TZWorks® $MFT and $Logfile
Analysis (mala) Users Guide

Copyright © TZWorks LLC
WWwWWw.tzworks.com

Contact Info: info@tzworks.com
Document applies to v0.24 of mala
Updated: Apr 24, 2025

Abstract
mala is a standalone, command-line tool that parses the

Windows SLogfile artifact. The SLogfile is a transaction log
used for the NTFS filesystem. The tool makes use of the
SMFT file for support information to help add additional
context to the log entries. This tool has working versions for
Windows, Linux and macOS.

http://www.tzworks.net/
mailto:info@tzworks.net

Table of Contents

1 INTEFOUCTION ittt ettt e b e s b e sae e sat e et e et e e bt e beesbeesaeesateenbeebeenneesane e 2
2 NTFS Transactional LOg INtEINalSccouiiiiiiiiiee ettt re e e st e e s e ate e e s e aree e e eataeeeeenreeas 3
2.1 (O] o1 =Y o] o I Mo -3 {=Tol o] o PR 3
2.2 Operation Types Using in LOZ RECOISciiieiiiiiiiiiee i ciiee e ceteee ettt e et e e sbee e e svee e s sbee e s s nareeas 4
2.3 Data Structure iNterdepPeNUENCIES. ...ccicuiiiii ettt bee e e s ee e s e eabee e s esareeas 5
2.4 Log records and partial MFT attribute data.......cccccueeeiiiiie e e e 6
2.5 Transactions anNd OPEIAtIONS.......c.uiiiieiiiee ettt e eee e e et e e e e etre e e esabaeeeeeasaeeeessaeeesansreeenan 8
2.6 Time is not explicitly recorded in the records.........couciii i 9
3 HOW TO USE MIGIA.....ccneiieiieeee ettt et sttt et ettt et e st e s bte e sabe e e bbeesabeesnaeesareens 10
3.1 Parsing with only the SLogfile for @analysis........cccveeicieviiiicieeeceee ettt e 10
3.2 [30=T o To] o 11T = U ST P PP PRPPPPPPPPROPIN 11
4 Pulling Artifacts off @ LIVE SYSTEM ..c..eeiiiiceee ettt e e e e e e saar e e e et e e e e s ennaeeeean 13
I\ 1111 o (=3 0] o] d To] s L3 PR UU RPNt 13
6 Authentication and the LICENSE File......c.coiiiiiiiiieieee e e 14
T REFEIENCES ...ttt sttt e r e bt s e st st b e bt e b e b e s et st e e e e e r e e reesaee e 14

Copyright © TZWorks, LLC Apr 24, 2025 Page 1

TZWorks® $MFT and $Logfile Analysis
(mala) Users Guide

Copyright © TZWorks LLC
Webpage: http://www.tzworks.com/prototype_page.php?proto_id=46
Contact Information: info@tzworks.com

1 Introduction

The Windows NTFS file system has a transactional architecture that is used to ensure that the operating
system can recover from a crash into a known good state. Aside from the NTFS file system kernel driver
failing, Windows does a good job at maintaining data consistency after critical failures that cause the
system to shut down unexpectedly. Specifically, NTFS logs file transactions when:

e Creating a file

Deleting a file

Extending a file

Truncating a file

Setting file information

e Renaming afile

e Change the security applied to afile

To achieve this level of reliability, Windows NTFS employs a journaling technique that records the
sequence of file operations within the SLogFile. After the sequence of operations is completed, the
operating system commits the changes and the transaction is done. In this way, if the system should
crash prior to a transaction being committed to disk, the system can read the sequence of changes from
the SLogFile and then perform (if necessary) any ‘undo’ operations to get the system into a known good,
stable state.

From a forensic standpoint, analyzing the SLogFile can yield a chronological list of historical transactions
that were done. The SLogFile is fixed in size, so once it is filled, additional data is wrapped and the old
data overwritten with new transactions. Depending on the frequency of file changes made on a system
the number of historical transactions will vary. The size of the SLogFile is typically 64 MB for a volume,
however, it can be resized based on need. Using the standard default size and normal usage, one should
expect a few hours of activity recorded in a SLogFile. This time estimate, is highly subjective and will
vary depending on the frequency of the file system changes.

To determine the size of the SLogFile on a volume, type the following:
» chkdsk /L

To adjust the size of the SLogFile on a volume, use the following. The example adjusts the c: volume to
128MB, the value is in terms of KB:

» chkdsk c: /L:131072

Copyright © TZWorks, LLC Apr 24, 2025 Page 2

mailto:info@tzworks.net

The transaction log artifacts are located in the root of any NTFS partition. These are the files that are of
interest. (note: transactional record data can also be retrieved from unallocated clusters).

