TZWorks® CSV Data eXchange
(csvdx) Users Guide

Abstract
csvdx is a standalone, command-line tool that takes a file

that has delimited data (such as a CSV file) and allows one
the option to convert it into HTML, JSON, or SQLite format.
csvdx understands the unique headers produced in other
TZWorks® tools to ensure maximum data retention during
the conversion. There are compiled versions for Windows,
Linux and macOS.

Copyright © TZWorks LLC
www.tzworks.com

Contact Info: info@tzworks.com
Document applies to v0.43 of csvdx
Updated: Apr 25, 2025

http://www.tzworks.net/
mailto:info@tzworks.net

Table of Contents

1

5

INEFOAUCTION ettt ettt et e bt e s bt s ae e et e et e e bt e sbeesaee st e eabeenbe e beeaneesneeennean 2
1.1 Handling CSV Data in its VarioUs FOIMSuuiiiiciiiieiccieie e ccieee et e e et e e ssiere e e eavae e e seaaaeeesennneeeean 2
1.2 Extra Data in the Output of TZWOrKS TOOIS.....cccuiiiiiiiiieecciiie ettt e e s saaee e 4
13 Handling Delimiters in the Raw Field Data........ccceeiviiiieiiiiiiie e 4
1.4 HandliNg Large CSV FilES....uuuiiiiiiiiieicciiie ettt s et e ettt e e stae e e st e e e s ntae e e sntaeaesnsaeeeennsseeeens 5

HOW T0 USE CSVAX ittt ettt st ettt e bt e s bt e st e s bt e be e beesbeesmeeeneeeneean 6
2.1 Manipulating the CSV Data......cccuuiii ittt ettt e et e e e eata e e e s eata e e e earaeeeeeasaeeeesnneeeanan 7
2.2 L Y1 O 10 o T | PPNt 7
2.3 JSON OUEPUL ettt et et e e et e e et e e e e e e e e et et s eeeseeesesesesesaseseseeeeeees 9
2.4 SQLITE OUELPUL 1ottt et e e e e e e s sbb bt et e e e e s ssssbsbeaaeeeesesassssnaaeesesesasnsnns 9

2.4.1 SQLitE DEPENUENCIES ..veeiieeiiiieieiiiee ittt e ettt e sttt e e e sebte e e e s sbteeesssbteeeessteeesssseaeeesssseessssseneessnses 10

2.4.2 Schema of the SQLite Databaseccceiiiriiiiiiiieee e 10

2.4.3 Combining Multiple CSV files into one Database..........cccccveeeeeciieeicciiiee et 11

2.4.4 Converting the SQLite Output into Meaningful CSV filescccvveeiviiiiiieciiee e 13
2.5 Splitting a CSV file into SEParate FileS ... 14

JN Y] o] 1S @14 [o -3 PP 17
3.1 LCTT =T | IO 4o o TRt 17
3.2 CSV SPECITIC SUD-OPTIONS...ciiiiiii ettt e et e e ette e e e e ette e e e ebteeeeebteeeeessneaeesraneesnnes 18
33 SQLite SPECIfic SUD-OPTIONS.....uiiiieiiiie ettt e et e e e e stte e e e ebteeeeebteeeeebseeaeesreeaeennes 19

Authentication and the LICENSE Fil......c..oouiiiiiiiiiieee e 20
4.1 Limited versus Demo versus Full in the tool’s Output Bannercccoecvveeeecieeeeecieeeeecieee s 20

REFEIEINCES ..ttt et st sttt b e bt e s be e she e s et e et e et e e sb e e sseesanesanesane e reennes 20

Copyright © TZWorks LLC Apr 25, 2025 Page 1

TZWorks® CSV Data eXchange (csvdx) Users
Guide

Copyright © TZWorks LLC
Webpage: http://www.tzworks.com/prototype_page.php?proto_id=34
Contact Information: info@tzworks.com

1 Introduction

csvdx is a command line, support tool that converts delimited data (such as CSV data) into other
formats. Currently csvdx supports conversion to: (a) HTML table data, (b) JSON format, and (c) a SQLite
database. These formats are useful if desiring to: (a) displaying the data in other viewers (b) importing
the original delimited data to other databases, or (c) just trying to merge similar artifacts together.
Pictorially the functionality of csvdx is shown below:

<various opts> a; Modify CSV
!{__ﬂ properties
-csv_to_htmi ak View results
in a browser
-csv_to_json Importto a
a JSON SIEM database
N\
(E S g s a‘ Quick analysis
Files with delimited output (sQtite and/or merging
(~csv, -csvi2t, -bodyfile) 3 te lik
-split_into_files EpaaLe ik
> | r&F artifacts into their
gVl ownCsVfile

1.1 Handling CSV Data in its Various Forms

CSV stands for Comma Separated Values. However, in this document, the term CSV will also be used to
refer to other delimiters as well, such as tab delimited, pipe character delimited, etc. Currently, csvdx
can handle the following delimited data:

a. Comma character

Copyright © TZWorks LLC Apr 25, 2025 Page 2

mailto:info@tzworks.net

b. Pipe character
c. Tab character

In addition to the delimiter, one needs to take into account the end of line (EOL) character(s) — called
here as the EOL symbol. It is this EOL symbol that distinguishes between one record and another record.
Unfortunately, the EOL symbol can vary depending on which operating system the CSV file was
generated on. Below are the types of EOL symbols used, based on operating system type.

Operating System EOL name EOL Abbreviation EOL character(s)
Unix & macOS Line Feed LF 0x0a

Windows Carriage Return / Line Feed CRLF 0x0d Ox0a
Older Mac (0S 9) Carriage Return CR 0x0d

For both the field delimiter and EOL symbol, csvdx can recognize the type of delimiter and EOL symbol,
on the fly, when reading the CSV file.

Finally, the last nuance is the handling the actual text format of the CSV file. Original csvdx was designed
to parse UTF-8 formatted CSV files, but later starting with v.0.18 can handle UTF-16 formatted files as
well. This assumes, however, that the UTF-16 formatted file is using a Byte Order Mark (BOM) of Oxff,
Oxfe at the start of the document. This particular BOM is for little endian UTF-16. csvdx will look at the
header bytes of the document and if a BOM is present will adjust accordingly to its parsing. Currently
csvdx cannot handle BOM for UTF-16 big endian or those for UTF-32.

