

Abstract
mala is a standalone, command-line tool that parses the

Windows $Logfile artifact. The $Logfile is a transaction log

used for the NTFS filesystem. The tool makes use of the

$MFT file for support information to help add additional

context to the log entries. This tool has working versions for

Windows, Linux and macOS.

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v0.24 of mala

Updated: Apr 24, 2025

TZWorks® $MFT and $Logfile
Analysis (mala) Users Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 24, 2025 Page 1

Table of Contents

1 Introduction .. 2

2 NTFS Transactional Log Internals .. 3

2.1 Operation Log Record ... 3

2.2 Operation Types Using in Log Records ... 4

2.3 Data Structure interdependencies .. 5

2.4 Log records and partial MFT attribute data .. 6

2.5 Transactions and operations ... 8

2.6 Time is not explicitly recorded in the records... 9

3 How to Use mala ... 10

3.1 Parsing with only the $Logfile for analysis .. 10

3.2 Reporting... 11

4 Pulling Artifacts off a Live System ... 13

5 Available Options .. 13

6 Authentication and the License File .. 14

7 References .. 14

Copyright © TZWorks, LLC Apr 24, 2025 Page 2

TZWorks® $MFT and $Logfile Analysis
(mala) Users Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=46

Contact Information: info@tzworks.com

1 Introduction

The Windows NTFS file system has a transactional architecture that is used to ensure that the operating
system can recover from a crash into a known good state. Aside from the NTFS file system kernel driver
failing, Windows does a good job at maintaining data consistency after critical failures that cause the
system to shut down unexpectedly. Specifically, NTFS logs file transactions when:

• Creating a file

• Deleting a file

• Extending a file

• Truncating a file

• Setting file information

• Renaming a file

• Change the security applied to a file

To achieve this level of reliability, Windows NTFS employs a journaling technique that records the
sequence of file operations within the $LogFile. After the sequence of operations is completed, the
operating system commits the changes and the transaction is done. In this way, if the system should
crash prior to a transaction being committed to disk, the system can read the sequence of changes from
the $LogFile and then perform (if necessary) any ‘undo’ operations to get the system into a known good,
stable state.

From a forensic standpoint, analyzing the $LogFile can yield a chronological list of historical transactions
that were done. The $LogFile is fixed in size, so once it is filled, additional data is wrapped and the old
data overwritten with new transactions. Depending on the frequency of file changes made on a system
the number of historical transactions will vary. The size of the $LogFile is typically 64 MB for a volume,
however, it can be resized based on need. Using the standard default size and normal usage, one should
expect a few hours of activity recorded in a $LogFile. This time estimate, is highly subjective and will
vary depending on the frequency of the file system changes.

To determine the size of the $LogFile on a volume, type the following:

➢ chkdsk /L

To adjust the size of the $LogFile on a volume, use the following. The example adjusts the c: volume to

128MB, the value is in terms of KB:

➢ chkdsk c: /L:131072

mailto:info@tzworks.net

Copyright © TZWorks, LLC Apr 24, 2025 Page 3

The transaction log artifacts are located in the root of any NTFS partition. These are the files that are of

interest. (note: transactional record data can also be retrieved from unallocated clusters).

Artifact Path

NTFS Transaction log <NTFS partition>\$Logfile

Master File Table <NTFS partition>\$MFT (changes to the $MFT are in the $Logfile)

Change log journal <NTFS partition>\$Extend\$UsnJrnl:$J (much of this data is already in the $Logfile)

2 NTFS Transactional Log Internals

Aside from the documentation that is available on the Internet from a number of open sources, there is

some extensive documentation provided by Microsoft in various sources, including the Windows

Internals series of books. This section is not meant by any means to provide detailed analysis of the

internals of the transaction log. The purpose here is to try to go over some of the transactional log

internals, with the intent: (a) to try to help the analyst understand how the mala tool parses the data,

and (b) to provide background information why the data is presented as it is in the reports the mala tool

generates.

