
 

 

 

 

 

  

 
Abstract 
csvdx is a standalone, command-line tool that takes a file 

that has delimited data (such as a CSV file) and allows one 

the option to convert it into HTML, JSON, or SQLite format.   

csvdx understands the unique headers produced in other 

TZWorks® tools to ensure maximum data retention during 

the conversion.   There are compiled versions for Windows, 

Linux and macOS. 

 

 
Copyright © TZWorks LLC 

www.tzworks.com 

Contact Info: info@tzworks.com 

Document applies to v0.43 of csvdx 

Updated:  Apr 25, 2025 

TZWorks® CSV Data eXchange 
(csvdx) Users Guide 
 

http://www.tzworks.net/
mailto:info@tzworks.net


Copyright © TZWorks LLC       Apr 25, 2025 Page 1 
 

  

Table of Contents 
 

1 Introduction .......................................................................................................................................... 2 

1.1 Handling CSV Data in its Various Forms ...................................................................................... 2 

1.2 Extra Data in the Output of TZWorks Tools ................................................................................. 4 

1.3 Handling Delimiters in the Raw Field Data .................................................................................. 4 

1.4 Handling Large CSV Files .............................................................................................................. 5 

2 How to Use csvdx .................................................................................................................................. 6 

2.1 Manipulating the CSV Data .......................................................................................................... 7 

2.2 HTML Output ............................................................................................................................... 7 

2.3 JSON Output ................................................................................................................................ 9 

2.4 SQLite Output .............................................................................................................................. 9 

2.4.1 SQLite Dependencies ............................................................................................................ 10 

2.4.2 Schema of the SQLite Database ............................................................................................ 10 

2.4.3 Combining Multiple CSV files into one Database .................................................................. 11 

2.4.4 Converting the SQLite Output into Meaningful CSV files ..................................................... 13 

2.5 Splitting a CSV file into Separate Files ....................................................................................... 14 

3 Available Options ................................................................................................................................ 17 

3.1 General Options ......................................................................................................................... 17 

3.2 CSV Specific Sub-Options ........................................................................................................... 18 

3.3 SQLite Specific Sub-Options....................................................................................................... 19 

4 Authentication and the License File .................................................................................................... 20 

4.1 Limited versus Demo versus Full in the tool’s Output Banner .................................................. 20 

5 References .......................................................................................................................................... 20 

 

  



Copyright © TZWorks LLC       Apr 25, 2025 Page 2 
 

TZWorks® CSV Data eXchange (csvdx) Users 
Guide 

Copyright © TZWorks LLC  

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=34 

Contact Information: info@tzworks.com 

1 Introduction 
 
csvdx is a command line, support tool that converts delimited data (such as CSV data) into other 

formats.  Currently csvdx supports conversion to: (a) HTML table data, (b) JSON format, and (c) a SQLite 

database.    These formats are useful if desiring to: (a) displaying the data in other viewers (b) importing 

the original delimited data to other databases, or (c) just trying to merge similar artifacts together.   

Pictorially the functionality of csvdx is shown below: 

 

 

1.1 Handling CSV Data in its Various Forms 
 
CSV stands for Comma Separated Values.  However, in this document, the term CSV will also be used to 

refer to other delimiters as well, such as tab delimited, pipe character delimited, etc.   Currently, csvdx 

can handle the following delimited data: 

a. Comma character 

mailto:info@tzworks.net


Copyright © TZWorks LLC       Apr 25, 2025 Page 3 
 

b. Pipe character 

c. Tab character 

In addition to the delimiter, one needs to take into account the end of line (EOL) character(s) – called 

here as the EOL symbol.  It is this EOL symbol that distinguishes between one record and another record.  

Unfortunately, the EOL symbol can vary depending on which operating system the CSV file was 

generated on.  Below are the types of EOL symbols used, based on operating system type. 