Copyright © TZWorks LLC Apr 25, 2025 Page 3

1.2 Extra Data in the Output of TZWorks Tools

The default behavior for tools built by TZWorks is to generate a banner at the top of the file before
proceeding with any delimited data. This data contains some additional information that can be useful,
if retained, when converting the delimited data to another format. Information such as: (a) the
command line options used to parse the original artifact, (b) the timestamp when the parsing was done,
(c) the license /organization that conducted the parsing, and (d) which version of the tool was used.
csvdx reads this banner data and subsequently embeds it to the converted format so it is preserved.

The other, non-standard CSV data that may be present in TZWorks® tools is when processing differing
artifact types and storing the results in one CSV file. In these cases, the differing artifacts may have
different columns which correspond to the different fields of artifact being processed. Good examples
of this are when processing registry data via cafae or processing event logs with evtwalk. In both cases,
the resulting CSV file will have multiple CSV sections. To handle this, csvdx looks at the banner data and
adjusts the parsing logic based on the tool (which is recorded in the banner) that was used to generate
the CSV file. When using the SQLite option to store the artifact data from the CSV file, the banner data
will allow csvdx to break the data out by artifact within the SQLite database. One can later separate out
each individual artifact type using the -artifact_tables option, which is discussed later in this guide.

If, on the other hand, there is no banner information, but just delimited data, then csvdx will use the
first delimited line as the header and treat the rest of the delimited lines as records. This implies, also,
that if the delimited data is mixed and disjointed with varying fields, csvdx will yield unpredictable
results.

1.3 Handling Delimiters in the Raw Field Data

One of the issues with CSV formats is that the delimiter used to separate the fields may actually be in
the raw field data itself. The result of this is the record appears to have more fields than the number of
column headers and the data is shifted as a result of the extra delimiters. The rules, csvdx uses to
handle this type of situation, is as follows: (a) the number of delimiters is determined by the number of
of column headers, (b) if any records following the header record have more delimiters than the header
record, the extra fields (from the perspective of the csvdx) are combined together into an overflow field.
The intent here is to try to preserve all the data, but limit the disruption to the record by adding one
overflow field. For those cases where a record has less delimiters than the header record, then csvdx
treats this as a possible record that had a EOL symbol embedded into one of its fields. To try to correct
this, csvdx will read the next record and see if it can logically reconstruct the broken record into one. It
determines this by adding the number of delimiters between the 2 records, and seeing if, by combining
them together, they total the number of delimiter in the header record. If so, then they are combined;
if not, then it is outputted as a broken record.

Copyright © TZWorks LLC Apr 25, 2025 Page 4

1.4 Handling Large CSV Files

The final concern with creating a tool to convert CSV files into another format is the issue of handling
very large CSV files. Processing artifacts from some of the 64 bit operating systems and their ability to
handle very large files and large storage devices can yield some hefty output files that would be need to
be handled. A good example is looking at event logs from a Win7 box on up. Eventlogs can yield 4 GB
of data easily and can be the norm on some systems that care about logging many things. To handle
very large files, csvdx has been designed to read input files in chunks and processing them on a chunk by
chunk basis. This approach allows csvdx to handle very large CSV files.

Copyright © TZWorks LLC Apr 25, 2025 Page 5

2 How to Use csvdx
Below is a screen shot of the command line menu. This shows all the options in summary form.

2. Administrator: Windows PowerShell

Usage

csvdx -src <file> -dst <file> -csv_to_html = convert CSV to HTML
csvdx -src <file> -dst <file> -csv_to_json [-flat] convert CSV to JSON
csvdx -src <file> -dst <file> -csv_to_sqglite convert CSV to SQLite
csvdx -src <file> -dst <dir> -split_into_files split artifacts by file
csvdx -src <file> [-dst <file>] [CSV Cleanup/Modifiy Options]

CSV Cleanup/Modify Options:
-no_whitespace = remove whitespace
-pair_fields "1:2, 3:4, ..’ = group fields together
-align_cols = format CSV w/ spacing
-change_csv_separator "|" = modify the csv separator

JSON Option:
-flat 1 line per entry and no header info

Converting back to CSV from SQLite DB created by csvdx:
csvdx -src <srcdb> -dst <dir> -sqlite_to_csv <table> = reverse -csv_to_sqlite

SQLite utils (note: source file is the SQLite db):

csvdx -src <srcdb> -dst <dir> -artifact_tables = outputs to specified dir
csvdx -src <srcdb> -metadata_records = outputs to the screen
csvdx -src <srcdb> -ref_records = outputs to the screen

Generic Options:
-pipe pipe files into csvdx for processing
-quiet = don't display status during run
-filter <*partial*|*.ext> filters stdin data from -pipe option
-no_header_info = not parsing a CSV file with a TZWorks banner

For all options, a source file must be specified to operate on, via the -src switch. The output can either
be sent to another file via the -dst switch or to the screen (without the -dst switch). The main options
are -csv_to_[json | sqglite | html].

If not desiring to change the CSV, to some different format, one can retain the delimited nature, and just
modify some of the CSV properties, via the CSV Cleanup/Modify options. These include:

(a) -no_whitespace, to remove any spaces around the delimiters, (b) -pair_fields, to combine 2 fields
in the original CSV data into one field, (c) -align_cols, to space out the fields so they are better aligned
for readability in a text editor, and (d) -change_csv_separator, to change the existing field separator to
something else.

If SQLite is the desired conversion, there are other options that can be used. Since csvdx dynamically
creates tables on the fly based on each unique CSV field set, one can pipe in multiple CSV files into one
SQLite database, via the -pipe option. Each CSV file can represent a separate forensic artifact, and the
piping operation will retain the uniqueness of the CSV artifact data across files. More information

Copyright © TZWorks LLC Apr 25, 2025 Page 6

about the SQLite format and what can be done from then on is discussed in the section under SQLite
data.

If one cannot use the -pipe option, one can use the experimental -enumdir option, which has similar
functionality with more control. The -enumdir option takes as its parameter the folder to start with. It
also allows one to specify the number of subdirectories to evaluate using the -num_subdirs <#> sub-
option.

