

Abstract
elmo is a standalone, command-line tool that can traverse a

system volume (either live or archived) and pull the various

Windows event log MessageTables into an SQLite database.

This database can then be queried later in an offline

manner to find messages that equate to specific event

identifiers.

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v0.46 of elmo

Updated: Apr 25, 2025

TZWorks® Event Log
MessageTables Offline (elmo)
Users Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 25, 2025 Page 1

Table of Contents

1 Introduction .. 2

2 Background Information ... 3

2.1 Separation of Source Code from Language Specific Resources .. 3

2.2 How Language Names Relate Locale Code Identifiers (LCIDs).. 4

2.3 Message String Arguments ... 5

2.4 Where are the MESSAGETABLE’s .. 5

3 How to Use elmo ... 7

3.1 Database Creation (or Database Update) ... 7

3.1.1 Create from a Live Volume ... 7

3.1.2 Create from a captured System Mounted Volume ... 8

3.1.3 Create from an Off-Line (unmounted) Image ... 9

3.1.4 Create from discrete files .. 9

3.2 Querying the database using elmo ... 9

3.2.1 Table Enumeration .. 9

3.2.2 Event ID Query .. 10

3.3 Using elmo with evtwalk CSV Data ... 12

4 SQLite Notes .. 13

4.1 SQLite Dependencies .. 13

4.2 Database Schema used by elmo ... 13

4.3 Providers ... 14

4.4 Mapping of an Event to elmo Database .. 15

4.5 Handling Multiple Languages .. 16

5 Available Options .. 17

6 Authentication and the License File .. 19

7 References .. 20

Copyright © TZWorks, LLC Apr 25, 2025 Page 2

TZWorks® Event Log MessageTables Offline
(elmo) Users Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=35

Contact Information: info@tzworks.com

1 Introduction

elmo is a prototype command line utility to assist the analyst in pulling message table data from
providers with the object of integrating these messages to events that are logged in the Windows event
log.

The Windows event log conserves space using a number of mechanisms. One way is to reference the
provider for each event along with unique event information in the log and store the more common
information in a resource binary. The term provider, as used here, is the source of the event that was
generated and is recorded in the event log. This can be one of the running services, drivers, or
applications. Reconstruction of the complete message for an event that is logged therefore requires
one to pull the common message strings from the resource that houses the provider’s information.
elmo is a utility to help the analyst do this.

One can examine the various providers for the event log by looking at the System hive in the Windows
registry, and for newer operating systems, the additional information in the Software hive. Each
provider, in turn, points to one or more PE (portable executable) files that contain an embedded table of
messages (referred to by Microsoft as a MESSAGETABLE). Within the table of messages, each item in
the table equates to an event identifier which is referenced when logging events in the event log. In this
way, boiler plate phrases or sentences can be offloaded to the MESSAGETABLE resources, and only the
unique values that populate the data in the message need to be stored in the log itself.

These dependencies are integrated in a seamless manner when analyzing event logs using Microsoft
tools and when on the same target machine that the log file was on. Doing it offline however, or using a
different tool to parse the event log, can be problematic, since understanding the dependencies can be
error prone and most of the techniques to extract the entry from the appropriate message table tend to
be manual. To complicate the process further, PE files with embedded MESSAGETABLE’s can change
from one operating system to the next. As an example, the MESSAGETABLE from the PE file
msaudite.dll, which is the main one for Security event auditing, differs from WinXP to Win7 to Win8.
While some of the events IDs match the messages across the operating systems, some do not. This is
also the case when considering different language types. Integrating all these MESSAGETABLES across
differing operating systems is thus a difficult task if tried to do manually.

When architecting elmo, our objective was to have a self-contained way to pull all the appropriate
message tables from a target computer and archive this data into a database that allows for easy
retrieval. SQLite was chosen as the database engine, since it is lightweight, portable and ubiquitous
across various operating systems. To make elmo handle a number of different use-cases, we designed

mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 25, 2025 Page 3

elmo to pull data from: (a) a live computer, (b) ‘dd’ image of a system volume, (c) a mounted system
volume image that was extracted from another box, or (d) discrete files pulled from a target box. For
some of the database creation use-cases, elmo needs to run at administrative privileges. Once the
database is created, elmo can be used for event log message re-creation and can be run at the typical
user privileges. While elmo doesn’t address all the issues for integrating events to message tables, it is
a good start.