Operating System EOL name EOL Abbreviation EOL character(s) 

Unix & macOS Line Feed LF 0x0a 

Windows Carriage Return / Line Feed CRLF 0x0d 0x0a 

Older Mac (OS 9) Carriage Return CR 0x0d 

 

For both the field delimiter and EOL symbol, csvdx can recognize the type of delimiter and EOL symbol, 

on the fly, when reading the CSV file. 

Finally, the last nuance is the handling the actual text format of the CSV file.  Original csvdx was designed 

to parse UTF-8 formatted CSV files, but later starting with v.0.18 can handle UTF-16 formatted files as 

well.  This assumes, however, that the UTF-16 formatted file is using a Byte Order Mark (BOM) of 0xff, 

0xfe at the start of the document.  This particular BOM is for little endian UTF-16.   csvdx will look at the 

header bytes of the document and if a BOM is present will adjust accordingly to its parsing.  Currently 

csvdx cannot handle BOM for UTF-16 big endian or those for UTF-32. 



Copyright © TZWorks LLC       Apr 25, 2025 Page 4 
 

1.2 Extra Data in the Output of TZWorks Tools 
 
The default behavior for tools built by TZWorks is to generate a banner at the top of the file before 

proceeding with any delimited data.  This data contains some additional information that can be useful, 

if retained, when converting the delimited data to another format.   Information such as: (a) the 

command line options used to parse the original artifact, (b) the timestamp when the parsing was done, 

(c) the license /organization that conducted the parsing, and (d) which version of the tool was used.   

csvdx reads this banner data and subsequently embeds it to the converted format so it is preserved. 

The other, non-standard CSV data that may be present in TZWorks® tools is when processing differing 

artifact types and storing the results in one CSV file.  In these cases, the differing artifacts may have 

different columns which correspond to the different fields of artifact being processed.   Good examples 

of this are when processing registry data via cafae or processing event logs with evtwalk.   In both cases, 

the resulting CSV file will have multiple CSV sections.   To handle this, csvdx looks at the banner data and 

adjusts the parsing logic based on the tool (which is recorded in the banner) that was used to generate 

the CSV file.   When using the SQLite option to store the artifact data from the CSV file, the banner data 

will allow csvdx to break the data out by artifact within the SQLite database.   One can later separate out 

each individual artifact type using the -artifact_tables option, which is discussed later in this guide. 

If, on the other hand, there is no banner information, but just delimited data, then csvdx will use the 

first delimited line as the header and treat the rest of the delimited lines as records.   This implies, also, 

that if the delimited data is mixed and disjointed with varying fields, csvdx will yield unpredictable 

results. 

 

1.3 Handling Delimiters in the Raw Field Data 
 
One of the issues with CSV formats is that the delimiter used to separate the fields may actually be in 

the raw field data itself.    The result of this is the record appears to have more fields than the number of 

column headers and the data is shifted as a result of the extra delimiters.  The rules, csvdx uses to 

handle this type of situation, is as follows:  (a) the number of delimiters is determined by the number of 

of column headers, (b) if any records following the header record have more delimiters than the header 

record, the extra fields (from the perspective of the csvdx) are combined together into an overflow field.  

The intent here is to try to preserve all the data, but limit the disruption to the record by adding one 

overflow field.   For those cases where a record has less delimiters than the header record, then csvdx 

treats this as a possible record that had a EOL symbol embedded into one of its fields.  To try to correct 

this, csvdx will read the next record and see if it can logically reconstruct the broken record into one.   It 

determines this by adding the number of delimiters between the 2 records, and seeing if, by combining 

them together, they total the number of delimiter in the header record.  If so, then they are combined; 

if not, then it is outputted as a broken record. 

 



Copyright © TZWorks LLC       Apr 25, 2025 Page 5 
 

1.4 Handling Large CSV Files 
 
The final concern with creating a tool to convert CSV files into another format is the issue of handling 

very large CSV files.  Processing artifacts from some of the 64 bit operating systems and their ability to 

handle very large files and large storage devices can yield some hefty output files that would be need to 

be handled.   A good example is looking at event logs from a Win7 box on up.  Eventlogs can yield 4 GB 

of data easily and can be the norm on some systems that care about logging many things.  To handle 

very large files, csvdx has been designed to read input files in chunks and processing them on a chunk by 

chunk basis.   This approach allows csvdx to handle very large CSV files. 