2.1 Operation Log Record

The header that is present for each operational log record, contains of the fields shown in the table

below. The first two fields are the Current LSN and the Previous LSN. LSN is defined here as a Log

Sequence Number, and it serves as a unique identifier for each log entry. Using the LSN, each

operational record will have a link to the previous operation in the transaction. In this way, one can

traverse the list from the newest operation to the oldest operation as it pertains to a single transaction.

The operation that was done is indicated in the Redo Operation, and its converse, the Undo Operation is

also identified should the system need to undo any operations if a crash occurs. The mala tool parses

both the ‘redo’ and ‘undo’ operations, but it only reports on the ‘redo’, since that is the operation that

took place. To get more details about an operation, one needs to parse the respective payload at the

end of the header. The payload identifies the data that actually used to make the change. More

information about the payload and the type of data it contains is discussed throughout this document.

Field # bytes Meaning

Current LSN 8 This operation’s sequence number

Previous LSN 8 Sequence number of the previous operation in the transaction

Client Undo LSN 8 Used for recovery from a crash, similar to Previous LSN

Client Data length 4 Add 0x30 bytes to this field = size of the header + payloads

Record Type 4 Indicates type of record (checkpoint, general, etc)

Transaction ID 4 Type of log transaction

Flags 2 Indicates whether a continuation page(s) was used or not

Redo Operation 2 Operation that was performed

Undo Operation 2 Specifies what is needed to do undo the operation

Redo Offset 2 Offset to the Redo payload

Redo Length 2 Size in bytes of the Redo payload

Undo Offset 2 Offset to the Undo payload

Undo Length 2 Size in bytes of the Undo payload

Target Attribute 2

LCNs to follow 2 Specifies how many logical cluster numbers (LCNs) to follow

Copyright © TZWorks, LLC Apr 24, 2025 Page 4

Record Offset 2 Offset of the MFT record (if operation is MFT related)

Attribute Offset 2 Offset within the MFT attribute affected (if operation is MFT related)

MFT Cluster Index 2 Helps determine the inode given the offset in the $MFT file

Target VCN 8 Virtual cluster number (VCN) for the operation

Target LCN 8 Logical cluster number (LCN) for the operation

Payload for Redo Oper [see Redo Length] This has the data specific to the Redo operation. The data is structured differently depending
on operation.

Payload for Undo Oper [see Undo Length] Same as above, applied to Undo operation.

2.2 Operation Types Using in Log Records

The table below enumerates the various types of operations the $LogFile can make use of when

identifying a change. Some operations have extra data associated with them and this gets stored at the

end of the record header (which is referred to as the payload for the operation in this document). For

those familiar with the $MFT file and the attributes associated with an inode filerecord (or $MFT record),

many of the operational names below will match those attribute names.

Code Operation

0 Noop

1 CompensationLogRecord

2 InitializeFileRecordSegment

3 DeallocateFileRecordSegment

4 WriteEndofFileRecordSegment

5 CreateAttribute

6 DeleteAttribute

7 UpdateResidentValue

8 UpdateNonResidentValue

9 UpdateMappingPairs

10 DeleteDirtyClusters

11 SetNewAttributeSizes

12 AddIndexEntryRoot

13 DeleteIndexEntryRoot

14 AddIndexEntryAllocation

15 DeleteIndexEntryAllocation

16 WriteEndOfIndexBuffer

17 SetIndexEntryVcnRoot

18 SetIndexEntryVcnAllocation

19 UpdateFilenameRoot

20 UpdateFilenameAllocation

21 SetBitsInNonresidentBitMap

22 ClearBitsInNonresidentBitMap

23 HotFix

24 EndTopLevelAction

25 PrepareTransaction

26 CommitTransaction

27 ForgetTransaction

28 OpenNonresidentAttribute

29 OpenAttributeTableDump

30 AttributeNamesDump

31 DirtyPageTableDump

32 TransactionTableDump

33 UpdateRecordDataRoot

34 UpdateRecordDataAllocation

35 UpdateRelativeDataIndex

36 UpdateRelativeDataAllocation

Copyright © TZWorks, LLC Apr 24, 2025 Page 5

37 ZeroEndOfFileRecord

38 LastAction

To date, some of the metadata associated with certain operations below have not been sufficiently