2 Background Information

Since message tables are a key part of event message reconstruction, we added this brief section to

provide background information on: what are the message table components, where they come from

and how these components relate to each other. Arming oneself with this type of information will help

one understand the information elmo exposes and what it means.

2.1 Separation of Source Code from Language Specific Resources

When dealing with message tables (MESSAGETABLE’s) one needs to be familiar with the term MUI,

which is short for Multilingual User Interface. From a worldwide perspective, there are over 6900

known living languages in use. MSDN documents that the purpose of MUI is to “separate the storage

localization resources from application source code, so as to be able to architect any multilingual

application as a combination of language-neutral core binary and as set of language-specific localized

resource files”. Event logs use this concept as well.

MESSAGETABLE’s are defined using a message compiler (.mc) files and are compiled into resource files

using the Microsoft message compiler tool, mc.exe (that is distributed with Visual Studio as well as the

Windows Software Development Kit). The format of the message table is designed so that multilingual

error messages are easier to interpret.

Language names can be specified as either language names or Locale Code Identifiers (LCIDs). Below

are example of English and German language names and their companion LCID’s.

English: en-US or LCID 0x0409

German: de-DE or LCID 0x0407

Give the above, one can see that the LCID 0x0409 equates to the US version of English language name

(en-US). Even though the language name and LCID are different entities, in this document they are used

interchangeably since they directly relate to one another.

Copyright © TZWorks, LLC Apr 25, 2025 Page 4

2.2 How Language Names Relate Locale Code Identifiers (LCIDs)

Locale code identifiers are combination of a primary language ID (10 bits) and a secondary language ID

(6 bits) to form a 16 bit word. Below is a subset list of the primary language ID’s from 0x01 to 0x19.

Primary ID Abbreviation Description

0x01 ar Arabic

0x02 bg Bulgarian

0x03 ca Catalan

0x04 zh Chinese

0x05 cs Czech

0x06 da Danish

0x07 de German

0x08 el Greek

0x09 en English

0x0a es Spanish

0x0b fi Finnish

0x0c fr French

Depending on the primary language ID, the secondary language ID is a subset of the primary. For

example, for English one would use a primary ID of 0x09; below are some secondary IDs that can be

used for English.

Secondary ID Abbreviation Description Final LCID

0x04 en-us English – United States 0x0409

0x08 en-gb English – United Kingdom 0x0809

0x0c en-au English – Australia 0x0c09

0x14 en-nz English – New Zealand 0x1409

0x18 en-ie English – Ireland 0x1809

0x1c en-za English – South Africa 0x1c09

0x24 en-cb English – Caribbean 0x2409

0x28 en-bz English – Belize 0x2809

0x2c en-tt English - Trinidad 0x2c09

0x34 en-ph English - Philippines 0x3409

The incrementing of the secondary ID looks strange, but it is actually in succession; it is just an artifact of

the primary ID using the first 10 bits of the 16 bit word.

Copyright © TZWorks, LLC Apr 25, 2025 Page 5

2.3 Message String Arguments

For event logs to use pre-canned messages stored in provider resources and create unique messages for

each event ID, they make use of string arguments within the message resource. Each argument is

preceded by a percent ‘%’ character. The argument is another character that is used for an action. The

table below is taken from the Microsoft documentation on MESSAGETABLE string arguments and

contains most of the arguments that one will see in the provider message resource.

The arguments that have a number after the percent character are place holders that directly equate to

the event field that has the same index number. In this way, each event can uniquely put the proper

data in the specified position when recreating the entire message for that event.

More information on arguments and their meaning can be found at this URL [ref:

https://msdn.microsoft.com/en-us/library/windows/desktop/ms679351(v=vs.85).aspx]:

Value Description

%% A single percent

%<space> A single period space

%. A single period

%! A single percent exclamation point

%n A hard line break

%r A hard carriage return without a trailing newline character

%t A single tab

%0 Terminates a message text line without a trailing new line character

%1 - %99 Argument place holder

%1!format string! -
%99!format string!

Argument place holder with format specifier that is similar to the printf
formatting.

2.4 Where are the MESSAGETABLE’s

It is sometimes useful to see exactly where these MESSAGETABLE’s come from.