  



Copyright © TZWorks LLC       Apr 25, 2025 Page 6 
 

2 How to Use csvdx 
 
Below is a screen shot of the command line menu.   This shows all the options in summary form. 

 

For all options, a source file must be specified to operate on, via the -src switch.  The output can either 

be sent to another file via the -dst switch or to the screen (without the -dst switch).     The main options 

are -csv_to_[ json | sqlite | html ].   

If not desiring to change the CSV, to some different format, one can retain the delimited nature, and just 

modify some of the CSV properties, via the CSV Cleanup/Modify options.  These include: 

(a)  -no_whitespace, to remove any spaces around the delimiters,  (b) -pair_fields, to combine 2 fields 

in the original CSV data into one field, (c) -align_cols, to space out the fields so they are better aligned 

for readability in a text editor, and (d) -change_csv_separator, to change the existing field separator to 

something else. 

If SQLite is the desired conversion, there are other options that can be used.  Since csvdx dynamically 

creates tables on the fly based on each unique CSV field set, one can pipe in multiple CSV files into one 

SQLite database, via the -pipe option.   Each CSV file can represent a separate forensic artifact, and the 

piping operation will retain the uniqueness of the CSV artifact data across files.   More information 



Copyright © TZWorks LLC       Apr 25, 2025 Page 7 
 

about the SQLite format and what can be done from then on is discussed in the section under SQLite 

data.   

If one cannot use the -pipe option, one can use the experimental -enumdir option, which has similar 

functionality with more control.  The -enumdir option takes as its parameter the folder to start with.  It 

also allows one to specify the number of subdirectories to evaluate using the -num_subdirs <#> sub-

option.  

 

2.1 Manipulating the CSV Data  
 
If one is given a CSV file that has formatting properties that need to be changed, csvdx offers 4 possible 

options to modify the CSV file via the following switches: 

1. -no_whitespace to remove all white space (space and tabs) between the field values and CSV 

separators.   This is the same option available in most TZWorks® tools. 

2. -pair_fields “<field1>:<field2>” to merge two separate fields into one field.  Where one may 

want to do this is when one field is the date field and another field is the time field, and what is 

desired is one field containing both the date and time.  If the date field is at position 1 and the 

time field is at position 2, the command -pair_fields “1:2” will merge the date and time 

(separated by a space) into one field. 

3. -align_cols to put spaces in between field data and the delimiters.  This purpose here would be 

to align all the data, so that the CSV output is easy to read with notepad or some other text 

viewer. 

4. -change_csv_separator “|” to change the existing CSV delimiter to something else.  What this 

option does under the covers is if using either a pipe character or a comma character, it will be 

able to do the modification while preserving the CSV format, even if the raw data in the fields 

contain the resulting delimiter.   It does this by scanning all the raw field data and takes the 

following actions: (a) if the resulting delimiter is a pipe character and if a pipe character is found 

in the data, the pipe character in the raw field data will be changed to a semicolon, and (b) if the 

resulting delimiter is a comma, and if a comma is found in the data, the comma in the raw field 

data will be changed to a space. 

For all options above, the CSV output is sent to standard output, unless using the -dst <results file> 

option, where it be sent to the specified file.  If using the piping option (-pipe), to read in multiple CSV 

files in succession, then the -dst <results folder> needs to be used to specify the directory to put all the 

modified files.  For this latter case, the names of the resulting CSV files will be the same names but put 

in the folder specified by the -dst option. 