Artifact Path

NTFS Transaction log <NTFS partition>\$SLogfile

Master File Table <NTFS partition>\SMFT (changes to the SMFT are in the SLogfile)

Change log journal <NTFS partition>\$SExtend\SUsnJrnl:SJ (much of this data is already in the SLogfile)

2 NTFS Transactional Log Internals

Aside from the documentation that is available on the Internet from a number of open sources, there is
some extensive documentation provided by Microsoft in various sources, including the Windows
Internals series of books. This section is not meant by any means to provide detailed analysis of the
internals of the transaction log. The purpose here is to try to go over some of the transactional log
internals, with the intent: (a) to try to help the analyst understand how the mala tool parses the data,
and (b) to provide background information why the data is presented as it is in the reports the mala tool
generates.

2.1 Operation Log Record

The header that is present for each operational log record, contains of the fields shown in the table
below. The first two fields are the Current LSN and the Previous LSN. LSN is defined here as a Log
Sequence Number, and it serves as a unique identifier for each log entry. Using the LSN, each
operational record will have a link to the previous operation in the transaction. In this way, one can
traverse the list from the newest operation to the oldest operation as it pertains to a single transaction.
The operation that was done is indicated in the Redo Operation, and its converse, the Undo Operation is
also identified should the system need to undo any operations if a crash occurs. The mala tool parses
both the ‘redo’ and ‘undo’ operations, but it only reports on the ‘redo’, since that is the operation that
took place. To get more details about an operation, one needs to parse the respective payload at the
end of the header. The payload identifies the data that actually used to make the change. More
information about the payload and the type of data it contains is discussed throughout this document.

Field # bytes Meaning

Current LSN 8 This operation’s sequence number

Previous LSN 8 Sequence number of the previous operation in the transaction
Client Undo LSN 8 Used for recovery from a crash, similar to Previous LSN
Client Data length 4 Add 0x30 bytes to this field = size of the header + payloads
Record Type 4 Indicates type of record (checkpoint, general, etc)
Transaction ID 4 Type of log transaction

Flags 2 Indicates whether a continuation page(s) was used or not
Redo Operation 2 Operation that was performed

Undo Operation 2 Specifies what is needed to do undo the operation

Redo Offset 2 Offset to the Redo payload

Redo Length 2 Size in bytes of the Redo payload

Undo Offset 2 Offset to the Undo payload

Undo Length 2 Size in bytes of the Undo payload

Target Attribute 2

LCNs to follow 2 Specifies how many logical cluster numbers (LCNs) to follow

Copyright © TZWorks, LLC Apr 24, 2025 Page 3

Record Offset
Attribute Offset

MFT Cluster Index
Target VCN

Target LCN

Payload for Redo Oper

Payload for Undo Oper

2
2
2
8
8

[see Redo Length]

[see Undo Length]

Offset of the MFT record (if operation is MFT related)

Offset within the MFT attribute affected (if operation is MFT related)

Helps determine the inode given the offset in the SMFT file

Virtual cluster number (VCN) for the operation

Logical cluster number (LCN) for the operation

This has the data specific to the Redo operation. The data is structured differently depending
on operation.

Same as above, applied to Undo operation.

2.2 Operation Types Using in Log Records

The table below enumerates the various types of operations the SLogFile can make use of when

identifying a change. Some operations have extra data associated with them and this gets stored at the

end of the record header (which is referred to as the payload for the operation in this document). For
those familiar with the SMFT file and the attributes associated with an inode filerecord (or SMFT record),
many of the operational names below will match those attribute names.

Code Operation

0 Noop

1 CompensationLogRecord

2 InitializeFileRecordSegment
3 DeallocateFileRecordSegment
4 WriteEndofFileRecordSegment
5 CreateAttribute

6 DeleteAttribute

7 UpdateResidentValue

8 UpdateNonResidentValue

9 UpdateMappingPairs

10 DeleteDirtyClusters

11 SetNewAttributeSizes

12 AddIndexEntryRoot

13 DeletelndexEntryRoot

14 AddIndexEntryAllocation

15 DeletelndexEntryAllocation
16 WriteEndOflndexBuffer

17 SetIndexEntryVcnRoot

18 SetindexEntryVcnAllocation
19 UpdateFilenameRoot

20 UpdateFilenameAllocation

21 SetBitsInNonresidentBitMap
22 ClearBitsInNonresidentBitMap
23 HotFix

24 EndTopLevelAction

25 PrepareTransaction

26 CommitTransaction

27 ForgetTransaction

28 OpenNonresidentAttribute
29 OpenAttributeTableDump

30 AttributeNamesDump

31 DirtyPageTableDump

32 TransactionTableDump

33 UpdateRecordDataRoot

34 UpdateRecordDataAllocation
35 UpdateRelativeDatalndex

36 UpdateRelativeDataAllocation

Copyright © TZWorks, LLC

Apr 24, 2025 Page 4

37 ZeroEndOfFileRecord
38 LastAction

To date, some of the metadata associated with certain operations below have not been sufficiently
analyzed for the mala tool to parse them. For those types, mala will report the operation but the
payload data should appear as a sequence of hex bytes. The code to operation mapping shown in the
table was obtained from various sources available on the Internet. In many cases, the code to operation
was verified independently with internal testing during the development of this tool, however, a few
others were not. This was because no empirical data could be obtained for some of the operation types.
The warning here is that some of these entries may be incorrect.