analyzed for the mala tool to parse them. For those types, mala will report the operation but the

payload data should appear as a sequence of hex bytes. The code to operation mapping shown in the

table was obtained from various sources available on the Internet. In many cases, the code to operation

was verified independently with internal testing during the development of this tool, however, a few

others were not. This was because no empirical data could be obtained for some of the operation types.

The warning here is that some of these entries may be incorrect.

2.3 Data Structure interdependencies

Using the portions of data structures from the $LogFile, $MFT and $UsnJrnl:$J artifacts, one can show

various interdependencies between the structures used in the same artifacts. To show some of these

relationships we took some data from our test system to provide an example. The images that follow

are from the parsed data from each of the artifacts mentioned above.

Referring to the image below, on the far right is an inode record (or $MFT record) with a record number

of 0x1ca60 and a sequence number of 0x16. This record also has a Log Sequence Number (LSN)

embedded into it which is 0x08264d785f. Moving to the next artifact output, which is in the middle,

left of the image, is the output of one transaction that was parsed from mala. The transaction consists

of seven operations where the sixth operation relates has the same LSN referenced in the inode record.

Specifically, one can see the inode and sequence number matches between the two artifact types.

Finally, if one examines the payload from the fourth operation in the transaction, one can see a change

log journal entry was made to the $UsnJrnl:$J file. The change log journal entry is complete with

timestamp, inode number, sequence number, file name, and why the change was made. In this case the

change refers to an Object ID change, presumably to document that the operating system created a LNK

file for the target file.

From this brief example, one can see: (a) the $LogFile contains a sequence of operations for each

transaction, (b) the operating system then updates the $MFT record to reflect the changes, and (c) the

change log journal ($UsnJrnl:$J) is updated.

Copyright © TZWorks, LLC Apr 24, 2025 Page 6

2.4 Log records and partial MFT attribute data

For each operation entry in the $LogFile that points to an attribute modification, one will note that

sometimes the payload will only contain a partial set of data for the attribute change. This is intentional

since the $LogFile is only recording delta changes within an attribute. However, the parser needs to be

able to reconstruct which data in the attribute was changed and thus provide some context to the

analyst.

To show an example of this in action, below are some images from a $LogFile viewer that was created to

help reverse the internal structures of the $LogFile records. These screenshots are only shown in this

user’s guide to help explain some of the internals and the why the reported data produced by mala only

shows portions of the data per operation.

In this example, we take the same operational log entry used in the previous example when showing the

data interdependencies (eg. log sequence number 0x8264d785f). When breaking out the internals of

log header and payload data structures, one can see that the operation is meant to update the Standard

Information (StdInfo) attribute in the associated MFT record. (The header portion of the log entry is the

top portion of the image, whereas the payload is the bottom potion of the image). When looking at the

payload data, it skips the first 0x40 bytes of the StdInfo data and only addresses the last 8 bytes. The

StdInfo structure, in this case, contains 0x48 bytes. These 8 bytes are the change log record index

Copyright © TZWorks, LLC Apr 24, 2025 Page 7

number which identifies the $UsnJrnl:$J entry, which gets mapped directly into the appropriate StdInfo

field of the inode record.

As a second example, we continue to look at the same transaction, but look at one of the previous

operations that lead up to the operation that was just discussed above. In this case, we select the

SetNewAttributeSizes operation. This particular operation is applied to the actual $UsnJrnl:$J file that

reflects the changes to the target file in question. This change only requires 32 bytes to record the data

changes, even though the attribute for the header portion of the $Data attribute is 72 bytes in this case.

The data changes are the size modification changes for the $UsnJrnl:$J file to accommodate the new

change log record that was added for the target file.