2.2 HTML Output 
 
When converting from CSV data to a HTML table format, use the -csv_to_html option and either 

redirect the output to a file or use the -dst <result file> option.  Below is an example of a CSV file 



Copyright © TZWorks LLC       Apr 25, 2025 Page 8 
 

generated by cafae on the left, and the resulting HTML that is generated on the right.  Notice the 

differing artifacts in the original CSV file are ported over to their respective HTML table, and the banner 

information is converted as well. 

 

 



Copyright © TZWorks LLC       Apr 25, 2025 Page 9 
 

2.3 JSON Output 
 
When converting from CSV data to JSON format, use the -csv_to_json option and either redirect the 

output to a file or use the -dst <result file> option.  Below is an example of a CSV file generated by 

cafae on the left, and the resulting JSON file that is generated on the right.  Notice the differing artifacts 

in the original CSV file are ported over to their respective JSON array, and the banner information is 

converted as well. 

 

 

2.4 SQLite Output 
 
When converting from CSV data to SQLite format, use the -csv_to_sqlite option and specify the SQLite 

database to be created via the -dst <SQLite db> option.   Below is a tree-view break out of the 

database that was generated from parsing data from a CSV file from cafae.  For each artifact that is 

found in the CSV data, a unique table is dynamically generated for that specific artifact.   There are a few 

functions that should be of note:  (a) csvdx has the ability to detect similar artifacts and insert into an 

existing artifact table if already generated, (b) on subsequent runs of csvdx, if using an existing SQLite 



Copyright © TZWorks LLC       Apr 25, 2025 Page 10 
 

database that was generated originally from csvdx, the artifacts will be merged into the appropriate like-

artifact tables, and (c) on subsequent runs of csvdx, one can use completely different CSV tool outputs 

(eg. one from cafae, one from evtwalk, etc) and the artifact tables will be preserved. 

 

While this is nice for those users that are familiar with reviewing a database schema and based on that 

schema, issuing some SQL statement to extract those components that are of interest, it may not be 

useful to those that don’t have that background.  For those users, we created an option to pull all the 

merged artifact table data into separate CSV files.  See the section on: Converting SQLite output into CSV 

files for details and an example. 

 

2.4.1 SQLite Dependencies 

For the SQLite option to work, csvdx makes the of the SQLite library.  If one is unfamiliar with SQLite, the 

official SQLite website ishttp://www.sqlite.org/.  It has documentation and details on everything one 

would ever want to know.   Starting with version 0.23, the SQLite library is statically linked into csvdx 

binary. What this means is the tool is standalone and does not require any external SQLite shared 

libraries. 

 

2.4.2 Schema of the SQLite Database 

First off, csvdx uses 2 baseline tables for keeping track of everything within the database: (1) ref table 

and the (2) metadata table.  The first is used to store off all the tables we are trying to track, including 

their name, last row-ID and last update time.  The second table is used to hold all the metadata for each 

artifact group that is parsed, including (but not limited to), any banner information that was parsed from 

the CSV file, column headers associated with the CSV file, the associated artifact table name and the 

row-ID of the starting record in the artifact table and number of records inserted.   The rest of the tables 

that are generated are strictly based on the number of types of artifacts that are present in the parsed 

CSV file. The artifact table names are taken from the artifact type specified in the CSV file along with a 

http://www.sqlite.org/


Copyright © TZWorks LLC       Apr 25, 2025 Page 11 
 

hash to preserve uniqueness in the table schema.  Furthermore, the schema used for each artifact table 

is dependent on the unique field headers used in the CSV file.  csvdx modifies the column names that 

were in the CSV file when creating the schema to ensure uniqueness.  csvdx also truncates the column 

names so they don’t exceed a maximum number of characters and removes any whitespace from the 

name to ensure they are manageable from a schema standpoint. 

Below is an example schema of the SQLite database when running cafae on a user hive.  The schema 

only shows three artifact tables as an example.  The table names are composed of the tool’s name, 

artifact type, and a unique hash.  The word “UniqueHash”, in the diagram for artifact tables, is a hash 

value that is generated for each artifact that takes into account the number and names of the unique 

fields.  

