

Abstract
lp is a standalone, command-line tool used to extract

SHLLINK artifacts from Windows shortcut files. It can

operate on a single shortcut file, a collection of shortcut

files, or on an entire disk image. All artifacts can be

outputted in one of three parsable formats for easy

inclusion with other forensics artifacts. lp can also parse

unallocated space to extract additional artifacts. lp runs on

Windows, Linux and Mac OS-X.

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v1.08 of lp

Updated: Apr 25, 2025

TZWorks® Windows LNK Parser
(lp) Users Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 25, 2025 Page 1

Table of Contents

1 Introduction .. 2

2 SHLLINK Metadata and What lp Extracts .. 3

2.1 Example of a more common LNK file’s output ... 3

2.2 Example of breaking out more metadata from the ID List ... 4

2.3 Pulling out Metadata from the Segmented ItemIDs ... 6

2.4 Example of an ID List embedded into a VistaAndAboveIDList .. 6

2.5 Example of a LNK file utilizing a PropertyStore Data Block .. 7

3 How to Use lp .. 8

3.1 Parsing an Individual Shortcut File .. 9

3.2 Parsing a Captured Image for SHLLINK metadata ... 9

3.2.1 rawscan option ... 9

3.2.2 ntfs_scan option.. 11

3.3 Parsing Automatic and Custom Destinations files used for Jump Lists 12

3.4 Parsing a Collection of Files .. 13

3.5 Parsing an Active Volume [Experimental Option] .. 14

3.6 Parsing a VMWare volume ... 15

3.7 Parsing Volume Shadows .. 15

3.8 Parsing non-ASCII character sets .. 16

4 Known Issues ... 17

5 Available Options .. 17

6 Authentication and the License File .. 20

6.1 Limited versus Demo versus Full in the tool’s Output Banner .. 20

7 References .. 20

Copyright © TZWorks LLC Apr 25, 2025 Page 2

TZWorks® LNK Parser (lp) Users Guide

Copyright © TZWorks LLC
Webpage: http://www.tzworks.com/prototype_page.php?proto_id=11
Contact Information: info@tzworks.com

1 Introduction

lp is a command line version of a Windows SHLLINK [2] parser that was designed to operate on shortcut

LNK files, but can parse SHLLINK artifacts from files that generate Jump Lists as well. Originally inspired

by the forensic class taken from the SANS Institute [1] back in Jan 2010, lp is a useful tool for any

computer forensic toolkit.

While shortcut files can reside in just about any directory, the primary location for many shortcut files is:

%APPDATA%\ Microsoft\ Windows\ Recent\ <shortcut files>, where the %APPDATA% is resolved to

C:\Users\<user account>\AppData\Roaming. This is where the operating system automatically creates a

shortcut based on a user double clicking on an application to launch it.

Of interest to the forensic investigator is the metadata associated with this type of file, since they offer

many useful artifacts when determining activity on a computer. Some of these artifacts include:

• The path to the target file/directory it references along with modify/access/create timestamps

• The size of the target when it was last accessed.

• Serial number of the volume where the target was stored.

• Network volume share name (if applicable).

• Target attributes, such as whether it was 'read only', 'hidden', 'system', etc.

• One of the MAC addresses associated with the host computer (available when an Object ID is

present).

When trying to parse out the above artifacts, one can turn to the Microsoft open specification

agreement, where there is a published version of the Windows SHLLINK format. (ref: MS-SHLLINK [2]).

From this specification, one can see many of the details needed to understand the structures of the

format. Prior to Microsoft publishing this specification, there was another source describing the details

of the LNK format. Jesse Hager's paper (ref [3]) discussed his results of reverse engineering the LNK

internals.

The parsing engine of lp makes use of the Microsoft specification to extract much of the shortcut

internals. Where the specification lacked details, we ended up using empirical data to help understand

some of the more opaque data structure types allowing us to parse the SHLLINK format more fully.

mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 25, 2025 Page 3

2 SHLLINK Metadata and What lp Extracts

When creating tools that parse artifacts that still have unknowns associated with them, there is a

balance on what data should be presented to the user and which should not. On one hand, we at

TZWorks LLC personally like to see all the data artifacts, complete with file offsets, so we can trace each

artifact in a hex editor. This allows one to hand carve the data and is very important to the reverser.