2.3 Data Structure interdependencies

Using the portions of data structures from the SLogFile, SMFT and SUsnJrnl:SJ artifacts, one can show
various interdependencies between the structures used in the same artifacts. To show some of these
relationships we took some data from our test system to provide an example. The images that follow
are from the parsed data from each of the artifacts mentioned above.

Referring to the image below, on the far right is an inode record (or SMFT record) with a record number
of Ox1ca60 and a sequence number of 0x16. This record also has a Log Sequence Number (LSN)
embedded into it which is 0x08264d785f. Moving to the next artifact output, which is in the middle,
left of the image, is the output of one transaction that was parsed from mala. The transaction consists
of seven operations where the sixth operation relates has the same LSN referenced in the inode record.
Specifically, one can see the inode and sequence number matches between the two artifact types.
Finally, if one examines the payload from the fourth operation in the transaction, one can see a change
log journal entry was made to the SUsnJrnl:SJ file. The change log journal entry is complete with
timestamp, inode number, sequence number, file name, and why the change was made. In this case the
change refers to an Object ID change, presumably to document that the operating system created a LNK
file for the target file.

From this brief example, one can see: (a) the SLogFile contains a sequence of operations for each
transaction, (b) the operating system then updates the SMFT record to reflect the changes, and (c) the
change log journal (SUsnJrnl:SJ) is updated.

Copyright © TZWorks, LLC Apr 24, 2025 Page 5

{ OxDO200e : 000 | keyword: FILE
exPoeedd 1 094 ; offset updste seqi exdade
DcdO0006 : 006 JW L0093
g 108 § nusber : DNED8E88 1644785¢F
S.Do0s 10 838 seq nwe: |
Swdde012 e12 : Q4
0200014 1 014 | offset 1st sttrib: 0003
Ox000016 : 016 : flags 0001 (In use)
0x000018 : 018 : offsetl Ist freedyte: :IOON0220
xB0001c : 01c : size allocatea: evooecasae
expoeele @2€ | base file recora: exoeocRedeooorese?
00200028 : @28 1 next attrid id: udeas
OxR00022 : 022 3

P Bie

| WFT record nusber: 020001 caS0
" ') AL .',(&u\. “ — —_ .- ,
Inode equating to SlogFile
~00 20 |
RO8000 MO : us transaction in the SMFT file 14cdaess
Operation sequenceinSlogFile | | | ceeeens attribute num 2 (relative offset ex0038)
for this transaction
000098 : 000 1 type: adeDevele, vuenm{
Isn *| type |- rado_op o Incde seqnu | parer seqny 0x00008c : 004 : sire: Cxded00078
' Asta 0x0000a0 : 088 : non_resident_flag: 0x00 (resident)
Ox08264d77c7 | root UpdateResidentValue Ox01ca50) 0x16 Ox05 Ox05 @x0e00al 1 €09 | size_name! 208
0x08264d77f9 | .sub-op UpdateFilenamealiocation |0x05 0x05 2x0008a2 : 8da : cffset_name: 2sacoe
o p 0xBOB0a4 @ 09c ! flags: oxbed0
0x08264d781a | Lsub-op SetNewAttributeSizes 0x025e52 Ox0b Ox0b & a6 : 80c | ottrib_id: it
0x08264d782d | .sub-op | UpdateNonResidentValué |ox01ca50] Ox16 Ox05 0x05|p.po0eas : 010 ; size cata: P05
0x08264d784c | .sub-0p SetNewAttrifuteSizes Ox025e52 Ox0b OxOb| 0x000Cac : ::2 : °”:ﬂ-°-:;= :":?1?1 3
eore H ! oresident_€lags . ndesed
——0x082624785! | .sub-op UpdateResidentValue 0x01cas0 0x16 Jox05 0x05[naneas : 017 1 pad <00
0x08268d786¢ | .sub- @ ion T g eMmEiid
 — i il parent_incde: Swdedepeeeeees (5)
GxB00006 : 806 :|sequence num: 0005
Payload portion of the

UpdateNonResidentValue operation
".mtcomalmlSUn'\Jmldata.wh‘h l usnjrmi={"inode""0x01ca50";"Inode seqnum”:"0x16";"parent inode”:"0x05";"parent saqnum":“0x05";"
gives some time context and what the

transaction action ultimately was ’

update seqnum”; 'ﬂn!Mtdncb:-’.'l'upna:od'“'u/jlui 2015 16:30:53.829""reason":"objid ch mﬁ:\n';_]