2.1 Manipulating the CSV Data

If one is given a CSV file that has formatting properties that need to be changed, csvdx offers 4 possible
options to modify the CSV file via the following switches:

1. -no_whitespace to remove all white space (space and tabs) between the field values and CSV
separators. This is the same option available in most TZWorks® tools.

2. -pair_fields “<field1>:<field2>" to merge two separate fields into one field. Where one may
want to do this is when one field is the date field and another field is the time field, and what is
desired is one field containing both the date and time. If the date field is at position 1 and the
time field is at position 2, the command -pair_fields “1:2” will merge the date and time
(separated by a space) into one field.

3. -align_cols to put spaces in between field data and the delimiters. This purpose here would be
to align all the data, so that the CSV output is easy to read with notepad or some other text
viewer.

4. -change _csv_separator “|”to change the existing CSV delimiter to something else. What this
option does under the covers is if using either a pipe character or a comma character, it will be
able to do the modification while preserving the CSV format, even if the raw data in the fields
contain the resulting delimiter. It does this by scanning all the raw field data and takes the
following actions: (a) if the resulting delimiter is a pipe character and if a pipe character is found
in the data, the pipe character in the raw field data will be changed to a semicolon, and (b) if the
resulting delimiter is a comma, and if a comma is found in the data, the comma in the raw field
data will be changed to a space.

For all options above, the CSV output is sent to standard output, unless using the -dst <results file>
option, where it be sent to the specified file. If using the piping option (-pipe), to read in multiple CSV
files in succession, then the -dst <results folder> needs to be used to specify the directory to put all the
modified files. For this latter case, the names of the resulting CSV files will be the same names but put
in the folder specified by the -dst option.

2.2 HTML Output

When converting from CSV data to a HTML table format, use the -csv_to_html option and either
redirect the output to a file or use the -dst <result file> option. Below is an example of a CSV file

Copyright © TZWorks LLC Apr 25, 2025 Page 7

generated by cafae on the left, and the resulting HTML that is generated on the right. Notice the
differing artifacts in the original CSV file are ported over to their respective HTML table, and the banner

information is converted as well.

cQcn ds authanticarad £

License #1d0bd09d075
run time: 07/30/2015
"ecmdline: cafae64 -h

Starting CSV file

artifact| userinfo |
i

Registry Re

cafae - full ver: 0.31; copyright (c) Tzv’»ilorks LLC
0

TZ644X-W7

r business ug

user\win8. db]

of f1ice\Commor]

Run stats - -
Resulting HTML file
Tool: cafge - ver: 0.31
License: 21d0bd05d075cS9c0 - Dave T; TZWorks
Runtime: 07/30/201S 18:27:5€ (UIC)

User input: cafaze€d

reg date [UTC],subkey,value name,value data
09/27/2013 03:04:53.337,Common\Smart Tag,mig
09/23/2013 19:17:

reg date [uTc].modif; date [u
10/23/2013 03:22:30.785,10/23/20
10/23/2013 03:22:30.785,10/23/2013

sess,run,fo
RN03:09:22.
:58:52.

52.102,Common\UserInfo,Company,

09/23/2013 19:17:52.102,Common\UserInfo,UserName,Donald §|
09/23/2013 19:17:52.102,common\UserInfo,uUserInitials,DB
09/23/2013 19:17:52.102,Common,UID,7a bl c2 12 22 53 c1 4
09/23/2013 19:17:52.102,Common,UserName,Donald

Artifact

Registry Key: user . datggoftware\Microsoft\windows\Currg

ratedsitvalug

cus cnt,focug
665,0,1,4,34(
503,0,5,8,539

~hive e:\testcase\hives\ntuser\win€.dblake.NIUSE]

Command to convert to

HTML

Copyright © TZWorks LLC

UserInfo
reg date [UTC] subkey value name value data
272013
o ‘T::;"m“ Smart || igratedBitValues || 01 0000 00
?gi: g? 1130, Common/Userlnfo || Company
gy Common/Userlnfo || UsesN Donald Blak
19:17-52.102 mmon UserInfo serName nald Blake
RIS
?g;fge 1190.. Common/Userlnfo || UserInitials DB
09/23/2013 7ablc2122253¢cl 4
19:17:52.102 Comch. 9 Ocel152beasald
Donald
UserAssist
reg date || modify date focus || focus %
[CTC) [v1C) sess|run||" o SRS subkey
10232013 1(10232013 I Iy |4 340203 ngggffscn..acs_.
03:22:30.785 || 03:09:22.665 e i
9926F41749EA}/coun
237013 AR {CEBFF5CD-ACE2-
(l)?':'i‘:gl:SS (1,9_38,3915’03 0 5 8 539329 4F4F-9178-
s el 9926F41749EA}/coun|
[| — 2

Apr 25, 2025

Page 8

2.3 JSON Output

When converting from CSV data to JSON format, use the -csv_to_json option and either redirect the
output to afile or use the -dst <result file> option. Below is an example of a CSV file generated by
cafae on the left, and the resulting JSON file that is generated on the right. Notice the differing artifacts
in the original CSV file are ported over to their respective JSON array, and the banner information is

converted as well.

cafae - full ver: 0.31; copyrlght (c) Tzworks LLC
License #1d0bd09d075¢ar0 i< authanricarad for business ug

run time: 07/30/2015 - ’ TZ644X-W7
Starting CSV file d

cafae - ver: 0.31",

"#1dobdo9do75cacd Resulting JSON output
7/30/2015 18:27

"cafae64 -hive e:/testcase/hives/ntuser/wing

"tool":
"license"
"runtime”:

"userinfo" i [

"cmdline: cafae64 -h ruser\wins. db
Artifact| userinfo

Registry 5 Tdat\software\Microsoft\office\Commoy
reg date [uTc], subkey value name,value data
09/27/2013 03: 04:53.337 common\smart Tag,migratedsitvalug
09/23/2013 19:17:52.102,Common\UserInfo,Company,
09/23/2013 19:17:52.102,Common\uUserInfo,userName,Donald H
09/23/2013 19:17:52.102,Common\UserInfo, userIn1t1a1s DB
09/23/2013 19:17:52.102.Common,UID.7a bl €2 12 22 53:¢14
09/23/2013 19:17:52.102,Common,UserName,bonald