 

 

2.4.3 Combining Multiple CSV files into one Database 

One can combine multiple CSV files into one database.  The way csvdx handles this is it starts merging 
similar artifact data into the appropriate table.  This is done a couple of reasons.  (a) The first is for 
efficiency purposes, since the data can still be broken out separately using the metadata table, since it 
contains a complete mapping of which CSV file data went where.  (b) The second reason is this approach 
also allows for merging of similar artifact data by using the table as a repository for each unique artifact.  
Unique here is defined to be based on the fields that were archived as well as the banner information 
specified to identify the artifact type.  Below is a diagram showing the overall concept. 
 



Copyright © TZWorks LLC       Apr 25, 2025 Page 12 
 

 
 
 
For this example we are going to take multiple event log CSV files that were generated from evtwalk.  
When used in the default CSV mode, the output fluctuates as a function of event ID, since each event ID 
typically has unique fields.   Combining multiple CSV files just compounds the problem.  Fortunately, 
csvdx is aware of the TZWorks CSV formatting options, and thus, it can successfully interpret all the 
unique CSV sections and merge them into the appropriate event IDs as represented as separate tables in 
the resulting SQLite database.  There are 2 options available to do this type of merge. 
 
Option 1 is to merge multiple CSV files by adding each one separately to the database by running csvdx 
as a separate session each time.  This is useful if the files are not co-located in one subdirectory.  For this 
option, just start with a fresh database name and for subsequent runs continue to use the same 
database name so all the CSV files are merged into one database.  Syntax for each run would be: 
 

 csvdx -src csvfile1  -dst  various.evt.db   -csv_to_sqlite 

csvdx -src csvfile2  -dst  various.evt.db   -csv_to_sqlite 

…  

csvdx -src csvfile2  -dst  various.evt.db   -csv_to_sqlite 

 
Option 2 is to merge multiple CSV files as one csvdx session.  This assumes all the desired CSV files are in 
a folder.  If this is the case, then all target files can be easily enumerated and piped into csvdx. 

 dir <folder with CSV files>/*.csv  /b /s | csvdx -pipe -dst various.evt.db   -csv_to_sqlite 

 
Whatever option is chosen, the resulting SQLite database (various.evt.db, for the example above) will 
contain a separate table per event ID with the appropriate records populated.    To view the tables 
present one can perform a SQL select on the ref table, which contains all the table names.  The simpler 
approach is to use the -ref_records option. This will not only show the tables present but the number of 
records per table.  As was discussed previously, the table name is decorated with the tool’s name, 
artifact type and a hash of the field names to ensure accurate matching when merging artifacts.  See 
output below from the example performed previously: 
 



Copyright © TZWorks LLC       Apr 25, 2025 Page 13 
 

 

Note: The merging will have some issues if it senses that the one artifact has some properties that are 

different than other similar artifacts.  For example, looking at the above output, notice EventID-1105, 

where there are 2 separate tables that are created.  The first has 1 item and the second has 2 items.  The 

names are the same, but the hashes are different.  This again happens at EventID-4616 and EventID-

4648.  What this means is one set of records (represented by its own table) has more (or less) fields 

present in the original CSV output then the other set.   More specifically, if one generates a custom CSV 

file that has some fields present and others that are not, and does not use that template consistently 

across runs, then the merge operation will detect the differences and store each unique signature set as 

a separate table.   

2.4.4 Converting the SQLite Output into Meaningful CSV files 

Hinted in the diagram from the preceding section, if one wanted to extract all the artifact data stored in 

the SQLite database back into a CSV type output, there is an option called -artifact_tables to do just 

that.   What this option does internally is: (a) reads the SQLite database specified, (b) extracts all the 

artifact data while merging the banner specific data pulled during the initial CSV parse with the artifact 

data, and (c) dumps the final output into a separate CSV files at the directory specified.  Therefore, if you 

had 10 artifact tables to start with, you will end up with 10 unique CSV files with the data from those 

artifact tables.  On the surface, why go through this process of converting some CSV files into SQLite and 

back out to CSV files?  Because, when storing the data into the SQLite database, similar artifacts get 

grouped together, where they were separated before, so the end result will be all the artifacts have now 

been outputted  as separate CSV artifact files.  For the TZWorks® tools this is useful when considering 

cafae and evtwalk CSV output data, since the CSV data is mixed in the CSV output.  Below is an example 

of doing this on the SQLite database that was created in the previous section. 