However, this type of data is most likely to be too noisy for the normal user. Therefore, the version that

is available commercially is a subset of options we consider useful to the general investigator. Some of

these options include: (a) carving SHLLINK metadata from images and live volumes, (b) handling the

nuances of the Destinations files used in the Jump Lists, and (c) additional output format options.

To see lp’s default output, and hence some of the SHLLINK metadata, below are a series of snapshots

that represent how various data can be embedded into the LNK file. (Note: sample LNK data was

provided by Rob Lee from the SANS Institute as exemplars, which he took from the Donald Blake image

used in the SANS 408 Forensics class).

2.1 Example of a more common LNK file’s output

When analyzing lp’s output, a number of timestamp data is shown, including shortcut file timestamps as

well as the target (what the shortcut file points to) timestamps. The output should contain the size of

the target, if it is a file versus a directory, and will contain a path to the target. As part of the SHLLINK

specification, there is also what Microsoft calls a TrackerDataBlock. This is what we refer to as the

object identifier (ID), since it is really the object ID of the NTFS MFT record associated with the target file

or directory.

The object ID is another way to reference the target file/directory and ultimately allows the operating

system a straight forward way to ‘track’ the target file or directory at the lower level NTFS object ID/MFT

entry level. This object ID is part of the target file and moves where the target moves. In the SHLLINK

metadata there are two object IDs: (a) one that is recorded when the shortcut is created, and (b) one

that is the current one. For the most part these two object IDs are the same and will only differ in

certain conditions. Internally, lp makes note of both object IDs, however, it will only display both if they

are different.

Associated with the object ID is a creation timestamp and media access control (MAC) network interface

identifier that was present during the object ID creation. The format of the object ID follows the Type 1

specification outlined in RFC 4122 (Universally Unique Identifier URN Namespace) [10]. Using this

specification, one can extract the object time and MAC address from the object ID itself. This means

that there is not any object ID timestamp or network interface artifact explicitly present in the SHLLINK

metadata, and any data shown in lp’s output for these fields is from implicitly inferring it by extracting it

from the object ID itself. When analyzing the below MAC network interface extracted, it identified one

of our VMWare network interfaces and not the primary computer’s network address.

Copyright © TZWorks LLC Apr 25, 2025 Page 4

While there are a number of paths to the target, the key one is the one labeled ‘ID List’ shown above. It

is generated from a series of SHITEMID structures [9] embedded in the SHLLINK metadata that is used to

construct the final path of the target. It is important for any SHLLINK parser to pull this out, since

Windows defaults to the path described in this structure (if it exists) when resolving where the target file

or directory is located.

2.2 Example of breaking out more metadata from the ID List

Copyright © TZWorks LLC Apr 25, 2025 Page 5

If the LNK file references a file from a portable device, more detailed information can be found out

about the portable device that was used. For example, if the portable device interfaced with the

computer as a USB device, the LNK file may have data such as vender ID and product ID of the device

that was used complete with serial number. This would be useful in tracking down that a particular

device was used on that computer while accessing a file on the device. Above is an example

demonstrating this type of information is available in a LNK file and was taken from the SANS 408

Donald Blake Windows 8 image.

Sometimes, certain embedded information may have specific timestamps associated with the target

path and item that the LNK file refers to. Normally, the ID List contains DOS timestamps, which can be

extracted as well. The timestamps shown in the next example, however, represent Windows FILETIME

timestamps pulled from the properties embedded into each of the nodes that make up the ID List.

Below is an example of this.

Copyright © TZWorks LLC Apr 25, 2025 Page 6

2.3 Pulling out Metadata from the Segmented ItemIDs
As stated earlier, Windows uses the Shell ItemID to build the path of the file specified for the link. Each

ItemID can contain other information beside the segment of the path. This other information can

include: (a) MAC times, MFT entry of the segment, and MFT sequence number. To pull out this

additional metadata, use the -idltimes switch. Below is an example of performing this on the Asgard.lnk

parsed earlier. The additional data outputted is highlighted below.