Artifact

Registry K

reg date [UTC].modif; date [uTC[Negss,run,focus cnt,focud
10/23/2013 03:22:30.785,10/23/2013™8 ‘09:22.665.0.1 4,344
10/23/2013 03:22:30.785,10/23/2013 027%§:52.503,0,5,8,539

csvdxb64 —src win8.dblake.ntuser.csv

Command to convert to JSON

2.4 SQLite Output

>sv_to_json >

:

1
g date [UTC] 09/21/2013 03:04:53.337",
key common/Smart Tag",
m1grated81tvalues 3
01 00 00 00"
"ntuser. dat/software/microsoft/offic

va1ue name"
"value data”
"Registry key

e

g date [UTC] "09/23/2013 19:17:52.102",
cammon/userInfo".

va1ue name’ “Company",

"value data": ""

"Registry key"' "ntuser. dat/software/Microsoft/offid

JfWMWw&
y o '

B |
H PRV 2, .G S0TT/01 71y

3.
{

~09/23/2013 19:17:52.102",
out .txt)

"Registry key": "ntuser.dat/software/Microsoft/offid

[

reg date [utc]l”
1fy Qate [UTC]

"10/23/2013 03:22:30.785",
: "10/23/2013 03:09:22.665",
sess

“run”: "1

"focus cnt” "4",

"focus msec ‘340203"

'Subkey > {CEBFFSCD ACEZ 4F4F-9178- 9926F41749€A}/c0
"item name": "E: /FTK Imager /FTK Imager.exe'

"Registry key 'ntuser. dat/sof tware/Microsoft/windd

reg date [utC]"”
1fy date [UTC]

10/23/2013 03:22:30.785"
: "10/23/2013 02:58:52. 503"

“*sess™s "0",
"run” ugn
focus cnt” "8"

“focus msec "5§9329",

When converting from CSV data to SQLite format, use the -csv_to_sqlite option and specify the SQLite

database to be created via the -dst <SQLite db> option.

Below is a tree-view break out of the

database that was generated from parsing data from a CSV file from cafae. For each artifact that is

found in the CSV data, a unique table is dynamically generated for that specific artifact. There are a few

functions that should be of note: (a) csvdx has the ability to detect similar artifacts and insert into an

existing artifact table if already generated, (b) on subsequent runs of csvdyx, if using an existing SQLite

Copyright © TZWorks LLC ,

Apr 25, 2025

Page 9

database that was generated originally from csvdx, the artifacts will be merged into the appropriate like-
artifact tables, and (c) on subsequent runs of csvdx, one can use completely different CSV tool outputs
(eg. one from cafae, one from evtwalk, etc) and the artifact tables will be preserved.

=12 Table nodes
+J ref
+] sqlite_autoindex_ref_1

4 [2-subkey] | [3-value_na)

= T
Common\S \t Tag | migratedBitValues

= Support tables

g o OSTOR TS5, 21 090 o4
©9/23/2013 19:17:52.102 | Common\Us¢rInfo | Company
©9/23/2013 19:17:52.102 | Common\UsqrInfo | UserName Donald §
®9 2013 19:17:52.182 | Common\UsdrInfo | UserInitials b}
89/23/20 D | vio 7a bl cj
|

:52.182 | Common

©9/23/2013 19:17: Common UserName Donald

& 002
3 003 Approach for dynamically creating table schema uses
j g technique to minimize size and guarantee uniqueness
&2 006

+) cafae.UserAssist-1e77757065a
+ () cafae.RecentDocs-ad0382679¢ - 5 5 2 :
49(2] cafae.Open_Save MRU-dbg02 & Differing artifacts are in their own table
#(J cafaelLastVisitedPidIMRU-268
#(cafae.StreamMRU-eab03fc56!

While this is nice for those users that are familiar with reviewing a database schema and based on that
schema, issuing some SQL statement to extract those components that are of interest, it may not be
useful to those that don’t have that background. For those users, we created an option to pull all the
merged artifact table data into separate CSV files. See the section on: Converting SQLite output into CSV
files for details and an example.

2.4.1 SQLite Dependencies

For the SQLite option to work, csvdx makes the of the SQLite library. If one is unfamiliar with SQLite, the
official SQLite website ishttp://www.sglite.org/. It has documentation and details on everything one

would ever want to know. Starting with version 0.23, the SQLite library is statically linked into csvdx
binary. What this means is the tool is standalone and does not require any external SQLite shared
libraries.

2.4.2 Schema of the SQLite Database

First off, csvdx uses 2 baseline tables for keeping track of everything within the database: (1) ref table
and the (2) metadata table. The first is used to store off all the tables we are trying to track, including
their name, last row-ID and last update time. The second table is used to hold all the metadata for each
artifact group that is parsed, including (but not limited to), any banner information that was parsed from
the CSV file, column headers associated with the CSV file, the associated artifact table name and the
row-ID of the starting record in the artifact table and number of records inserted. The rest of the tables
that are generated are strictly based on the number of types of artifacts that are present in the parsed
CSV file. The artifact table names are taken from the artifact type specified in the CSV file along with a

Copyright © TZWorks LLC Apr 25, 2025 Page 10

http://www.sqlite.org/

hash to preserve uniqueness in the table schema. Furthermore, the schema used for each artifact table
is dependent on the unique field headers used in the CSV file. csvdx modifies the column names that
were in the CSV file when creating the schema to ensure uniqueness. csvdx also truncates the column
names so they don’t exceed a maximum number of characters and removes any whitespace from the
name to ensure they are manageable from a schema standpoint.

Below is an example schema of the SQLite database when running cafae on a user hive. The schema
only shows three artifact tables as an example. The table names are composed of the tool’s name,
artifact type, and a unique hash. The word “UniqueHash”, in the diagram for artifact tables, is a hash
value that is generated for each artifact that takes into account the number and names of the unique
fields.