Copyright © TZWorks LLC       Apr 25, 2025 Page 14 
 

 

After the command is issued, the specified folder (evt.results) will be populated with the CSV files.  Each 

CSV file will use the table name if came from to help provide traceability from which table it came from. 

 

2.5 Splitting a CSV file into Separate Files 
 
Similar to the functionality just discussed in section on “Converting the SQLite Output into Meaningful 

CSV files,” the goal here is to accomplish similar results without creating a SQLite database in the 

process.    This option, unlike the other ones in csvdx, is geared for CSV files containing multiple types of 

artifacts that are generated by TZWorks tools.   Specifically, this option will rely on certain header data 

generated by TZWorks tools that get embedded into the CSV reports.   However, one can use this 

option’s merge ability to take similar artifact type CSV reports and merge them all into a single report 

As background, some of the TZWorks tools render artifacts in a combined CSV report; good examples of 

tools that do this include cafae and evtwalk.  The reason for this, is creating a combined reports easily 

allows for the tool(s) to operate across many raw artifact files in a batch processing mode. This is 

primarily for speed, but also to minimize the footprint of any new files generated on the target box 

(since our tools are primarily designed for live collection/processing).  On the down side, the problem 

with processing raw artifact files like a registry hive or an event log is they contain many types of 

differing artifacts.  This in turn requires the tool generating the report to create specialized headers per 

artifact type so it can be understood later during analysis.   



Copyright © TZWorks LLC       Apr 25, 2025 Page 15 
 

Therefore, the new option -split_into_files is designed for these report types that have a mixed bag of 

artifact types interspersed within a CSV file. It will look at each unique artifact type and separate it into a 

CSV file.  Some of the characteristics of this option include: 

a. The similar artifact types can be interspersed throughout the CSV report and should be detected 

by csvdx, so that each unique artifact type will be merged into the appropriate CSV report. 

b. If the names of the resulting CSV files that are generated are not changed, one can continuously 

merge additional ‘like’ artifacts to these files, by just repeating the csvdx operation on a new 

mixed artifact CSV report and specifying the same destination directory as before. 

c. Due to the merge option above, during the splitting and grouping process, the TZWorks banner 

information will be stripped off and any useful information it contained will be appended to 

each CSV record.  This allows one to continually grow the resulting CSV reports with new data as 

it comes in.  While the additional fields added to each record makes from a larger CSV file, it 

allows for easier movement later of the resulting CSV data into another database. 

Below is an example of the syntax.  To specify a CSV to operate on, use -src <csv file>.   Then one needs 

to specify a folder to put the resulting CSV files that are generated, via the -dst <results folder>.  The 

last parameter is the option to tell csvdx what you want to do, which is -split_into_files. 

 

The destination folder will be created if it is not already present, and the files will be populated as 

shown below.  The filenames are annotated with the tool name, information about the artifact type, and 

a hash value to indicate the template type the data is using.  In this way, the same filename can be 

referenced for a different csvdx session to merge new data into the existing reports (if desired). 

 



Copyright © TZWorks LLC       Apr 25, 2025 Page 16 
 

As another example, let’s say a tool produces a fixed set of field headers for all CSV files, such as a the 

newer TZWorks tool tela, then the –split_into_files option still can provide utility by using looking at a 

few fields in the data to determine how to group it.   For the tela use-case, csvdx will key off a few fields 

to gather metadata, such as the “session name” as well as some others.  For now, if we focus on just the 

‘session name’ of the log entry, then csvdx will use that data to determine which file the data belongs.  A 

raw CSV report from tela will look something like the image below.  For each file piped into tela, it 

segregates it with a line and then some metadata about the file it parsed.  Then it outputs the CSV data 

for that file.  This process repeats until all the files have been processed.   