2.4 Example of an ID List embedded into a VistaAndAboveIDList

Copyright © TZWorks LLC Apr 25, 2025 Page 7

For some LNK files, the ID List is stored within the VistaAndAboveIDList data block. This, like the ID List

examples previously, can have extra metadata which may provide additional insight to the target file. In

some cases, the data is just redundant.

2.5 Example of a LNK file utilizing a PropertyStore Data Block

In some cases, the LNK file will make use of what is called a PropertyStore data block. This block

encapsulates much metadata that could be useful in an analysis. Below is an example. For this example,

this particular LNK file did not record a target file’s dates or other stats common to LNK files. In this case,

most of the data about the target file was started in the PropertyStore data block.

Copyright © TZWorks LLC Apr 25, 2025 Page 8

3 How to Use lp

For starters, lp is a console application. Therefore, to be able to access, and thus parse, shortcut files

across all computer accounts, one will need to open the command prompt with administrator privileges

first. Without administrator privileges, one will be restricted to only accessing your account’s shortcut

files or those common to the operating system.

One can display the menu options by typing in the executable name without parameters. A screen shot

of the menu is shown below. By using the options in various ways, one can process SHLLINK metadata

with six general ‘use-cases’: (1) processing an individual shortcut file, (2) carving from a captured

image, (3) extracting from Jump List files, (4) processing a collection of files, (5) carving from a mounted

volume, and (6) carving from a VMWare volume.

These ‘use-cases’ are annotated in the screen shot below.

For output options, there are four possible formats to choose from: (1) default output, which is

unstructured output. The screenshot in the previous section above is an example of what this output

looks like. This information is useful if not trying to parse the artifacts into a database. (2) –csv (comma

separated value) option will render the output so that all the metadata is rendered with one record per

Copyright © TZWorks LLC Apr 25, 2025 Page 9

line which each field separated with a comma. The last two are: (3) –csvl2t and (4) -bodyfile. Each will

attempt to conform to either the log2timeline utility or the SleuthKit’s bodyfile format, as appropriate.

3.1 Parsing an Individual Shortcut File

The most basic option is to parse an individual shortcut file. To do so, just pass the name as the

parameter to lp, as shown below, and the output will default to the long form shown in Section 2 above.

 lp <shortcut filename>

3.2 Parsing a Captured Image for SHLLINK metadata

To parse an entire image of a drive that is contained in a file (eg. a ‘dd’ type image), one can either use

the -rawscan or the -nfts_scan option. The first option ignores volume boundaries and file system

internals and does a brute force scan, by looking for any SHLLINK signatures. For each signature found,

lp will attempt to carve out any SHLLINK metadata. This type of scan will carve out signatures from

allocated, unallocated or slack space. The second option assumes the image contains an NTFS volume,

and uses the file system internals to find LNK and/or Jump List files that contain SHLLINK data.

lp is able to scan very large files by reading a manageable chunk from the file at a time and output the

results as they are generated. So if your image is many gigabytes in size, lp should be able to process

the entire image without using too much memory or system resources.

3.2.1 rawscan option

If using the -rawscan option, lp is agnostic as to the file system type, as it treats all formats the same.

While this is good news in that it can work on any file system, it is also bad, in that it does not try to

reconstruct files that are fragmented across non-contiguous clusters. Empirical results show, however,

that since the SHLLINK metadata is relatively small, the fragmentation of these files is close to nil. Thus,

this type of scanning/carving/parsing shows a high success rate in gathering the artifacts.

When parsing a large image, there will presumably be many SHLLINK entries carved out, thus it is

recommended to: (a) use the –csv option to place one record per line, and (b) redirect the output into a

separate file. Below is an example:

 lp c:\temp\dd_imagefile.bin -rawscan -csv > results.csv

There are some caveats to be aware of when using this option, since the algorithm for locating LNK files

relies on a LNK file residing on a sector boundary in the image (or volume) and tries on a best effort

basis to locate LNK files embedded in certain files or file structures.