“sre_info™:"""security_id":"0w00";"Nile_attrnibutes™:"archive™;

\ | *name*:*THIS IS A TEST DOC TIME 2019 07 04 12 30 PM,Ixt")

2.4 Logrecords and partial MFT attribute data

For each operation entry in the SLogFile that points to an attribute modification, one will note that
sometimes the payload will only contain a partial set of data for the attribute change. This is intentional
since the SLogFile is only recording delta changes within an attribute. However, the parser needs to be
able to reconstruct which data in the attribute was changed and thus provide some context to the
analyst.

To show an example of this in action, below are some images from a SLogFile viewer that was created to
help reverse the internal structures of the SLogFile records. These screenshots are only shown in this
user’s guide to help explain some of the internals and the why the reported data produced by mala only
shows portions of the data per operation.

In this example, we take the same operational log entry used in the previous example when showing the
data interdependencies (eg. log sequence number 0x8264d785f). When breaking out the internals of
log header and payload data structures, one can see that the operation is meant to update the Standard
Information (StdInfo) attribute in the associated MFT record. (The header portion of the log entry is the
top portion of the image, whereas the payload is the bottom potion of the image). When looking at the
payload data, it skips the first 0x40 bytes of the StdIinfo data and only addresses the last 8 bytes. The
Stdinfo structure, in this case, contains 0x48 bytes. These 8 bytes are the change log record index

Copyright © TZWorks, LLC Apr 24, 2025 Page 6

number which identifies the SUsnJrnl:SJ entry, which gets mapped directly into the appropriate Stdinfo

field of the inode record.

Header Info

@x26bc2f8 : 800 : m_current_lsn:
8x26bc300 : 008 : m_previous_lsn:
Ox26bc308 : 010 : m_client_undo_lsn:
Ox26bc310 : 018 : m_client_data_length:
8x26bc314 : 01c : m_client_id:
@x26bc318 : 020 : ®_record_type:
:q QOperation entry header [“1“'“'
ex26bc322 : 023 : m_pad:
@x260Cc328 : OZa : m_redo_op!
@x26bc32a : €2¢ : m_undo_op:
@x26bc32¢c : B2e : m_redo_offset:
@x26bc32e : @838 : m_redo _length:
@x26bc338 : 032 : m_undo_offset:
@x26bc332 @ 834 : s_undo_length:
Ox26bc334 ; 036 : m_target_attribute:
Ox26bc336 : 038 : = _lcns_to_follow:
@x26bc338 : 03a : =_record_offset:
8x26bc33a ¢ B83c : m_attribute_offset:
X : L3 ot 2
Oxagpcdc : Qlashn pltesbusteqindgy,

Qperation entry payload I“' -

@ 15

: 82

utput
200 :
088 :
010 :
218 :
820 :
224
828 :

e3e :
838 :
e3s
840

Payload Redo data for opcode: 7 [Updat
Translated o
@x26bc3ed :
9x26bc3ed
0x26be3f0 :
@x26bc3f8 :
@x26bcane :
ex26bcdod
@x26bcaas
@x26bcdec
@x28bc4le :
@x26bcdsls
ex26bcals
Ox26bc420 :

time file creation:
time file altered:
time mft changed:
time file accessed:
file attributes:

: max versions:

version num;

: class id:

$Quota:$0 xey:
$Secure:8S11 key:

OxDOROOOOS264d7854 (35002345663]
OxP00000052640784c [35002349644)
Cx000000082640784c [35002349644)
OxPe0eeR3s [56)

OxPeo000ne (8]

0x00000001 [1) (General)
ex0oeoessd [64]

ox0000 [€] [No Continuation Page
@2 e2 o0 00 e0 o0

exeee? [7) [UpdateResidentValue)
exPed7 [7] [UpdateResidentValue)

e Sequence of operations
d for this transaction

= Root LSN: OxA264dT7c7

3 2264d77¢0 <- B26AdTTCT
(2 326447749 <- 22644770
(20 226847818 <- RISIATIG
(2 5364d782d <« 220447814 ™% g"mm1
) 82684784¢ «- BI8a4T82d
= |

L) R623d785¢ «- B84478H

no data "
no data || No Payload data for
:: i these attribute fields
no
no

aata
data
dats
no data
no data
no cata
no datas

Only these 8 bytes
are populated

: har b4 ™
:Iu;n)rnl index num: Ox0000000174cddet8 F

Row cump of
2260 ¢350:

Redo payload

68 de

cd 74 91 00 @@ @@

As a second example, we continue to look at the same transaction, but look at one of the previous

operations that lead up to the operation that was just discussed above. In this case, we select the

SetNewAttributeSizes operation. This particular operation is applied to the actual SUsnJrnl:SJ file that

reflects the changes to the target file in question. This change only requires 32 bytes to record the data
changes, even though the attribute for the header portion of the SData attribute is 72 bytes in this case.
The data changes are the size modification changes for the SUsnJrnl:SJ file to accommodate the new

change log record that was added for the target file.

