option is the forward slash (/) or dash

(-) symbol needs to separate month, day and year and the month is in digit (1-

12) form versus abbreviated name form.

-timeformat

Output the time using the specified format. Default behavior is

-timeformat "hh:mm:ss.xxx" One can adjust the format to microseconds, via

"hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no

fractional seconds, via "hh:mm:ss". The restrictions with this option is a colon

(:) symbol needs to separate hours, minutes and seconds, a period (.) symbol

needs to separate the seconds and fractional seconds, and the repeating

symbol 'x' is used to represent number of fractional seconds. (Note: the

fractional seconds applies only to those time formats that have the appropriate

precision available. The Windows internal filetime has, for example, 100 nsec

unit precision available. The DOS time format and the UNIX 'time_t' format,

however, have no fractional seconds). Some of the times represented by this

tool may use a time format without fractional seconds, and therefore, will not

show a greater precision beyond seconds when using this option.

-pair_datetime *
Output the date/time as 1 field vice 2 for csv option

-quiet
Don’t show the progress in the output

-all_controlsets *

If processing a system hive, this option will tell cafae to look at all the

ControlSets versus just the default ControlSet (called the CurrentControlSet).

 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

Copyright © TZWorks LLC Apr 25, 2025 Page 60

17.1 Limited versus Demo versus Full in the tool’s Output Banner

The tools from TZWorks will output header information about the tool's version and whether it is

running in limited, demo or full mode. This is directly related to what version of a license the tool

authenticates with. The limited and demo keywords indicates some functionality of the tool is not

available, and the full keyword indicates all the functionality is available. The lacking functionality in the

limited or demo versions may mean one or all of the following: (a) certain options may not be available,

(b) certain data may not be outputted in the parsed results, and (c) the license has a finite lifetime

before expiring.

 References

1. yaru - Yet Another Registry Utility, www.tzworks.com
2. sbag - ShellBag Parser, www.tzworks.com
3. MiTec Registry Analyzer, by Allan S Hay, 12/2004
4. SANs Institute. Forensics 408 course (Jan 2010)
5. Windows Registry Forensics, Advanced Digital Forensic Analysis of the Windows Registry, by Harlan

Carvey, Syngress, 2011
6. Various MSDN articles
7. SleuthKit Body-file format, http://wki.sleuthkit.org
8. Log2timeline CSV format, http://log2timeline.net/
9. UserAssist focus time and count, reference: http://zoltandfw.blogspot.com/2012/10/userassist.html

http://wiki.sleuthkit.org/index.php?title=Body_file
http://wki.sleuthkit.org/
http://log2timeline.net/
http://zoltandfw.blogspot.com/2012/10/userassist.html

	1 Introduction
	2 Location of Hives
	3 How to use cafae
	3.1 Volume Shadow Copies

	4 Example User Hive Artifacts that are Extracted and Parsed
	4.1 Metadata Associated with Running a Program
	4.1.1 Open -> Run Dialog
	4.1.2 UserAssist Key
	4.1.3 ProgramsCache Key
	4.1.4 MUICache Key
	4.1.5 Run Key and Miscellaneous Applications
	4.1.6 FeatureUsage

	4.2 Metadata Associated with Viewing/Opening/Editing Files
	4.2.1 Recent Documents and Associated Keys
	4.2.2 JumplistData Key
	4.2.3 StreamMRU Key
	4.2.4 Open -> Save Dialog
	4.2.5 Keys Associated with Office Documents
	4.2.6 OpenWithList Key
	4.2.7 ShellBag Keys

	4.3 Metadata Associated with Searching/Browsing
	4.3.1 Search History
	4.3.2 TypedURLs Key
	4.3.3 Favorites Key

	4.4 Network Related Artifacts found in User Hives
	4.5 Volume Related Artifacts found in User Hives
	4.6 Computer Metadata Related Artifacts found in User Hives
	4.7 Persistence Related Artifacts found in User Hives

	5 System Hive Artifacts
	5.1 Timezone
	5.2 Devices
	5.3 Shimcache
	5.4 Computer Related Artifacts found in System Hives
	5.5 Network Related Artifacts found in System Hives
	5.6 System Restore Related Artifacts found in System Hives
	5.7 Services Related Artifacts found in System Hives
	5.8 Persistence Related Artifacts found in System Hives
	5.9 Background/Desktop Activity Moderator
	5.10 All System artifacts

	6 Software Hive Artifacts
	6.1 Operating System
	6.2 Class Identifiers (CSLIDs)
	6.3 In Process Servers (InProcServers)
	6.4 Codecs
	6.5 Desktop related keys (Explorer)
	6.6 Installed Software
	6.7 EmdMgmt
	6.8 Shell Spawning of an Application
	6.9 Run key Related Artifacts found in Software Hives
	6.10 Network Related Artifacts found in Software Hives
	6.11 Volume Related Artifacts found in Software Hives
	6.12 System Restore Related Artifacts found in Software Hives
	6.13 Web Browsing Related Artifacts found in Software Hives
	6.14 Service Related Artifacts found in Software Hives
	6.15 Persistence Related Artifacts found in Software Hives
	6.16 All Software artifacts

	7 Security hive Artifacts
	8 Sam Hive Artifacts
	9 AmCache Hive Artifacts
	10 Carving Keys from hives [experimental]
	10.1 Carving keys
	10.2 Carving Values
	10.3 Hive Statistics

	11 Merging Transactional Log files into its Associated Hive (Experimental)
	12 Comparing Hives – Experimental
	13 Scripting cafae – Experimental
	13.1 Command line Quick Parse of any Key/Value – Experimental
	13.2 User Defined Templates (or cmdfiles) - Experimental
	13.2.1 Template Rules
	13.2.2 Mapping Template parameters to Log2Timeline Output
	13.2.3 Template Examples
	13.2.3.1 Example 1: Pull Services
	13.2.3.2 Example 2: Pull Mounted Devices (using a custom option designed for Mounted Devices)
	13.2.3.3 Example 3: Pull many of the Shell spawning entries

	14 Converting Segmented CSV formats into Database Friendly Formats
	15 Handling Corrupt Hives
	16 List of Options
	17 Authentication and the License File
	17.1 Limited versus Demo versus Full in the tool’s Output Banner

	18 References