Copyright © TZWorks LLC Apr 25, 2025 Page 10

For example, there are cases in the NTFS file system where the file data may not start on a sector

boundary. This happens when the NTFS File Record has enough space to house the data from the LNK

file. This is best shown with some snapshots. For this example, we located a file that had this

condition. The LNK file is called “Dear Carol.LNK”. When looking the right side of the snapshot, the Data

Attribute is highlighted to show that the data is labeled as “Resident Data” (vice “Nonresident Data”).

“Resident Data” means the data explorer sees for the file is located within the File Record itself. Starting

with version 0.62, the –rawscan option will extract these embedded LNK files from NTFS File Records.

If one looks at the raw File Record for the entry, one will see how the File Record attributes are packed

including, in this case, the data for the file. In the snapshot below, is highlighted the actual LNK file data.

Copyright © TZWorks LLC Apr 25, 2025 Page 11

3.2.2 ntfs_scan option

The -nfts_scan option targets a specified mounted NTFS volume or an image with an NTFS volume. This

option starts by scanning the $MFT data looking for certain files (LNK file and JumpList files) and extracts

their data so it can parse the SHLLINK internals. This is more reliable than using the -rawscan option

discussed earlier, since this option allows the data to be fully reconstructed prior to parsing it. This

gives the lp tool an advantage when encountering Jump Lists, since it now can pull out the LNK chunk of

data associated with the Jump List (either automatic or custom type).

If the image one want to analyze is a disk containing multiple volumes, one needs to specify the offset of

the volume that will be scanned. This is done via the optional parameter -offset <disk offset of

volume>.

The -ntfs_scan option also allows for two sub-options to allow one to analyze the unallocated clusters

associated with the volume as well as any Volume Shadow clusters. These sub-options

are: -include_unalloc_clusters and -include_vss_clustsers. Using these options together will yield

the maximum number of SHLLINK data parsed.

Copyright © TZWorks LLC Apr 25, 2025 Page 12

3.3 Parsing Automatic and Custom Destinations files used for Jump Lists

Jump Lists are a new feature, starting with Windows 7. They are similar to shortcuts files in that they

take one directly to the files that are used on a regular basis. They are different than the normal

shortcut files in that they are more extensible in what information they display. For example, in Internet

Explorer, the Jump Lists will display websites frequently visited; for Microsoft Office products like Excel,

PowerPoint and Word, they will show most recently opened documents.

From a user’s standpoint, Jump Lists increase one’s productivity by providing quick access to the files

and tasks associated with one’s applications. From a forensics standpoint, Jump Lists are a good

indicator of which files were recently opened or which websites were visited frequently.

Per Troy Larson [5], Windows derives the Jump List content from two sets of Destination files:

a. %APPDATA%\Microsoft\Windows\Recent\AutomaticDestinations\[AppID].automaticDestinations-ms

b. %APPDATA%\Microsoft\Windows\Recent\CustomDestinations\[AppID].customDestinations-ms

%APPDATA% is resolved to C:\Users\<user account>\AppData\Roaming. One can see that each user

account (or profile) has its own set of Destination files.

For most automatic Destinations type files, lp can find and parse the SHLLINK metadata with no special

command line options (eg. using just the default settings). This is because the automatic Destinations

type files have a compound file signature, which is built into the lp scanning engine. lp will recognize

this signature, reconstruct the allocated/unallocated sectors within the compound file and scan the

chunks appropriately. On the other hand, the custom Destination type files only have SHLLINK

signatures which do not necessarily occur on sector boundaries. Therefore, to assist lp, to parse this

type of file, one invokes the –deepscan switch. This tells lp to scan in a mode that is in-between a

normal LNK file scan and a captured image type scan. This switch has no effect on normal shortcut files,

so it can be used to handle both shortcut files as well as automatic/custom Destinations files.

While lp does a good job at pulling out the SHLLINK metadata from both automatic and custom

Destination type files, it does not attempt to parse the MRU/MFU data from the automatic Destinations

files. To parse these files in a complete fashion, one can use the jmp tool from TZWorks. The jmp tool

understands how to parse the both types of Destinations files in a manner to extract all pertinent

metadata for the investigator.