Copyright © TZWorks, LLC

Apr 24, 2025

Page 7

Header InFo
Bx26bc0d@ : 900 : m_current_lsn: 2x00000008264d781a [35008234955%4) [
ex26bcBd8 ; 208 : m_previous_lsn: 8x000000082644779 [3500823495561] [
8x26bcBe@ : 010 : m_client_undo_1sn: Bx00000008264d77F9 [35002349561) [
Px26bcBed : @18 : m_client_data_length:8x02000868 [104]
8x26bcBec : 01lc : m_client_id: 2x0o00e00e [0]
Bx26bc0F@ : 920 : m_record_type: 2x00000001 [1] [General]
ion_id: 2xeoeeeede [64)
ﬂ of’eratm entry header 8x0000 [@] [No Continuation Page]
@xJGbcOta : @8 : m_pad: 80 20 20 0 00 o0
Ox26bciP0 : 023 : m_redo_op: 8x008b [11] [SetNewAttributeSizes]
Ox26bc102 : 92c : m_undo_op: 2x0008b [11] [SetNewAttributeSizes))
ex26bcled : 02e : m_redo_offset: 2x0e]
Bx26bcl96 : @38 : m_redo_length: 8x00] Sequence °{°peraﬁ°ns
©x26bc108 : @32 : m_undo_offset: exeed for this transaction
Ox26bcia : 034 : m_undo_length: oxee ey
Ox26bc1@c : @36 : m_target_attribute: ©xeo1q — RootLSN: (x8263d77c]
@x26bci@e : 838 : m_lcns_to_follow: 2xeoe) 82640770 <- 8264d77c7
8x26bcl11@ : @3a : m_record_offset: B8x003) 8264d77¥9 <- 8264d77.
9%26!::!1;’- 83c & m_attribute_ ofzi;., 2:(900# =] 226007812 < 2204d7765
Operation entry payload ac _l 22644782d «<- 8264d781a
) 8264d784c <- 8264d782d
Payload Redo data for opcode: 11 [SetNewAttr (5] 82644785 <- 8264d784¢
Translated output
Bx26bc128 : 90@ : type: no dal__mp=d 82644786 <- 82644785
@x26bcl2c ; @04 : size; no data | No Payload data for
8x26bcl3@ : 208 : non_resident_£lag: no data 3
©x26bc131 : @09 : size_name: no data these attribute fields
©x26bc132 : 008 : offset_name: no data
Bx26bc134 : 00c : flags: no data
ex26bcl36 : @@e : attrib_id: no data
0x26bc138 : @10 : starting_ven: no data
Px26bc14@ : @18 : ending_ven: no data
Ox26bc148 : 020 : run_array_offset: no data O"lvthese 32 bytes
2x26bclda : @22 : compression_flag: no data are populated
ex26bcldb : 923 (S hytes): no data
0x26bc15€ : 028 { size_data_allocated: Bx 174d
2x26bc158 : 830 { size_data_real: 8x0900000174cddets
2x26bc160 : 038 o size_valid_data: 0x0000000174cddved
8x26bc168 : 048 J size_compressed: 2x0000000002530000
aw dump of Redo payload
26b c128: ©0 00 03 74 ©1 OC O 00 638 de cd 74 @1 20 0@ ee o | JRPR | PR
26b ¢138: 98 df ¢cd 74 01 P0O OO 00 90 00 53 02 G2 OO GG OO | ...t......§
L

The intent of this document is not to delve into too much detail with these examples; it is only to show
that the mala tool is able pull these partial data chunks and map them into the proper structure so the
data can be reviewed in the proper context.

2.5 Transactions and operations

When looking at what NTFS calls a transaction and how it translates to the records in the SLogFile, one
sees that there are multiple operations that occur in sequence, and when combined together, are
labeled a transaction. mala looks at all the records/operations and pieces together which records are
chained together to form a single transaction. This is quickly identifiable, since each record has a
pointer to the previous record in the chain for its transaction. This pointer while monotonic (always
increases), doesn’t necessarily mean that the next record is part of the current transaction. Thus,
consecutive records can be interleaved between multiple transactions that are occurring (presumably
for mutually exclusive transactions). This is shown below where transaction 1, includes log sequence
numbers (LSNs) 21, 22, 24; and transaction 2 includes LSNs 23, 25, 26. (note: the LSN numbers shown

Copyright © TZWorks, LLC Apr 24, 2025 Page 8

below are consecutive which is not normal with valid data; LSN numbers are incremented as a function
of the size of the current record to compute the next LSN number; the consecutive sequence below is only
shown to keep the numbers simplistic and easy to follow for this example).