Below is what a MESSAGETABLE looks like for the Security Provider “msaudite.dll”. Highlighted is one of

the messages in the table equating to event ID 519. One can repeat this, by opening up “msaudite.dll”

from the System32 directory using pe_view from TZWorks. The MESSAGETABLE is embedded in the

resource section of the PE file.

This is the data that elmo extracts and catalogs for easy retrieval during its database creation phase.

Copyright © TZWorks, LLC Apr 25, 2025 Page 6

Copyright © TZWorks, LLC Apr 25, 2025 Page 7

3 How to Use elmo

The screen shot below shows all the options available. The options are grouped into categories that

equate to three basic functions: (a) create a SQLite database of MESSAGETABLE’s, (b) query the

database to find specific data within the database, and (c) analyze the CSV data produced by the

TZWorks® tool evtwalk and annotate the CSV data with message data.

3.1 Database Creation (or Database Update)

Shown in the menu above, there are four ways to create or update an elmo database with new

MESSAGETABLE data. The database that is created or updated is formatted as SQLite. The sections

below describe each of these ways. For Linux and OS-X versions of elmo, this is reduced to two ways

(‘dd’ image and discrete files).

3.1.1 Create from a Live Volume

Creating a database from a live volume requires one to run elmo with administrator privileges. This

option is only available when running on Windows operating systems. To invoke this command one

uses the -livesys switch and specifies that name of the database to create via the -db <path/dbname>.

Copyright © TZWorks, LLC Apr 25, 2025 Page 8

The resulting database that is operating on can be a new database (in which case it is created) or an

existing database. If specifying an existing database, elmo will only add new MESSAGETABLE entries to

the database. The term ‘new’ is defined here, in the sense that the hash of the MESSAGETABLE doesn’t

already exist in the database.

When creating new databases, it is recommended using a name that describes the target machine

operating system and the default language used. Creating a separate elmo database for each Windows

OS and/or language ID is the most reliable way to ensure that the proper message is matched with the

event ID. The importance of a good naming convention will become more apparent later when trying

to use the database to correlate messages to event IDs.

For example, on a Windows 7 box, where you think the default language ID is en-US, one might use:

Be aware, that even though the name includes en_us, what elmo does internally is look at the default

language ID that is on the operating system and targets it. So if it happens to be German, then it will

target MESSAGETABLE resources that are German versus English. elmo does, however, include an

option to force it to look at other language identifiers (LCIDs), via the -lcid option. One can specify any

LCID one wants via this option and elmo will scan the system volume for MESSAGETABLE resources with

those LCIDs, in addition to the default LCID.

Another factor to consider when using elmo to create databases is that elmo will scan all the providers

identified by the System hive (and depending on OS version, the Software hive as well) of the Windows

registry. From each provider found, it will then parse each of the PE resources that were identified. This

can amount to a lot of data in one database. If one only wants to target a specific category of providers,

there are a couple of optional switches: -only_security, -only_system, and -only_application, to

target the respective providers from security, system or applications. While there are other providers,

these are the main ones. Suffice it say, if one wants all to pull all the providers MESSAGETABLE

resources then invoke elmo using the default behavior by not specifying any of these optional switches.

3.1.2 Create from a captured System Mounted Volume

If one captures an image of a Windows system volume as a file and it can be mounted on a separate

workstation as a separate drive letter, then elmo can target this mounted volume. The proviso is that

the mounted system volume is mounted as a ‘block device’ where the entire filesystem is exposed

without additional aliases.

This option is similar to the previous one with a live system volume, but just targets a separated system

volume mounted as another drive letter. One uses the option: -partition <drive letter> to invoke this.

All the same optional switches discussed above apply here.

This option is only available to Windows and requires one to run elmo with administrator privileges.

Copyright © TZWorks, LLC Apr 25, 2025 Page 9

3.1.3 Create from an Off-Line (unmounted) Image

If one captures an image of a Windows system volume as a single ‘dd’ file, one can point this elmo to

this file. This option does not require any special permissions when running elmo, however it does

requires the file to be a monolithic ‘dd’ type image of a Windows system volume. What this means is

the ‘dd’ image consists of one file, and not multiple files that are parts of one image. This mode can be

run from any compiled version of elmo, such as OS-X or Linux. The same optional switches discussed

above apply here.