‘ cafae-Userlnfo-UniqueHash "
/ ¥ metaref
‘ ref metadata / 1-reg_date
| ¥ table_name ¥ runtime 2-subkey
last_rowid chunk 3-value_na
last_update parent 4-value_da
lic_num S-Registry
' lic_name 6-overflow
cmdline
gen s cafae-UserAssist-UniqueHash
col_hdrs - 1
col_types ¥V metaref
extra_args 1-reg_date
host 2-modify_d
user 3-sess
file 4-run
file_other 5-focus_cn
output_option 6-focus_ms
separator 7-subkey
notes 8-item_nam
toolname 9-Registry
artifact_type 10-overflow
data_tbl_name
row_data_start r -
row_data_end cafae-RecentDocs-UniqueHash
¥ metaref
1-reg_date
2-item
3-subkey
4-name
S-support

2.4.3 Combining Multiple CSV files into one Database

One can combine multiple CSV files into one database. The way csvdx handles this is it starts merging
similar artifact data into the appropriate table. This is done a couple of reasons. (a) The first is for
efficiency purposes, since the data can still be broken out separately using the metadata table, since it
contains a complete mapping of which CSV file data went where. (b) The second reason is this approach
also allows for merging of similar artifact data by using the table as a repository for each unique artifact.
Unique here is defined to be based on the fields that were archived as well as the banner information
specified to identify the artifact type. Below is a diagram showing the overall concept.

Copyright © TZWorks LLC Apr 25, 2025 Page 11

Various CSV files SQLite file Folder of CSV files

CSV (artifact 1)

-artifact_tables
File with delimited fields - -dst <directory>

CSV (artifact 2)

(comma, pipe, tab) -csv_to_sqlite :
Mixed artifacts -dst <sQLite db> 5Qlite
| [-pipe] DB
1

SQL statements Custom reports

For this example we are going to take multiple event log CSV files that were generated from evtwalk.
When used in the default CSV mode, the output fluctuates as a function of event ID, since each event ID
typically has unique fields. Combining multiple CSV files just compounds the problem. Fortunately,
csvdx is aware of the TZWorks CSV formatting options, and thus, it can successfully interpret all the
unique CSV sections and merge them into the appropriate event IDs as represented as separate tables in
the resulting SQLite database. There are 2 options available to do this type of merge.

Option 1 is to merge multiple CSV files by adding each one separately to the database by running csvdx
as a separate session each time. This is useful if the files are not co-located in one subdirectory. For this
option, just start with a fresh database name and for subsequent runs continue to use the same
database name so all the CSV files are merged into one database. Syntax for each run would be:

csvdx -src csvfilel -dst various.evt.db -csv_to_sqlite

csvdx -src csvfile2 -dst various.evt.db -csv_to_sqlite
csvdx -src csvfile2 -dst various.evt.db -csv_to_sqlite

Option 2 is to merge multiple CSV files as one csvdx session. This assumes all the desired CSV files are in
a folder. If this is the case, then all target files can be easily enumerated and piped into csvdx.

dir <folder with CSV files>/*.csv /b /s | csvdx -pipe -dst various.evt.db -csv_to_sqlite

Whatever option is chosen, the resulting SQLite database (various.evt.db, for the example above) will
contain a separate table per event ID with the appropriate records populated. To view the tables
present one can perform a SQL select on the ref table, which contains all the table names. The simpler
approach is to use the -ref_records option. This will not only show the tables present but the number of
records per table. As was discussed previously, the table name is decorated with the tool’s name,
artifact type and a hash of the field names to ensure accurate matching when merging artifacts. See
output below from the example performed previously:

Copyright © TZWorks LLC Apr 25, 2025 Page 12

csvdxb64 —-src various.evt.db —ref_records > out.txt

13 : evtwalk.EventID-1100-259867cc5d4b476326cdce
6 : evtwalk,EventID-1101-2bf81c79c5aa2da2d3e?
1 : evtwalk] EventID-1105}42baS57ef35caeca32acd
2 : evtwalkf EventID-110544ec08c04292e271fdle
1 : evtwalk.EventiD-1108-15d10a0de3404003483

19 : evtwalk.EventID-4608-e58986da20773694070
3 : evtwalk.EventID-4610-5c46e07c505ad05e1077

146 : evtwalk.EventID-4611-e80a37563152825a9010

3 : evtwalk = -aa42650d8d02e9%e3f1le
19 : evtwalk] EventID-4616}9fd5cf25fb8a60553d26
5 : evtwalkLEventiD-46164d5add7¢3bs52fc853bc539

37 Ve Ik Vet o T Table Names with number
34975 : evtwalk.EventID-{ ofrecordspertable
95 : evtwalk.EventID-4
34578 : evtwalk.EventID-4634-82e69c436735eaa01ff5

25 : evtwalk = -6Cc2824047213be5680e45
5184 : evtwalk| EventID-4648}cbbc5fb9felf37454a19
209 : evtwalklLEventiD-4648}dd01d539bb04f2b9138ch

.EventiID-4

1046 : evtwalk -c9b10938eabb7db12dbd

41 : evtwalk.EventID-4658-f0a36a2cbf61456b440
106 : evtwalk.EventID-4662-74cb148d6bd04dc3aaab
: evtwalk.EventID-4663-ad532354b1bc8563fch
- 1 -4670-63122

Note: The merging will have some issues if it senses that the one artifact has some properties that are
different than other similar artifacts. For example, looking at the above output, notice EventID-1105,
where there are 2 separate tables that are created. The first has 1 item and the second has 2 items. The
names are the same, but the hashes are different. This again happens at EventID-4616 and EventID-
4648. What this means is one set of records (represented by its own table) has more (or less) fields
present in the original CSV output then the other set. More specifically, if one generates a custom CSV
file that has some fields present and others that are not, and does not use that template consistently
across runs, then the merge operation will detect the differences and store each unique signature set as
a separate table.

2.4.4 Converting the SQLite Output into Meaningful CSV files

Hinted in the diagram from the preceding section, if one wanted to extract all the artifact data stored in
the SQLite database back into a CSV type output, there is an option called -artifact_tables to do just
that. What this option does internally is: (a) reads the SQLite database specified, (b) extracts all the
artifact data while merging the banner specific data pulled during the initial CSV parse with the artifact
data, and (c) dumps the final output into a separate CSV files at the directory specified. Therefore, if you
had 10 artifact tables to start with, you will end up with 10 unique CSV files with the data from those
artifact tables. On the surface, why go through this process of converting some CSV files into SQLite and
back out to CSV files? Because, when storing the data into the SQLite database, similar artifacts get
grouped together, where they were separated before, so the end result will be all the artifacts have now
been outputted as separate CSV artifact files. For the TZWorks® tools this is useful when considering
cafae and evtwalk CSV output data, since the CSV data is mixed in the CSV output. Below is an example
of doing this on the SQLite database that was created in the previous section.