Copyright © TZWorks, LLC Apr 24, 2025 Page 8

The intent of this document is not to delve into too much detail with these examples; it is only to show

that the mala tool is able pull these partial data chunks and map them into the proper structure so the

data can be reviewed in the proper context.

2.5 Transactions and operations

When looking at what NTFS calls a transaction and how it translates to the records in the $LogFile, one

sees that there are multiple operations that occur in sequence, and when combined together, are

labeled a transaction. mala looks at all the records/operations and pieces together which records are

chained together to form a single transaction. This is quickly identifiable, since each record has a

pointer to the previous record in the chain for its transaction. This pointer while monotonic (always

increases), doesn’t necessarily mean that the next record is part of the current transaction. Thus,

consecutive records can be interleaved between multiple transactions that are occurring (presumably

for mutually exclusive transactions). This is shown below where transaction 1, includes log sequence

numbers (LSNs) 21, 22, 24; and transaction 2 includes LSNs 23, 25, 26. (note: the LSN numbers shown

Copyright © TZWorks, LLC Apr 24, 2025 Page 9

below are consecutive which is not normal with valid data; LSN numbers are incremented as a function

of the size of the current record to compute the next LSN number; the consecutive sequence below is only

shown to keep the numbers simplistic and easy to follow for this example).

When mala reports on these operations, it groups the appropriate ones into their own separate

transaction’s in the output so it is clear what the sequence of operations were per transaction.

2.6 Time is not explicitly recorded in the records

Unlike other artifacts used in forensics, the $LogFile does not have a timestamp embedded into its

normal record’s data structure. This makes it difficult for the forensic analyst to try to correlate the time

when a transaction occurred. However, one can infer time by looking at of the combination of records

that comprise timestamp within its payload data. One can also infer time by looking at the inode records

that match the $LogFile records logical sequence numbers.

For example, if any of the records in a sequence contains a payload of $UsnJrnl change log data, then

one can parse that payload data and pull the timestamp embedded in the change log record. This is

only because the $UsnJrnl change log data has a timestamp as part of its metadata. If this metadata is

contained within a $Logfile record, then it can be extracted and parsed, giving the time inferred for the

$Logfile transaction. Further, if one parses the $MFT file records in parallel with the $Logfile records

and if there happens to be an entry in the $MFT file that matches the $LogFile record in question, one

can pull the latest timestamp from the $MFT attributes. In this way, one can estimate the time the log

entry was made.

To aid the analyst in this inference of time, mala tries to do this on a best effort basis and reports an

‘extrapolated timestamp’ for each record. Internally, mala keeps track of the last time that was

reported (either via a $UsnJrnl entry or a $MFT entry) and reports that time for the next log sequence

number (LSN) record reported. This extrapolated time is just a guess or estimate, even though the

precision is shown in the 100 nano second resolution. Sometimes this estimate is very accurate when a

change log entry was recorded and sometimes it is not very accurate at all. The latter case happens

when a large number of log records have passed without a timestamp being observed to infer during the

parse operation. Once a timestamp is found, the accuracy is again good until the next timestamp found.

Copyright © TZWorks, LLC Apr 24, 2025 Page 10

As an indicator to the analyst, the more closely aligned timestamps are shown in the ‘ref’ field of the

report.

3 How to Use mala

The current options for the mala tool are shown the screenshot below.

The required syntax is to pass in a $Logfile via the -log <file> option as shown below. The syntax below

shows an -out <file> parameter, but one can redirect the output to any file as well. As a side note, if

you are using Windows PowerShell instead of a command prompt, then we recommend the use of use

single quotes around any path/filename that contain a ‘$’ character.

mala64 -log ‘c:\test\$Logfile’ -csv -out results.csv

To gain more context information, one can also pass in the companion $MFT file via the -mftfile <file>

option. The tool will merge the parsed $MFT data into the $Logfile data to generate more complete

records.

mala64 -log ‘c:\test\$Logfile’ -mftfile ‘c:\test\$MFT’ -csv -out results.csv

When multiple artifact files are used in the analysis (eg. using both $LogFile and $MFT files), mala will

spawn multiple threads to handle each artifact in parallel so as to parse the data quickly. The resulting

output from each thread will then be combined into one output file.