To invoke this option, use the syntax: -image <path/filename of the ‘dd’ image>. The image option is

similar to the live volume in the sense that elmo will locate the proper registry hives, parse them, and

based on the registry information, locate the PE resources, extract the MESSAGETABLE data and build a

database that can be used offline.

3.1.4 Create from discrete files

Lastly one can tell elmo to create (or update) a database directly from separate files that were extracted

from a target box. The necessary files would include: (a) Windows system and software registry hives

and (b) the PE files that contain the MESSAGETABLE resources. One uses the options -sys <system

hive> and -sw <software hive> to specify the system and software hives, respectively. The -dir

<directory of PE resources> option specifies the directory where to locate the PE resources that are

referenced by the data in the system and software hives.

Using this option does not require any special permissions when running elmo. Also, this option can be

run on Linux and OS-X. There are, however, some limitations when using this mode. The biggest

limitation is making available all the PE resource files needed so that a complete listing of event log

message tables can be cataloged within the database that is created or updated. Further, one must

ensure the PE resource files included in the directory match those specified as providers in the system

and software hives. For this reasons, it is best (and less problematic) to use one of the previous options

which rely on the Windows system volume being present during the database creation.

3.2 Querying the database using elmo

One can use SQLite tools to query the database, or one can use the built in elmo commands to

enumerate any of the tables, their contents, or to search for matching messages given an event ID and

its associated provider.

3.2.1 Table Enumeration

For general table enumeration functions, one can use the appropriate option to enumerate all the

entries of a desired table. For example, the options -tables, -providers, and -metadata refer to the

respective tables: ref, _providers and metadata. The option: -msgtable < table name > refers to the PE

Copyright © TZWorks, LLC Apr 25, 2025 Page 10

resource tables, where the table name is the name of the PE file. If there are questions about how the

data in the database was gathered one can use the -create_stats to enumerate the _genesis table,

which will include, among other things, the command line used during database creation. Multiple

entries imply that multiple target operating systems were used to create the database. If there were

some PE resource entries that you thought should have been parsed but were not, use the -errors

option to enumerate all the problem entries that were discovered and the reason why elmo thought it

was a problem.

Finally, in the category of table enumeration, if one instead wants to view any of the table contents in a

graphical sense, the SQLite browser from SQLite.org works well.

3.2.2 Event ID Query

For spot event ID queries, one can input an event ID and provider name (or GUID) and get the associated

event message. To do this, one uses the option: -id <#> -provider <name>. In some cases, more than

one message will be returned. This is because an event ID may have multiple qualifiers that are

embedded into the high order bits of the raw event ID, where the lower 16 bits are the identifier itself.

Another reason that one may get multiple entries is if the database was created using PE resources from

multiple Windows operating systems. This usually causes overlap between event IDs.

Below is an example where we created a single database from both Win7 and WinXP images and

queried an event identifier that 615 from the Security provider. The PE resource file used by the

Security Provider for both Win7 and WinXP is msaudite.dll. While most PE resources that span multiple

operating systems have similar messages, some do not, like that in the example below.

In this case the first message is just the characters "%1" and the second is the message "IPSec Services:

%t%1%n". The "%1" is the way Microsoft defines a placeholder for a string argument. The data for the

Copyright © TZWorks, LLC Apr 25, 2025 Page 11

string argument is taken from the parsed event log and substituted into the message. The other

variables, %t and %n are for a tab character and line feed character, respectively. So, while this example

has a very short message, it was shown to enlighten the user that the combination of Provider and Event

ID do not necessarily yield unique messages. As operating systems are enhanced, the names of many of

the system PE resources stay the same, but their respective message tables may or may not change.

To help one understand the data that is outputted by elmo, the definition of the above fields is shown in

the table below:

Field Definition / option Source of data

Event ID Unfiltered 4 bytes of the event ID Message table

Event code Lower 2 bytes of the event ID Derived from Event ID

Severity High 2 bits of the event ID. Options are:
00 - Success,
01 - Informational,
10 - Warning,
11 - Error

Derived from Event ID

LogType Which type of event log this event applies to.
Common ones are: Security, System and
Application.