Below is a comparison of the outputs of running the lp tool and the jmp tool against the same automatic

Destinations file. This output is representative of the differences between the two tools. For more

information about the jmp tool, one can download and review the readme file for the tool.

Copyright © TZWorks LLC Apr 25, 2025 Page 13

3.4 Parsing a Collection of Files

Sometimes one just wants to parse a bunch of shortcut files that are in a directory or a collection of

subdirectories. Compared to the partition scan discussed above, this option is much faster. The

disadvantage with this approach over the partition scan, is that one does not get artifacts that have

been deleted and are still in unallocated or slack space.

To use this option, one will make use of the operating systems ability to pipe data from one application’s

output to another application’s input. In this case, the source of the data will be the Windows shell

command dir. By adding some special options to the dir command, one can output only the

path/filename without any extra data. This result will be consumed by lp, and each path/filename

passed in will be analyzed. To invoke this behavior in lp, one will use the –pipe switch. The annotated

figure below explains how the syntax of the command is composed.

Copyright © TZWorks LLC Apr 25, 2025 Page 14

If one cannot use the -pipe option, one can use the experimental -enumdir option, which has similar

functionality with more control. The -enumdir option takes as its parameter the folder to start with. It

also allows one to specify the number of subdirectories to evaluate using the -num_subdirs <#> sub-

option.

3.5 Parsing an Active Volume [Experimental Option]

A variant of parsing a captured image is to parse an active Windows partition or a mounted volume on

Linux. The Windows version is invoked by using the -partition <drive letter> option. On Linux, this is

handled by passing in the device name of the disk and/or volume as the filename without the use of the

–partition keyword. The other option that needs to be set is to identify whether to use the –rawscan

or -ntfs_scan option.

Below is an example of lp carving out SHLLINK signatures from a USB drive mounted as drive H for

Windows and /dev/sbd1 on Linux.

 lp -partition H [-nfts_scan | -rawscan] -csv > results.csv [Windows version]

 lp /dev/sdb1 –csv [-nfts_scan | -rawscan] > results.csv [Linux version]

To find where the drive is mounted on Linux or Mac, one can use the built-in tool df to enumerate what

devices are used for the mount. While the df command is to display free disk space, it does this by

displaying all the devices mounted followed by their statistics. For the Mac OS-X case, one could also

use the diskutil list to enumerate all drives and volumes mounted.

Copyright © TZWorks LLC Apr 25, 2025 Page 15

The Mac OS-X has an additional nuance in that one needs to specify raw I/O vice the standard buffered

I/O. So for the example above, if /dev/sdb1 was specified as the device for the drive, then one would

issue /dev/rsdb1.

3.6 Parsing a VMWare volume

Occasionally, it is useful to analyze a VMWare image, both from a forensics standpoint, as well as, from

a testing standpoint. When analyzing different operating systems, and different configurations, a virtual

machine is extremely useful in testing out different boundary conditions. This option is still considered

experimental since it has only been tested on a handful of VMDK configurations. Furthermore, this

option is limited to monolithic type VMWare images versus split images. In VMWare, the term split

image means the volume is separated into multiple files, while the term monolithic virtual disk is defined

to be a virtual disk where everything is kept in one file. There may be more than one VMDK file in a

monolithic architecture, where each monolithic VMDK file would represent a separate snapshot. More

information about the monolithic virtual disk architecture can be obtained from the VMWare website

[8].

When working with virtual machines, the capability to handle snapshot images is important. When

processing a VMWare snapshot, one needs to include the parent snapshot/image as well as any

descendants.

lp can handle multiple VMDK files to accommodate a snapshot and its descendants, by separating

multiple filenames with a pipe delimiter and enclosing the expression in double quotes. In this case,

each filename represents a segment in the inheritance chain of VMDK files (eg. –vmdk "<VMWare

NTFS virtual disk-1> | .. | <VMWare NTFS virtual disk-x>" –offset <volume offset>). To aid the user

in figuring out exactly the chain of descendant images, lp can take any VMDK file (presumably the VMDK

of the snapshot one wishes to analyze) and determine what the descendant chain is. Finally, lp will

suggest a chain to use. In the syntax above there is also the -offset parameter. Without specifying the

volume offset, the -vmdk option will try to find the first NTFS volume and analyze that one. Therefore, if

your VMDK volume has multiple NTFS volumes and you wish to look at something other than the first

one, you would need to explicitly tell lp to do that by specifying the -offset parameter.