L5MN = Log Sequence Number Transaction 1 Transaction 2
F s F
LSM21 || LSN22 LSM 23 LSM 24 LSN 25 |4 LSN 26
& A
Time

When mala reports on these operations, it groups the appropriate ones into their own separate
transaction’s in the output so it is clear what the sequence of operations were per transaction.

2.6 Time is not explicitly recorded in the records

Unlike other artifacts used in forensics, the SLogFile does not have a timestamp embedded into its
normal record’s data structure. This makes it difficult for the forensic analyst to try to correlate the time
when a transaction occurred. However, one can infer time by looking at of the combination of records
that comprise timestamp within its payload data. One can also infer time by looking at the inode records
that match the SLogFile records logical sequence numbers.

For example, if any of the records in a sequence contains a payload of SUsnJrnl change log data, then
one can parse that payload data and pull the timestamp embedded in the change log record. This is
only because the SUsnJrnl change log data has a timestamp as part of its metadata. If this metadata is
contained within a SLogfile record, then it can be extracted and parsed, giving the time inferred for the
SLogfile transaction. Further, if one parses the SMFT file records in parallel with the SLogfile records
and if there happens to be an entry in the SMFT file that matches the SLogFile record in question, one
can pull the latest timestamp from the SMFT attributes. In this way, one can estimate the time the log
entry was made.

To aid the analyst in this inference of time, mala tries to do this on a best effort basis and reports an
‘extrapolated timestamp’ for each record. Internally, mala keeps track of the last time that was
reported (either via a SUsnJrnl entry or a SMFT entry) and reports that time for the next log sequence
number (LSN) record reported. This extrapolated time is just a guess or estimate, even though the
precision is shown in the 100 nano second resolution. Sometimes this estimate is very accurate when a
change log entry was recorded and sometimes it is not very accurate at all. The latter case happens
when a large number of log records have passed without a timestamp being observed to infer during the
parse operation. Once a timestamp is found, the accuracy is again good until the next timestamp found.

Copyright © TZWorks, LLC Apr 24, 2025 Page 9

As an indicator to the analyst, the more closely aligned timestamps are shown in the ‘ref’ field of the
report.

3 How to Use mala

The current options for the mala tool are shown the screenshot below.

2. Administrator: Windows PowerShell

The required syntax is to pass in a SLogfile via the -log <file> option as shown below. The syntax below
shows an -out <file> parameter, but one can redirect the output to any file as well. As a side note, if
you are using Windows PowerShell instead of a command prompt, then we recommend the use of use
single quotes around any path/filename that contain a ‘S’ character.

mala64 -log ‘c:\test\SLogfile’ -csv -out results.csv

To gain more context information, one can also pass in the companion SMFT file via the -mftfile <file>
option. The tool will merge the parsed SMFT data into the SLogfile data to generate more complete
records.

mala64 -log ‘c:\test\SLogfile’ -mftfile ‘c:\test\SMFT’ -csv -out results.csv

When multiple artifact files are used in the analysis (eg. using both SLogFile and SMFT files), mala will
spawn multiple threads to handle each artifact in parallel so as to parse the data quickly. The resulting
output from each thread will then be combined into one output file.

3.1 Parsing with only the $Logfile for analysis

While it is preferable to use both the SLogfile and SMFT artifact files to maximize the usefulness of the
report generated by mala, some use-cases involve corrupted SMFT files. If the corruption of the SMFT
file is sufficient to prevent the mala tool from parsing it, then running mala with just the SLogfile still
provides useful, albeit, degraded results. To explain this in more detail, one needs to analyze the

Copyright © TZWorks, LLC Apr 24, 2025 Page 10

differences in the reporting of running mala with just using the SLogfile to that of running it in
conjunction with the SMFT file. The main issues without using the SMFT file in the analysis are: (a) the
path for the target file being created, changed or deleted is not present; and (b) any logical sequence
number matches between the SLogfile records and SMFT records are not available which consequently
results in less possible context data in the output. There are other artifact data that is lost as well, but
the ones listed above are the main ones.

Aside from these issues, parsing the SLogfile by itself is still useable for those cases were the SMFT file is
not present. Why? The SLogfile has embedded into its records the SUsnJrnl:SJ change log entries that
were done. More specifically, the SLogfile has an entry for each change recorded in the SUsnJrnl:SJ as
part of a transaction since the change log journal is a file as well. Since SUsnJrnl:SJ entries are preserved
in the SLogfile records, one can extract and parse these records which has meaningful data, even
though the path of the file is still missing.