Parent key of the provider of the
eventlog in registry hive

Provider Name of the provider that pointed to this PE file
containing the message table

Taken directly from Providers in
System and/or Software hives

SrcMsgFile PE file containing the message table Usually in System32 directory

TypeMsgFile Relates to type of MESSAGETABLE. Options are:
1 - Event (EventMessageFile),
2 - Category (CategoryMessageFile),
3 - Parameter (ParameterMessageFile),
4 - Guid (GUIDMessageFile)

Taken directly from Providers
identified in System and/or Software
hives

LCID Language Code Identifier MUI name or PE resource internals

Min OS Minimum Window OS that this PE resource is
applicable for

Directly from PE resource internals

Message Raw Message table entry associated with Event
ID

Directly from PE resource internals

For the TypeMsgFile where multiple types are shown, this is because multiple types were either

specified in the registry hive or because different providers specified different types for the same PE

resource.

One can also query using a provider GUID, which is shown below. Notice, that there is no filtering in the

output, so duplicate entries are displayed. We tried to annotate the reasons for each duplicate entry.

Copyright © TZWorks, LLC Apr 25, 2025 Page 12

3.3 Using elmo with evtwalk CSV Data

evtwalk is a TZWorks command line tool for parsing Windows event logs and outputting the results in a

CSV fashion. While evtwalk pulls all the data available from an event log, it doesn’t try to locate and

extract the message table from the PE resource. To fill that need, we therefore added the functionality

into elmo. So, if one has the updated version of evtwalk (v0.30 or later), one can take the CSV output

from evtwalk and pass it into elmo. elmo in turn will analyze the CSV data and extract certain fields (like

the provider and event ID for each record) and look up an associated message table. After this, elmo

will perform argument substitution by taking the parameter data from the CSV file and generate a

message which then gets appended to the CSV data. To ensure there is no corruption with the original

CSV data, a new CSV file is created, which is identical to the original evtwalk CSV file inputted, but adds

a couple of extra fields to each record. These fields include: (a) message translation and (b) task

category translation.

This option should be considered experimental, since a number of conditions need to be satisfied for the

above process to work. Firstly, it assumes that resulting CSV file produced by evtwalk has all the fields

needed by elmo populated. Basically this means that if you run evtwalk in a mode that does not filter

any fields, then it should work. If filtering is used and the required fields needed by elmo are filtered

out, then the results will be unknown. Second, the CSV file needs to have the required field header

Copyright © TZWorks, LLC Apr 25, 2025 Page 13

names and argument syntax for elmo to extract the proper fields during its analysis. If one is using the

latest version of evtwalk (v0.31 or greater), then this latter requirement is satisfied.

4 SQLite Notes

4.1 SQLite Dependencies
elmo makes use of the SQLite library. If one is unfamiliar with SQLite, the official SQLite website is

http://www.sqlite.org/. It has documentation and details on everything one would ever want to know.

Prior versions to v0.24 required a separate shared SQLite library for the tool to run. Starting with v0.24,

we have compiled in the static library into elmo, so everything is self-contained.

4.2 Database Schema used by elmo
If one is interested in the internals of the database that gets created from elmo, below is a diagram of

the database schema used. There are a few tables to track housekeeping items (tables: ref, _providers

and metadata). There are also two tables (_genesis and _problem) to record the history of what

commands were used in database creation and any problems encountered during database creation.

These latter two are only used to help diagnose problems. The other set of tables uses a generic table

structure to record MESSAGETABLE data of PE resources. These last set consist of one table per unique

PE resource.

The table used for navigation and summary information is the metadata table. It in combination with

the PE resource MESSAGETABLE tables allows elmo to quickly pull the candidate messages given an

event identifier, provider name and an optional language identifier.

http://www.sqlite.org/

Copyright © TZWorks, LLC Apr 25, 2025 Page 14

Given the general schema above, one can see the basic relationships for each of the tables. elmo has a

few built-in options to dump any of the above tables. This is useful if the user is not familiar with SQL

queries or needs to look something up quickly. The options for table enumeration are discussed in the

section on “Table Enumeration”.

4.3 Providers
In the discussion, the term “Provider” will be used to pinpoint where the event ID references. In some
references the name Publisher is used instead. For the purposes of elmo, the name Provider is used for
both.