Copyright © TZWorks LLC Apr 25, 2025 Page 13

>svdxb64 | —src various.evt.db —dst evt.results —artifact_tables
/& Computer
&, Local Disk (C) : Mﬁresu“s 5
%) various.evt.db
. dump
evt.test
Name i
4| Computer __| evtwalk.EventID-1100-259867cc5d4b476326cdc
4 & Local Disk (C:) __| evtwalk.EventID-1101-2bf81c79c5aa2da2d3e74
4 |, dump __| evtwalk.EventID-1105-4ec08c04292¢271fd1 eeddb
4 4 evttest | evtwalk.Evd CSV files named afterthe |
evt.results | evtwalk.Evd table namesin SQlite db
history __| evtwalk.EventID-4608-e58986da2077369407014a
Perflogs __| evtwalk.EventID-4610-5c46e07c505ad05€1077
. Program Files __| evtwalk.EventID-4611-e80a375631528252901047a
ProgramData __| evtwalk.EventID-4614-2a42650d8d02e9e3f1 e36€8
Users __| evtwalk.EventID-4616-9fd5cf25fb8a60553d26305
Window evtwalk.EventID-4616-d5add7 c3b52fc853bc5

After the command is issued, the specified folder (evt.results) will be populated with the CSV files. Each
CSV file will use the table name if came from to help provide traceability from which table it came from.

2.5 Splitting a CSV file into Separate Files

Similar to the functionality just discussed in section on “Converting the SQLite Output into Meaningful
CSV files,” the goal here is to accomplish similar results without creating a SQLite database in the
process. This option, unlike the other ones in csvdkx, is geared for CSV files containing multiple types of
artifacts that are generated by TZWorks tools. Specifically, this option will rely on certain header data
generated by TZWorks tools that get embedded into the CSV reports. However, one can use this
option’s merge ability to take similar artifact type CSV reports and merge them all into a single report

As background, some of the TZWorks tools render artifacts in a combined CSV report; good examples of
tools that do this include cafae and evtwalk. The reason for this, is creating a combined reports easily
allows for the tool(s) to operate across many raw artifact files in a batch processing mode. This is
primarily for speed, but also to minimize the footprint of any new files generated on the target box
(since our tools are primarily designed for live collection/processing). On the down side, the problem
with processing raw artifact files like a registry hive or an event log is they contain many types of
differing artifacts. This in turn requires the tool generating the report to create specialized headers per
artifact type so it can be understood later during analysis.

Copyright © TZWorks LLC Apr 25, 2025 Page 14

Therefore, the new option -split_into_files is designed for these report types that have a mixed bag of
artifact types interspersed within a CSV file. It will look at each unique artifact type and separate it into a
CSV file. Some of the characteristics of this option include:

a. The similar artifact types can be interspersed throughout the CSV report and should be detected
by csvdx, so that each unique artifact type will be merged into the appropriate CSV report.

b. If the names of the resulting CSV files that are generated are not changed, one can continuously
merge additional ‘like’ artifacts to these files, by just repeating the csvdx operation on a new
mixed artifact CSV report and specifying the same destination directory as before.

c. Due to the merge option above, during the splitting and grouping process, the TZWorks banner
information will be stripped off and any useful information it contained will be appended to
each CSV record. This allows one to continually grow the resulting CSV reports with new data as
it comes in. While the additional fields added to each record makes from a larger CSV file, it
allows for easier movement later of the resulting CSV data into another database.

Below is an example of the syntax. To specify a CSV to operate on, use -src <csv file>. Then one needs
to specify a folder to put the resulting CSV files that are generated, via the -dst <results folder>. The
last parameter is the option to tell csvdx what you want to do, which is -split_into_files.

BN C\Windows\system32icmd.exe

C-wtestresvdxbd —sre ntuser_testh.csu —dst ntuser_csv —split_into_files

The destination folder will be created if it is not already present, and the files will be populated as
shown below. The filenames are annotated with the tool name, information about the artifact type, and
a hash value to indicate the template type the data is using. In this way, the same filename can be
referenced for a different csvdx session to merge new data into the existing reports (if desired).

Local Disk (C:) » test » ntuser_csv

Name Size

(£}) cafae.UserAssist-1€77757065d97675d714858bc95bb0ed. csv 2 K
1’}] cafae.Shell_Spawning_via_FileExts-184b89c5dc5dcebd3f77326ceal7eel.csv 48 KE
(£]) cafae.RecentDocs-2d0382679e4370a3e2¢5d44d38358237.csv 47 Kk
Ll‘_]o] cafae.User_Cached_Shell_Extensions-0f0d26a709be74645550af6e258055¢e.c... 41 KE
(#}) cafae.AppCompat_Store-0f0d26a709be7464f5550af6258055¢.csv 20 KB
(EL) cafae.FileExts_OpenWithList-63b7216bd653d6d5a323f726eb0e69a8.csv 18 KE
(#}] cafae.Open_Save_MRU-db802b1 c6dabfe304a7 ed61a0el35¢42,csv 17 KE
\f_L\] cafaelE_Main_options-184b89c5dc5dcebd3f77326ceal7eel9.csv 9 KE
(#L) cafae.LastVisitedPidIMRU-a6836fe287085412349a4bal402ae3db.csv 6 KI
(#}) cafae.Internet_Settings-0f0d26a709be746415550af6258055e.csv 5KI
(L) cafae. TypedURLs-63816a5fd1f9576be77cd9cdf727304.csv 5KI
(#k) cafae.MountPoints2-fd38aal acfd340d0bbdfa2fdc18371 da.csv § KE
(L) cafae. Taskband_Favorites-15459694118b8¢1029d81566a865133¢.csv } K
@nj cafae.Office_Trusted_Documents-c053dc9aac654030ea878bfcf0e0d812.csv 2 KE
(#L) cafae.Installed_Components-0b2540b2f540cd5d2a9019cdd7b6341b.csv 2 KE