 

So when csvdx encounters the above file, it will look at the ‘session name’ and use that to value to help 

merge like data.  csvdx will also record each file parsed by tela and annotate that filename in the an 

extra field on the merged CSV output.  That way, the traceability back to the original artifact file is 

retained. 



Copyright © TZWorks LLC       Apr 25, 2025 Page 17 
 

 

 

3 Available Options 
 

3.1 General Options 
 

Option Description 

-src 

Specifies the source CSV file to operate on.  This file will not be 

modified.  Format is -src <source file> 

-dst 

Specifies the destination file to send the results to.  Format is -dst 

<resuts file>.  Without specifying this option, the results will be 

outputted to the screen (or can be redirected).  In some cases, this 

option will specify the destination folder (not file) to send the output to. 

-csv_to_html 
Instructs conversion to be from a CSV file to HTML table format. 

-csv_to_json 

Instructs conversion to be from a CSV file to JSON format.  There is a 

sub-option -esc_path to allow for backslashes to be preserved with the 

escape character. Default behavior converts backslashes to forward 

slashes. 

-csv_to_sqlite 

Instructs conversion to be from a CSV file to SQLite format.  With this 

option, one needs to also specify the -dst <resulting database> 

parameter to tell what new database base to create.   If a previous 

database was created using csvdx, then that can be specified as well 

and the data will be added to the database. 

-split_into_files 

This is specific to TZWorks tools and their output. Specifically, some 

artifacts, such as the eventlog and registry hives, will have differing 

header fields that are specific to differing event IDs or type of registry 

artifact. This option will take the single CSV file containing these 

differing artifacts and separate each unique one into a separate CSV 



Copyright © TZWorks LLC       Apr 25, 2025 Page 18 
 

file. With this option, one needs to also specify the -dst <folder> 

parameter to tell which folder to put the new CSV files. 

-pipe 

This option allows one to pipe in multiple CSV files from standard input 

while storing the CSV artifact data into a SQLite database.   

-enumdir 

Experimental. Used to process files within a folder and/or subfolders. 

Each file is parsed in sequence. The syntax is -enumdir <folder> -

num_subdirs <#>. 

-filter 

Filters data passed in via STDIN via the -pipe or -enumdir options.   The 
syntax is -filter <"*.ext | *partialname* | ...">. The wildcard character 
'*' is restricted to either before the name or after the name. 

-quiet 
This option is tells csvdx not to display progress status during a run 

-flat 

Used in conjunction with the -csv_to_json option to have 1 line per 

entry, versus the normal JSON format that has multiple lines per entry. 

-no_header_info 

Tells tool that you are not parsing a CSV file with a TZWorks banner, so 

it will not look for it. 

 

3.2 CSV Specific Sub-Options 
 

These options are only used to modify the properties of the CSV format.  At a minimum the -src 

<source file> must be specified.  If no -dst <resulting file> is specified, the resulting output will be sent 

to standard output (eg. the screen), which can be redirected into another tool or file.  If using the -pipe 

option, then the -dst <resulting directory> must be specified. 

 

Option Description 

-no_whitespace 

This option will remove all white space between the field value and the 

CSV separator.   

-pair_fields 

This option will pair two separate fields into one.  Format 

is: -pair_fields “1:2, 3:4 …”.   The 1:2 notation means combine column 
2 into column 1.  The 3:4 notation means combine column 4 into 
column 3.  This is useful when desired to combine date field and time 
field into one field containing both date and time.   



Copyright © TZWorks LLC       Apr 25, 2025 Page 19 
 

-align_cols 

This option will space out the delimited fields and try to align the 

columns.  This is useful to view the CSV output in a more readable 

manner when using text viewer such as notepad.   