3.2 Reporting

The output generated by mala is in a delimited format where the delimiter can be either a comma (CSV
format), pipe, or tab character. So as to limit the number of fields and provide uniformity across
different operations, the last field is a quasi-json format that allows the tool to use a condensed notation
and be extensible so as to allow for an unlimited combination of data types. In this way dissimilar data
can be concisely put into a format that is easily digested by a spreadsheet program (like excel) or into a
database. Most of the data put into this ‘catch-all’ column is the payload data associated with the
operation, as well as, any supporting information provided by the SMFT file (if available).

Below are the delimited fields that are included in the reporting:

Field Meaning

extrapolated_timestamp | Internally, mala keeps track of the last time that was reported (either via a SUsnJrnl
entry or a SMFT entry) and reports that time for the next log sequence number (LSN)
record reported. This extrapolated time is just a guess or estimate.

ref Indicator when the time was updated based on explicit timestamp data in the payload
or a referenced SMFT record

change_reason Relates to the SUsnJrnl entry embedded into one of the operations associated with
that transaction, or if the SUsnJrnl entry is not available it is derived from the type of
operation.

Isn Log Sequence Number

type Specifies whether it is the start of the transaction or one of the operations in the
transaction

op_pattern Operational code (or sequence of codes if the initial start of the transaction)

redo_op The translated operation name for the redo operation (doesn’t show the undo
operation).

target_lcn Logical Cluster number of the target that is affected

inode MFT record entry. Combination of either (a) explicitly listed inode or (b) computed
based on the offset, cluster size, and MFT record size

inode_seqnum MFT record entry sequence number. From data that explicitly listed the sequence

Copyright © TZWorks, LLC Apr 24, 2025 Page 11

number

parent_inode Parent MFT record entry. From data that explicitly listed this.

parent_segnum Parent MFT record entry sequence number. From data that explicitly listed this.
path Relies on the SMFT file to build the absolute path.

comment General purpose field that displays the parsed payload data and/or other data from

support files.

For the quasi-json formatted data, there are some keywords used. The main ones are listed below. The
purpose of using keywords is to try to group like-data segments from various sources so as to allow one
to have more insight as to where they came from. For example, any data that comes from a SMFT
supporting file, will be preceded by the ‘mftfile’ keyword. Likewise, if the data came from a SUsnJrnl:SJ
data, it would be preceded by the ‘usnjrnl’ keyword. Sometimes the payload data is truncated, which
can be derived when the size of the payload disagrees with the actual number of bytes left before the
start of the next log record. For these cases, the ‘data_truncated’ keyword is used and the data is
parsed to the extent possible given that it was truncated.

Keyword Meaning

open_record Relates to the payload data associated with the OpenNonresidentAttribute operation

file_record Relates to the payload data associated with the InitializeFileRecordSegment operation

Name is derived from Partial data within the payload data that can affect any of the MFT attributes,

one of the MFT attributes | including: Sfilename, Sstdinfo, Sindx_direntry, Sdata, etc

usnjrnl Contains a SUsnJrnl:SJ record embedded in the payload data

hex_bytes Contains an unparsed series of bytes in the payload data

cluster_run_data Contains a cluster run embedded in the payload data

bitmap_set Relates to the payload data associated with the SetBitsInNonresidentBitMap
operation

set_size Relates to the payload data associated with the SetNewAttributeSizes operation

mftfile Comes directly from any inode data from a separate SMFT file. If listed for an
operation, it directly relates to the operation log entry

metadata This is the metadata associated during the parsing of the operation record.

data_truncated This relates to the operation’s record reference to the payload data and the fact that

the size for the payload doesn’t reflect the number of bytes present. Some payload
data exists, but the data is truncated.

Below is a sample output showing an entire transaction and the relationship of the normal fields and the
comments field.

*[rex

olated_timests * ref * thange red* lbsn * ! redo_op . targ ~ path
9 1630153, 7%8 flle_created CulE264d7103 SetfitsinNonresdantBinvap 0sF o _Sete{"hex_bytes":"50-43-00.00.01-00-00-00%)

0 ¥ 16:30:51, 758 Owld26ad 7100 Noep 0ds s 15 A_TEST_DOC tt™"path™
[L0030153.758 - Mad 713 op | AddindexEnmtryAliocation M3 Lcad0® “inosde_seqnum”Ox1)
0 16:30:53.758 d On(E264d7155 InitiaizeFideRecordSegmeant ﬂ-' lle_recards(inode_segrum*"IsS263d7101" “inode""Dwll
[9 16:30:51.758 On{2644719%d SetNewAttributeSes s} Wt _tizes{"allocated™ "Ou i NAI00ON" " real ™ "Ox 1 Fecd i hed”
[9 1690553, 758 < usnjenl 284 7150 UpdateNcrResideotValue Oy tat snpmi={Yinode™ "Ox01 At "mode _segnum”™0x 13" parer
o 9 16030153, 738 file_created OwDS264d71ct SetNewAttributeSizes vy set_size={"allccated”:"On 17430000 " real™ "Oxl Teodd 250"
0 219 15:30:53. 758 file oeated Ouwia264d71e2 D ForgetTransaction /' free log antnes for this sequance

If we expand the comments field for the operation that contains the embedded SUsnJrnl data, the
parsed data is shown below prefixed by the “usnjrnl/” keyword. The output also includes the “mftfile”
keyword for the filename and path information.