Copyright © TZWorks LLC Apr 25, 2025 Page 15

As another example, let’s say a tool produces a fixed set of field headers for all CSV files, such as a the
newer TZWorks tool tela, then the —split_into_files option still can provide utility by using looking at a
few fields in the data to determine how to group it. For the tela use-case, csvdx will key off a few fields
to gather metadata, such as the “session name” as well as some others. For now, if we focus on just the
‘session name’ of the log entry, then csvdx will use that data to determine which file the data belongs. A
raw CSV report from tela will look something like the image below. For each file piped into tela, it
segregates it with a line and then some metadata about the file it parsed. Then it outputs the CSV data
for that file. This process repeats until all the files have been processed.

cmdline: <filelist> ... | test\telab4.exe -pipe -dateformat yyyy/mm/dd -timeformat hh:mm:s5.00000000¢

file: e:\testcase\etl\winl0.sift\LwtNetLog.etl
orig source path: C:\Windows\System32\LogFiles\WMI\LwtNetlLog.etl

created [utc or #ticks] provider name session name event id
2017/02/24 22:31:06.488888300 Microsoft-Windows-TCPIP LwtNetlLog 0x000529
2017/02/24 22:31:06.488899300 Microsoft-Windows-TCPIP LwtNetlog 0x000467
2017/02/24 22:31:06.488902300 Microsoft-Windows-TCPIP LwtNetlLog 0x00045a
file: e:\testcase\etl\winl0.sift\Microsoft-Windows-Kernel-Disk%4Analytic.et!
orig source path: C:\Windows\System32\Winewt\Logs\Microsoft-Windows-Kernel-Disk3%4Analytic.etl

created [utc or #ticks) provider name session name event id

2017/08/07 00:11:19.158154000 Microsoft-Windows-Kernel-Disk EventlLog-Microsoft-Windows-Kernel-Disk-Analyl 0x00000e
2017/08/07 00:11:19.359461100 Microsoft-Windows-Kernel-Disk EventlLog-Microsoft-Windows-Kernel-Disk-Analyt 0x00000e
2017/08/07 00:11:21.412770200 Microsoft-Windows-Kernel-Disk EventlLog-Microsoft-Windows-Kernel-Disk-Analyl 0x00000e

file: e:\testcase\etl\winl0.sift\Microsoft-Windows-USB-UCX-Analytic.etl
orig source path: C:\Windows\System32\Winewt\Logs\Microsoft-Windows-USB-UCX-Analytic.etl

created [utc or #ticks] provider name session name event id
2017/08/07 00:07:55.384443900 Microsoft-Windows-USB-UCX EventlLog-Microsoft-Windows-USB-UCX-Analytic 0x000001
2017/08/07 00:07:55.384446500 Microsoft-Windows-USB-UCX EventlLog-Microsoft-Windows-USB-UCX-Analytic Ox000003
2017/08/07 00:07:55.384447300 Microsoft-Windows-USB-UCX EventLog-Microsoft-Windows-USB-UCX-Analytic 0x000045
file: e:\testcase\etl\win10.sift\Microsoft-Windows-USB-USBHUB3-Analytic.etl
orig source path: C:\Windows\System32\Winewt\Logs\Microsoft-Windows-USB-USBHUB3-Analytic.etl

created [utc or #ticks] provider name session name event id

2017/08/07 00:08:17.250760700 Microsoft-Windows-USB-USBHUB3 EventLog-Microsoft-Windows-USB-USBHUB3-Ana 0x000006
2017/08/07 00:08:17.250764500 Microsoft-Windows-USB-USBHUB3 EventLog-Microsoft-Windows-USB-USBHUB3-Ana 0x000004
2017/08/07 00:08:17.250764900 Microsoft-Windows-USB-USBHUB3 EventLog-Microsoft-Windows-USB-USBHUB3-Ana 0x000007

file: e:\testcase\etl\winl0.sift\Microsoft-Windows-WMI-Activity%4Trace.etl

orig source path: C:\Windows\System32\Winewt\Logs\Microsoft-Windows-WMI-Activity%4Trace.etl

created [utc or #ticks) provider name session name event id
2017/08/07 00:07:45.547846200 Microsoft-Windows-WMI-Activity EventlLog-Microsoft-Windows-WMI-Activity-Trace 0x00000c
2017/08/07 00:07:45.555793700 Microsoft-Windows-WMI-Activity EventlLog-Microsoft-Windows-WMI-Activity-Trace 0x000032
2017/08/07 00:07:45.555798600 Microsoft-Windows-WMI-Activity EventlLog-Microsoft-Windows-WMI-Activity-Trace 0x00000c

So when csvdx encounters the above file, it will look at the ‘session name’ and use that to value to help
merge like data. csvdx will also record each file parsed by tela and annotate that filename in the an

extra field on the merged CSV output. That way, the traceability back to the original artifact file is
retained.

Copyright © TZWorks LLC Apr 25, 2025 Page 16

(=] tela.session_name-EventLog-Microsoft-Windows-Kernel-Disk-Analytic-8b25761214b26fb89463d04f51 baBeld. csv
@ tela.session_name-EventLog-Microsoft-Windows-USB-UCK-Analytic-8b25761 214 b26fb89463d0451 ba8eld. csv

(£L] tela.session_name-EventLog-Microsoft-Windows- USB-USBHUB3- Analytic-8b25761214 b26fb89463d04f51 baledd.csv
(L] tela.session_name-EventLog-Microsoft-Windows- WMI-Activity- Trace-8b25761214b26fh89463d04f51 baf 04 csv

(=) tela.session_name-LwtNetLog-8b25761214b26fh89463d04f51 baBedd.csv

3 Available Options

3.1 General Options
Option

-Src

-dst

-csv_to_html

-Csv_to_json

-csv_to_sqlite

-split_into_files

Description

Specifies the source CSV file to operate on. This file will not be
modified. Format is -src <source file>

Specifies the destination file to send the results to. Format is -dst
<resuts file>. Without specifying this option, the results will be
outputted to the screen (or can be redirected). In some cases, this
option will specify the destination folder (not file) to send the output to.