Providers were originally listed in the System hive of the Windows registry, specifically the subkeys
located here: HKLM\SYSTEM\CurrentControlSet\services\eventlog\<event log names>\<provider
names>\. So for Window XP and later operating system versions, this location still has a list of
Providers. With the later versions, a Provider name can also have a GUID (Globally Unique Identifier)
associated with the name, as well as have more details in the Software hive. Specifically, if one looks at
the subkeys: HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\WINEVT\Publishers\<GUID>\),
there contains a list of Provider GUIDs associated with Provider Names.

In the schema shown above, the “_providers” table will contain both the Provider Name and Provider
GUID (if available). This allows one to query an event ID with either Provider Name and/or GUID.

Related to the Provider, is the log_type field. This entry specifies an event log name that can contain
entries by a Provider. In some cases one can see one Provider has entries in multiple event log types.

Copyright © TZWorks, LLC Apr 25, 2025 Page 15

Familiar log_types are event logs named: “Security”, “System”, and “Application”. There are many other
log_types for the new versions of Windows.

4.4 Mapping of an Event to elmo Database
When needing to check the results of elmo manually, one needs to understand how to map a specific

event to a final translated message. To do this accurately, one needs to understand the fields used in

the event and how they are matched to records in specific SQLite tables.

As an example, below is Event ID 7036 rendered from the TZWorks® tool evtwalk. Highlighted with

numbers are the locations of data used by elmo to perform automatic lookup and message translation.

The key fields are: (a) Provider name and GUID (shown as 1 and 2 below), (b) Event ID and Qualifier

(shown as 3 and 4 below), and (c) any string arguments (shown as 5). The first thing elmo looks at is the

Provider name and/or GUID and looks up the Provider details in the metadata table. If a record is

found, elmo then finds which PE resource message table was referenced by the Provider. With the PE

resource message table, elmo then looks for a record with the target event ID and qualifier. If this is

located, then the message is extracted. If there are any string arguments that need to be populated

with event data, those fields are searched in the event, and if found, extracted and substituted into the

string arguments to make a completed message for that event.

Copyright © TZWorks, LLC Apr 25, 2025 Page 16

4.5 Handling Multiple Languages

The database created by elmo internally stores the associated language identifiers for each message

table that is extracted. This has a couple of benefits. First it allows multiple languages for the same

provider and event ID to co-exist within the database. Second it allows one to query the database and

specify which language identifier to use.

To create a database that has message tables with multiple languages, one has a couple of options: (a)

the first use-case is during the creation of the initial database, pass in the option -lcid <language ID’s

delimited by commas>. What this tells elmo to do is to first look at the default language (from the

target box) and then look at any language ID’s specified as well. So if one wanted English, French and

the German language message tables, one could specify -lcid “en-US, fr-FR, de-DE”. The resulting

database that is created will be based on the ability of elmo to find all the PE resources of the language

types that were specified. (b) The second use-case is to run elmo with the database creation option for

each target box passing in the same database for each one. elmo, in this case, will merge new message

table data into the database for each run. If the target machines had operating systems with differing

default language packs, then the resulting database at the end would have a combination of the

message tables for each of those default languages.

Below is an example of doing this on English, French and German. Shown below are some of the fields

for the provider “Microsoft-Windows-FMS” in the metadata table that was created. This particular

provider points to the PE resource file fms.dll, located at %systemroot%\system32\<lang

id>\fms.dll.mui. Each version of the message table resource is stored at the respective <lang id>

subdirectory.

When looking at the ‘fms.dll” data table that was created, one would see entries for each LCID that

extracted, which in this case is en-US, de-DE, and fr-FR. For each of these LCID’s there is an event code

and its associated message for the language.

Copyright © TZWorks, LLC Apr 25, 2025 Page 17

5 Available Options

Option Description

-livesys

Create a database from the system volume elmo is being run on. The

format is:

-livesys -db <resulting db>

-partition

Create a database from a mounted image from some offline system

volume. The format is:

-partition <drive letter containing mounted system volume> -db
<resulting db>

-image

Create a database from an image of a system volume. The image

needs to be a monolithic file in ‘dd’ format. The format is:

-image <file with dd image> -db <resulting db>

-sys

-sw

-dir

Create a database from this specific System registry hive and/or

Software hive. Use the PE resources identified in directory

specified. The format is:

-sys <system hive> -sw <software hive> -dir <system32
directory> -db <resulting db>

-id

-provider

Query the message that matches this event ID and provider. The

format is:

-id <event ID> -provider <name of provider> -db <db to query>

-msgtable

Dump the table data for a specific MESSAGETABLE resource. The

format is:

-msgtable <table name> -db <db to query>

-metadata
Dump the metadata table. The format is:

-metadata -db <db to query>

Copyright © TZWorks, LLC Apr 25, 2025 Page 18

-providers
Dump the providers table. The format is:

-providers -db <db to query>

-tables
Dump the tables used in the elmo database. The format is:

-tables -db <db to query>

-create_stats
Dump the creation table stats. The format is:

-create_stats -db <db to query>

-errors
Dump the provider errors. The format is:

-errors -db <db to query>

-lcid

Include the following language IDs in the MESSAGETABLE

resource extraction during the database create option. The format is:

-lcid “de-DE, fr-FR, ja-JP, en-US, …” [any of the database creation
options]

-only_security

Only pull security providers during the extraction of

MESSAGETABLE resources during the database create option.

The format is:

-only_security [any of the database creation options]

-only_system

Only pull system providers during the extraction of

MESSAGETABLE resources during the database create option.

The format is:

-only_system [any of the database creation options]

-only_application

Only pull application providers during the extraction of

MESSAGETABLE resources during the database create option.

The format is:

-only_application [any of the database creation options]

-src

-dst

The -src option specifies the CSV file containing the output of

evtwalk parsed data. The -dst option specifies where you want the

resulting data to put.

-src <evtwalk CSV file> -dst <results file> -db <db to use for

message tables>

-os

Target the following Windows operating system event log message

tables (if possible). The format is:

-os [winxp|vista|win7|win8|win8.1|win10]

-msg

Option for -src / -dst for parsing evtwalk CSV output, to tell how

you want the messages to be integrated into the final output. raw =

show raw message with no parameter substitution; debug = provide

parameter substitution along with original argument string. Default

mode does parameter substitution without the argument string. If

desiring default mode, don’t use this option. The format is

Copyright © TZWorks, LLC Apr 25, 2025 Page 19

-msg [raw | debug]

6 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

Copyright © TZWorks, LLC Apr 25, 2025 Page 20

7 References

1. Microsoft Portable Executable and Common Object File Format Specification.
2. An In-Depth Look into the Win32 Portable Executable File Format, by Matt Pietrik, MSDN

Magazine.
3. Wikipedia, the free encyclopedia. PE format
4. String Message Arguments. https://msdn.microsoft.com/en-

us/library/windows/desktop/ms679351(v=vs.85).aspx
5. Detailed explanation of the message text file:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/mc_77lf.asp
6. Parsing Event log data with theTZWorks® evtwalk tool.

https://tzworks.com/prototype_page.php?proto_id=25
7. Viewing of MESSAGETABLE data in PE Resource with the TZWorks® pe_view tool.

https://tzworks.com/prototype_page.php?proto_id=7
8. SQLite library statically linked into tool [Amalgamation of many separate C source files from

SQLite version 3.32.3].

9. SQLite documentation [http://www.sqlite.org].

http://www.microsoft.com/whdc/system/platform/firmware/pecoff.mspx.
http://en.wikipedia.org/wiki/Portable_Executable
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679351(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679351(v=vs.85).aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/mc_77lf.asp
https://tzworks.net/prototype_page.php?proto_id=7

	1 Introduction
	2 Background Information
	2.1 Separation of Source Code from Language Specific Resources
	2.2 How Language Names Relate Locale Code Identifiers (LCIDs)
	2.3 Message String Arguments
	2.4 Where are the MESSAGETABLE’s

	3 How to Use elmo
	3.1 Database Creation (or Database Update)
	3.1.1 Create from a Live Volume
	3.1.2 Create from a captured System Mounted Volume
	3.1.3 Create from an Off-Line (unmounted) Image
	3.1.4 Create from discrete files

	3.2 Querying the database using elmo
	3.2.1 Table Enumeration
	3.2.2 Event ID Query

	3.3 Using elmo with evtwalk CSV Data

	4 SQLite Notes
	4.1 SQLite Dependencies
	4.2 Database Schema used by elmo
	4.3 Providers
	4.4 Mapping of an Event to elmo Database
	4.5 Handling Multiple Languages

	5 Available Options
	6 Authentication and the License File
	7 References