Copyright © TZWorks, LLC Apr 24, 2025 Page 12

usnjrnl=["inode":"0x01ca50";"inode_segnum":"0x15";"parent_inode":"0x05";"parent_segnum":"0x05";
"update_seqnum":"0x174cdd8e8";"updated":"07/04/2019 16:30:53.758";"reason":"file_created";
"src_info":"-";"security_id":"0x00";"file_attributes":"archive";"name":"THIS_IS_A_TEST_DOC.txt"];
mftfile=["filename":"THIS_IS_A_TEST_DOC.txt";"path":"[root]\THIS_IS_A_TEST_DOC.txt"]

4 Pulling Artifacts off a Live System

The raw artifact files used by mala (eg. SLogfile and SMFT) are locked down if trying to access them from
the running system. One solution is to look to other tools to copy the appropriate artifact files. If you
are on a Windows machine, one can use the TZWorks’ tool dup (Disk Utility and Packer). It will allow
one to copy a file, or an entire directory, even if some of the files are locked down by the operating
system. To use dup to target the system files used by mala, one could use the following command:

dup -copygroup -pull_sysfiles -out <results folder>

The above command will also pull other system files not needed by mala, but all the files used by mala
will be extracted.

5 Available Options

Option Description
| Specifies which $LogFile to act on. The syntax is:
o8 -log <file>
Use the specified $SMFT file for $LogFile analysis. The syntax is:
_mftfile -mftfile <file>. There is a sub-option [-showall_inodes] to display all the

inodes in the output

Outputs the data fields delimited by commas. Since filenames can have
-CSV commas, to ensure the fields are uniquely separated, any commas in the
filenames get converted to spaces.

Ensure all size/address output is displayed in base-10 format versus

-basel0
hexadecimal (base-16) format. Default is hexadecimal format.

Used in conjunction with -csv option to remove any whitespace between the

-no_whitespace
- P field value and the CSV separator.

Used in conjunction with the -csv option to change the CSV separator from
the default comma to something else. Syntax is -csv_separator "|" to change
the CSV separator to the pipe character. To use the tab as a separator, one can
use the -csv_separator "tab" OR -csv_separator "\t" options.

-CSV_separator

Copyright © TZWorks, LLC Apr 24, 2025 Page 13

Output the date using the specified format. Default behavior is -dateformat
"yyyy-mm-dd". Using this option allows one to adjust the format to mm/dd/yy,

-dateformat dd/mm/yy, etc. The restriction with this option is the forward slash (/) or dash
(-) symbol needs to separate month, day and year and the month is in digit (1-
12) form versus abbreviated name form.

-quiet Show no progress during the parsing operation.

All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8 byte

-utf8_bom . . .
- order mark to the CSV output using this option.

6 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital
X509 code signing certificate embedded into the binary (Windows and macQS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools
(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The
license needs to be in the same directory of the tool for it to authenticate. Furthermore, any
modification to the license, either to its name or contents, will invalidate the license.

7 References

1. NTFS Log Tracker, blueangel, forensic-note.blogspot.kr, JungHoon Oh briefing charts,
http://forensicinsight.org/wp-content/uploads/2013/06/F-INSIGHT-NTFS-Log-TrackerEnglish.pdf

2. NTFS.com, NTFS Transaction Journal [https://www.ntfs.com/transaction.htm]

3. G-C Partners, File System Journal Analysis, David Cowen and Matthew Seyer and
ANJPv3.11.07_FE.exe tool

4. LogFileParser, https://github.com/jschicht/LogFileParser

Windows Internals, Microsoft Press

o

Copyright © TZWorks, LLC Apr 24, 2025 Page 14

	1 Introduction
	2 NTFS Transactional Log Internals
	2.1 Operation Log Record
	2.2 Operation Types Using in Log Records
	2.3 Data Structure interdependencies
	2.4 Log records and partial MFT attribute data
	2.5 Transactions and operations
	2.6 Time is not explicitly recorded in the records

	3 How to Use mala
	3.1 Parsing with only the $Logfile for analysis
	3.2 Reporting

	4 Pulling Artifacts off a Live System
	5 Available Options
	6 Authentication and the License File
	7 References