-change_csv_separator 

This option is to modify the existing CSV delimiter to some other 

delimiter.   Format is: -change_csv_separator “|”. 

-utf8_bom 

All output is in Unicode UTF-8 format.  If desired, one can prefix an UTF-

8 byte order mark to the CSV output using this option. 

 

3.3 SQLite Specific Sub-Options 
 

If one is not that familiar with SQLite or does not want to use SQL queries to analyze the resulting SQLite 

database, we built in a couple of shortcut options.   The first two options are to enumerate the records 

of the two baseline tables (ref and metadata).  The third is for extraction of the data in the artifact 

tables (and the metadata table) to generate discrete CSV files for each artifact type. 

 

Option Description 

-ref_records 

This option is used to read the resulting ref table and display the 

records.   The format is: -src <SQLite db> -ref_records 

-metadata_records 

This option is used to read the resulting metadata table and display the 

records.   The format is: -src <SQLite db> -metadata_records 

-artifact_tables 

This option is used to read the resulting SQLite database and output 

each artifact table into unique CSV files specified at the specified 

directory.  The format is:  -src <SQLite db> -dst <directory to store 

files> -artifact_tables. 

-sqlite_to_csv 

This option is used to read a specific table and output the rows to a 

specified output file in CSV format.  This option assumes the data can 

be read as ASCII data (not to be used for binary data).  The format 

is:   -src <SQLite db> -dst <csv results> -sqlite_to_csv 

<table_name_to_output>. 

 

 



Copyright © TZWorks LLC       Apr 25, 2025 Page 20 
 

4 Authentication and the License File 
 
This tool has authentication built into the binary. The primary authentication mechanism is the digital 

X509 code signing certificate embedded into the binary (Windows and macOS).  

The other mechanism is the runtime authentication, which applies to all the versions of the tools 

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The 

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any 

modification to the license, either to its name or contents, will invalidate the license. 

 

4.1 Limited versus Demo versus Full in the tool’s Output Banner 
 
The tools from TZWorks will output header information about the tool's version and whether it is 

running in limited, demo or full mode. This is directly related to what version of a license the tool 

authenticates with. The limited and demo keywords indicate some functionality of the tool is not 

available, and the full keyword indicates all the functionality is available. The lacking functionality in the 

limited or demo versions may mean one or all of the following: (a) certain options may not be available, 

(b) certain data may not be outputted in the parsed results, and (c) the license has a finite lifetime 

before expiring. 

 

5 References 
 

1. TZWorks tools and the CSV outputs they produce 

2. JSON Organization: http://json.org/ 

3. JSON Data Interchange Format, ECMA-404, http://www.ecma-

international.org/publications/files/ECMA-ST/ECMA-404.pdf 

4. W3C HTML Specification, http://www.w3.org/TR/html/ 

5. SQLite library statically linked into tool [Amalgamation of many separate C source files from 

SQLite version 3.32.3]. 

6. SQLite documentation [http://www.sqlite.org]. 

 

http://json.org/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.w3.org/TR/html/

	1 Introduction
	1.1 Handling CSV Data in its Various Forms
	1.2 Extra Data in the Output of TZWorks Tools
	1.3 Handling Delimiters in the Raw Field Data
	1.4 Handling Large CSV Files

	2 How to Use csvdx
	2.1 Manipulating the CSV Data
	2.2 HTML Output
	2.3 JSON Output
	2.4 SQLite Output
	2.4.1 SQLite Dependencies
	2.4.2 Schema of the SQLite Database
	2.4.3 Combining Multiple CSV files into one Database
	2.4.4 Converting the SQLite Output into Meaningful CSV files

	2.5 Splitting a CSV file into Separate Files

	3 Available Options
	3.1 General Options
	3.2 CSV Specific Sub-Options
	3.3 SQLite Specific Sub-Options

	4 Authentication and the License File
	4.1 Limited versus Demo versus Full in the tool’s Output Banner

	5 References