3.7 Parsing Volume Shadows

For starters, to access Volume Shadow copies, one needs to be running with administrator privileges.

Also, Volume Shadow copies as discussed here, only applies to Windows Vista, Win7, Win8, and beyond.

It does not apply to Windows XP.

To tell lp to look at a Volume Shadow, one needs to use the -vss <index of volume shadow> option.

This points lp at the appropriate Volume Shadow and it starts analyzing the various user directories for

LNK files, and if any are found, parses them. Below is an example of traversing Volume Shadow Copy #1

and rendering the CSV results to a file called vss1_out.csv.

Copyright © TZWorks LLC Apr 25, 2025 Page 16

lp -vss 1 [-ntfs_scan | -rawscan] -csv > vss1_out.csv

If one only wants to look for a particular LNK file in a particular Volume Shadow, one can use the

keyword %vss% . Below is an example of telling lp to parse the LNK file at Volume Shadow Copy #1.

lp %vss%1\users\testuser\AppData\Roaming\Microsoft\Windows\Recent\out.txt.lnk

The %vss% keyword, in combination with the number that follows the keyword, is expanded internally

to point to the proper Volume Shadow.

To determine which indexes are available from the various Volume Shadows, one can use the Windows

built-in utility vssadmin, as follows:

 vssadmin list shadows

 To filter some of the extraneous detail, type

 vssadmin list shadows | find /i "volume"

While the amount of data can be voluminous from that above command, the keywords one needs to

look for are names that look like this:

 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1

 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy2

 ...

From the above, notice the number after the word HarddiskvolumeShadowCopy. It is this number that is

passed as an argument to the -vss option.

3.8 Parsing non-ASCII character sets

Since lp was built to use UTF-8 internally, it can handle non-ASCII character sets without any

modifications. However, when dealing with LNK files, there are instances that reading in a non-ASCII

character filename can be problematic from the command prompt. This section discussion some of the

non-ASCII character options available to Windows users running lp.

When using the –pipe option with Windows, one can tell the data that is inputted into an application

(such as lp) to be UTF-8 by changing the active code page from the default one to UTF-8. This can be

done via the command, chcp 65001, and then one can pipe in a directory of files into lp and standard

input will yield the path/filename to display Unicode (UTF-8) format. Below is a screen shot of using the

chcp command in Windows.

Copyright © TZWorks LLC Apr 25, 2025 Page 17

4 Known Issues

• lp doesn't parse some of the SHLLINK structures documented in the Microsoft specification. As

time permits, future versions will incorporate incremental capabilities to handle these

structures.

• For csv (comma separated values) output, there are restrictions in the characters that are

outputted. Since commas are used as a separator, any data that had commas in its name are

changed to semicolons. For the default (non-csv) output, no changes are made to the data.

• For carving options from an image or a volume, lp can encounter boundary conditions that we

did not experience during our testing phase. For these cases, lp will most likely crash. As we

discover new untested boundary conditions new updates will be rolled out.

• [Note: this issue does not apply to -ntfs_scan option] For Linux and Mac builds, the file cdate &

time reported in the output is the date and time of the metadata change of the file (not the

creation time of the file). This behavior is different in Windows, where the file cdate & time

reported in the output is the date and time of the creation of the file.

• (Windows only) When processing filenames with characters that are not ASCII, one option is to

change the code page of the command window from the default code page to UTF-8. This can

be done at the command window via the command: chcp 65001

5 Available Options

Option Description

-csv

Outputs the data fields delimited by commas. Since filenames can have

commas, to ensure the fields are uniquely separated, any commas in the

filenames get converted to spaces.