Instructs conversion to be from a CSV file to HTML table format.

Instructs conversion to be from a CSV file to JSON format. There is a
sub-option -esc_path to allow for backslashes to be preserved with the
escape character. Default behavior converts backslashes to forward
slashes.

Instructs conversion to be from a CSV file to SQLite format. With this
option, one needs to also specify the -dst <resulting database>
parameter to tell what new database base to create. If a previous
database was created using csvdx, then that can be specified as well
and the data will be added to the database.

This is specific to TZWorks tools and their output. Specifically, some
artifacts, such as the eventlog and registry hives, will have differing
header fields that are specific to differing event IDs or type of registry
artifact. This option will take the single CSV file containing these
differing artifacts and separate each unique one into a separate CSV

Copyright © TZWorks LLC

Apr 25, 2025 Page 17

file. With this option, one needs to also specify the -dst <folder>
parameter to tell which folder to put the new CSV files.

This option allows one to pipe in multiple CSV files from standard input
-pipe while storing the CSV artifact data into a SQLite database.

Experimental. Used to process files within a folder and/or subfolders.
_enumdir Each file is parsed in sequence. The syntax is -enumdir <folder> -
num_subdirs <#>.

Filters data passed in via STDIN via the -pipe or -enumdir options. The
-filter syntax is -filter <"*.ext | *partialname* | ...">. The wildcard character
"*'is restricted to either before the name or after the name.

This option is tells csvdx not to display progress status during a run

-quiet
Used in conjunction with the -csv_to_json option to have 1 line per
-flat entry, versus the normal JSON format that has multiple lines per entry.
Tells tool that you are not parsing a CSV file with a TZWorks banner, so
-no_header_info it will not look for it.

3.2 CSV Specific Sub-Options

These options are only used to modify the properties of the CSV format. At a minimum the -src
<source file> must be specified. If no -dst <resulting file> is specified, the resulting output will be sent
to standard output (eg. the screen), which can be redirected into another tool or file. If using the -pipe
option, then the -dst <resulting directory> must be specified.

Option Description

This option will remove all white space between the field value and the
-no_whitespace CSV separator.

This option will pair two separate fields into one. Format

is: -pair_fields “1:2, 3:4 ...”. The 1:2 notation means combine column
-pair_fields 2 into column 1. The 3:4 notation means combine column 4 into

column 3. This is useful when desired to combine date field and time

field into one field containing both date and time.

Copyright © TZWorks LLC Apr 25, 2025 Page 18

-align_cols

-change_csv_separator

-utf8_bom

This option will space out the delimited fields and try to align the
columns. This is useful to view the CSV output in a more readable
manner when using text viewer such as notepad.

This option is to modify the existing CSV delimiter to some other
delimiter. Formatis: -change_csv_separator “|”.

All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-
8 byte order mark to the CSV output using this option.

3.3 SQLite Specific Sub-Options

If one is not that familiar with SQLite or does not want to use SQL queries to analyze the resulting SQLite

database, we built in a couple of shortcut options. The first two options are to enumerate the records

of the two baseline tables (ref and metadata). The third is for extraction of the data in the artifact

tables (and the metadata table) to generate discrete CSV files for each artifact type.

Option

-ref_records

-metadata_records

-artifact_tables

-sglite_to_csv

Description

This option is used to read the resulting ref table and display the
records. The format is: -src <SQLite db> -ref records

This option is used to read the resulting metadata table and display the
records. The format is: -src <SQLite db> -metadata_records

This option is used to read the resulting SQLite database and output
each artifact table into unique CSV files specified at the specified
directory. The formatis: -src <SQLite db> -dst <directory to store
files> -artifact_tables.

This option is used to read a specific table and output the rows to a
specified output file in CSV format. This option assumes the data can
be read as ASCIl data (not to be used for binary data). The format

is: -src <SQLite db> -dst <csv results> -sqlite_to_csv
<table_name_to_output>.

Apr 25, 2025 Page 19

Copyright © TZWorks LLC

4 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital
X509 code signing certificate embedded into the binary (Windows and macQOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools
(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The
license needs to be in the same directory of the tool for it to authenticate. Furthermore, any
modification to the license, either to its name or contents, will invalidate the license.

4.1 Limited versus Demo versus Full in the tool’s Output Banner

The tools from TZWorks will output header information about the tool's version and whether it is
running in limited, demo or full mode. This is directly related to what version of a license the tool
authenticates with. The limited and demo keywords indicate some functionality of the tool is not
available, and the full keyword indicates all the functionality is available. The lacking functionality in the
limited or demo versions may mean one or all of the following: (a) certain options may not be available,
(b) certain data may not be outputted in the parsed results, and (c) the license has a finite lifetime
before expiring.

5 References

1. TZWorks tools and the CSV outputs they produce

JSON Organization: http://json.org/
JSON Data Interchange Format, ECMA-404, http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf

4., W3C HTML Specification, http://www.w3.0org/TR/html/

SQL.ite library statically linked into tool [Amalgamation of many separate C source files from
SQL.ite version 3.32.3].
6. SQLite documentation [http://www.sglite.org].

o

Copyright © TZWorks LLC Apr 25, 2025 Page 20

http://json.org/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.w3.org/TR/html/

	1 Introduction
	1.1 Handling CSV Data in its Various Forms
	1.2 Extra Data in the Output of TZWorks Tools
	1.3 Handling Delimiters in the Raw Field Data
	1.4 Handling Large CSV Files

	2 How to Use csvdx
	2.1 Manipulating the CSV Data
	2.2 HTML Output
	2.3 JSON Output
	2.4 SQLite Output
	2.4.1 SQLite Dependencies
	2.4.2 Schema of the SQLite Database
	2.4.3 Combining Multiple CSV files into one Database
	2.4.4 Converting the SQLite Output into Meaningful CSV files

	2.5 Splitting a CSV file into Separate Files

	3 Available Options
	3.1 General Options
	3.2 CSV Specific Sub-Options
	3.3 SQLite Specific Sub-Options

	4 Authentication and the License File
	4.1 Limited versus Demo versus Full in the tool’s Output Banner

	5 References