-csvl2t
Outputs the data fields in accordance with the log2timeline format.

-bodyfile

Outputs the data fields in accordance with the 'body-file' version3 specified in

the SleuthKit. The date/timestamp outputted to the body-file is in terms of

UTC. So if using the body-file in conjunction with the mactime.pl utility, one

Copyright © TZWorks LLC Apr 25, 2025 Page 18

needs to set the environment variable TZ=UTC.

-base10

Ensure all size/address output is displayed in base-10 format vice

hexadecimal format. Default is hexadecimal format

-username

Option is used to populate the output records with a specified username. The

syntax is -username <name to use>.

-hostname

Option is used to populate the output records with a specified hostname. The

syntax is -hostname <name to use>.

-pipe

Used to pipe files into the tool via STDIN (standard input). Each file passed in

is parsed in sequence.

-enumdir
Experimental. Used to process files within a folder and/or subfolders. Each
file is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs <#>.

-filter

Filters data passed in via STDIN via the -pipe option. The syntax is -filter

<"*.ext | *partialname* | ...">. The wildcard character '*' is restricted to

either before the name or after the name.

-rawscan

Scan a large file or captured image looking for SHLLINK signatures and when

found parse them. This option is not meant to be used for individual shortcut

files

-outdir

Used in conjunction with the -rawscan option to store carved LNK files to the

specified directory. The syntax is -rawscan -outdir <directory>.

-deepscan

Added just for Destinations files used for Jump Lists. Since Destinations can

have many SHLLINK signatures embedded into one file, this option handles

parsing these types of files correctly. Note: the -deepscan option and the -

rawscan option cannot be used together.

-ntfs_scan

Scan a NTFS volume looking for SHLLINK signatures and when found parse

them. The basic option scans the $MFT data. There are sub-options to do a

more extensive scan: (a) -include_unalloc_clusters and

(b) -include_vss_clusters. The first will scan the unallocated clusters and

carve out any LNK data and the second will scan the Volume shadow clusters

and carve out any LNK data.

-partition
Used to scan a mounted Windows volume for SHLLINK signatures and parse

them. When this option in invoked, the option -rawscan is implicitly invoked.

Copyright © TZWorks LLC Apr 25, 2025 Page 19

Since this option is traversing a mounted volume at the cluster level, it

requires the tool to be running at administrative privileges. The syntax is

-partition <drive letter>.

-vmdk

Extract artifacts from a VMWare monolithic NTFS formatted volume. The

syntax is -vmdk "disk". When this option in invoked, the -rawscan option is

implicitly invoked. For a collection of VMWare disks that include snapshots,

one can use the following syntax: -vmdk "disk1 | disk2 | ..."

-vss

Experimental. Parse LNK data from Volume Shadow. The syntax is -vss

<index number of shadow copy>. Only applies to Windows Vista, Win7, Win8

and beyond. Does not apply to Windows XP.

-idltimes

Experimental. Shell item identifiers are grouped together to form a path. Each

Item ID can have embedded in it an associated MAC timestamps as well as

MFT entry number for the segment of the path that creates the final path.

Using this option will display any additional metadata associated with each

segment (or Item ID) in the list

-no_whitespace

Used in conjunction with -csv option to remove any whitespace between the

field value and the CSV separator.

-csv_separator

Used in conjunction with the -csv option, change the CSV separator from the

default comma to something else. Syntax is -csv_separator "|" to change the

CSV separator to the pipe character. To use the tab as a separator, one can

use the -csv_separator "tab" OR -csv_separator "\t" options.

-dateformat

Output the date using the specified format. Default behavior is -dateformat

"yyyy-mm-dd". Using this option allows one to adjust the format to

mm/dd/yy, dd/mm/yy, etc. The restriction with this option is the forward

slash (/) or dash (-) symbol needs to separate month, day and year and the

month is in digit (1-12) form versus abbreviated name form.

-timeformat

Output the time using the specified format. Default behavior is

-timeformat "hh:mm:ss.xxx" One can adjust the format to microseconds, via

"hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no

fractional seconds, via "hh:mm:ss". The restrictions with this option is a colon

(:) symbol needs to separate hours, minutes and seconds, a period (.) symbol

needs to separate the seconds and fractional seconds, and the repeating

symbol 'x' is used to represent number of fractional seconds. (Note: the

fractional seconds applies only to those time formats that have the

appropriate precision available. The Windows internal filetime has, for

Copyright © TZWorks LLC Apr 25, 2025 Page 20

example, 100 nsec unit precision available. The DOS time format and the

UNIX 'time_t' format, however, have no fractional seconds). Some of the

times represented by this tool may use a time format without fractional

seconds, and therefore, will not show a greater precision beyond seconds

when using this option.

-pair_datetime
Output the date/time as 1 field vice 2 for csv option

-out
Output the data to the specified file. The syntax is -out <results file>.

-utf8_bom

All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8

byte order mark to the output using this option.

6 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

6.1 Limited versus Demo versus Full in the tool’s Output Banner

The tools from TZWorks will output header information about the tool's version and whether it is

running in limited, demo or full mode. This is directly related to what version of a license the tool

authenticates with. The limited and demo keywords indicates some functionality of the tool is not

available, and the full keyword indicates all the functionality is available. The lacking functionality in the

limited or demo versions may mean one or all of the following: (a) certain options may not be available,

(b) certain data may not be outputted in the parsed results, and (c) the license has a finite lifetime

before expiring.

7 References

1. SANS Institute. Forensics 408 course (taken in Jan 2010)
2. [MS-SHLLINK]: Shell Link (.LNK) Binary File Format, 11/12/2010, sourced from Microsoft Corporation.

http://msdn.microsoft.com/en-us/library/dd871305(v=prot.13).aspx
3. Jesse Hager "The Windows Shortcut File Format", Available at

http://www.i2slab.com/Papers/The_Windows_Shortcut_File_Format.pdf.

http://msdn.microsoft.com/en-us/library/dd871305(v=prot.13).aspx

Copyright © TZWorks LLC Apr 25, 2025 Page 21

4. http://www.forensicswiki.org/wiki/LNK
5. Windows 7 Jump Lists, windows7forensics-jumplists-rv3-public-110606164708-phpapp01.pptx, Troy

Larson PowerPoint charts.
6. SleuthKit Body-file format, http://wki.sleuthkit.org
7. Log2timeline CSV format, http://log2timeline.net/

8. VMWare Virtual Disk Format 1.1 Technical Note, www.vmware.com
9. SHITEMID structure. http://msdn.microsoft.com/en-

us/library/windows/desktop/bb759800(v=vs.85).aspx
10. RFC 4122, A Universally Unique Identifier (UUID) URN Namespace, published July

2005.

http://www.forensicswiki.org/wiki/LNK
http://wiki.sleuthkit.org/index.php?title=Body_file
http://log2timeline.net/
http://www.vmware.com/
http://msdn.microsoft.com/en-us/library/windows/desktop/bb759800(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb759800(v=vs.85).aspx

	1 Introduction
	2 SHLLINK Metadata and What lp Extracts
	2.1 Example of a more common LNK file’s output
	2.2 Example of breaking out more metadata from the ID List
	2.3 Pulling out Metadata from the Segmented ItemIDs
	2.4 Example of an ID List embedded into a VistaAndAboveIDList
	2.5 Example of a LNK file utilizing a PropertyStore Data Block

	3 How to Use lp
	3.1 Parsing an Individual Shortcut File
	3.2 Parsing a Captured Image for SHLLINK metadata
	3.2.1 rawscan option
	3.2.2 ntfs_scan option

	3.3 Parsing Automatic and Custom Destinations files used for Jump Lists
	3.4 Parsing a Collection of Files
	3.5 Parsing an Active Volume [Experimental Option]
	3.6 Parsing a VMWare volume
	3.7 Parsing Volume Shadows
	3.8 Parsing non-ASCII character sets

	4 Known Issues
	5 Available Options
	6 Authentication and the License File
	6.1 Limited versus Demo versus Full in the tool’s Output Banner

	7 References