3.1 Parsing with only the $Logfile for analysis

While it is preferable to use both the $Logfile and $MFT artifact files to maximize the usefulness of the

report generated by mala, some use-cases involve corrupted $MFT files. If the corruption of the $MFT

file is sufficient to prevent the mala tool from parsing it, then running mala with just the $Logfile still

provides useful, albeit, degraded results. To explain this in more detail, one needs to analyze the

Copyright © TZWorks, LLC Apr 24, 2025 Page 11

differences in the reporting of running mala with just using the $Logfile to that of running it in

conjunction with the $MFT file. The main issues without using the $MFT file in the analysis are: (a) the

path for the target file being created, changed or deleted is not present; and (b) any logical sequence

number matches between the $Logfile records and $MFT records are not available which consequently

results in less possible context data in the output. There are other artifact data that is lost as well, but

the ones listed above are the main ones.

Aside from these issues, parsing the $Logfile by itself is still useable for those cases were the $MFT file is

not present. Why? The $Logfile has embedded into its records the $UsnJrnl:$J change log entries that

were done. More specifically, the $Logfile has an entry for each change recorded in the $UsnJrnl:$J as

part of a transaction since the change log journal is a file as well. Since $UsnJrnl:$J entries are preserved

in the $Logfile records, one can extract and parse these records which has meaningful data, even

though the path of the file is still missing.

3.2 Reporting

The output generated by mala is in a delimited format where the delimiter can be either a comma (CSV

format), pipe, or tab character. So as to limit the number of fields and provide uniformity across

different operations, the last field is a quasi-json format that allows the tool to use a condensed notation

and be extensible so as to allow for an unlimited combination of data types. In this way dissimilar data

can be concisely put into a format that is easily digested by a spreadsheet program (like excel) or into a

database. Most of the data put into this ‘catch-all’ column is the payload data associated with the

operation, as well as, any supporting information provided by the $MFT file (if available).

Below are the delimited fields that are included in the reporting:

Field Meaning

extrapolated_timestamp Internally, mala keeps track of the last time that was reported (either via a $UsnJrnl
entry or a $MFT entry) and reports that time for the next log sequence number (LSN)
record reported. This extrapolated time is just a guess or estimate.

ref Indicator when the time was updated based on explicit timestamp data in the payload
or a referenced $MFT record

change_reason Relates to the $UsnJrnl entry embedded into one of the operations associated with
that transaction, or if the $UsnJrnl entry is not available it is derived from the type of
operation.

lsn Log Sequence Number

type Specifies whether it is the start of the transaction or one of the operations in the
transaction

op_pattern Operational code (or sequence of codes if the initial start of the transaction)

redo_op The translated operation name for the redo operation (doesn’t show the undo
operation).

target_lcn Logical Cluster number of the target that is affected

inode MFT record entry. Combination of either (a) explicitly listed inode or (b) computed
based on the offset, cluster size, and MFT record size

inode_seqnum MFT record entry sequence number. From data that explicitly listed the sequence

Copyright © TZWorks, LLC Apr 24, 2025 Page 12

number

parent_inode Parent MFT record entry. From data that explicitly listed this.

parent_seqnum Parent MFT record entry sequence number. From data that explicitly listed this.

path Relies on the $MFT file to build the absolute path.

comment General purpose field that displays the parsed payload data and/or other data from
support files.

For the quasi-json formatted data, there are some keywords used. The main ones are listed below. The

purpose of using keywords is to try to group like-data segments from various sources so as to allow one

to have more insight as to where they came from. For example, any data that comes from a $MFT

supporting file, will be preceded by the ‘mftfile’ keyword. Likewise, if the data came from a $UsnJrnl:$J

data, it would be preceded by the ‘usnjrnl’ keyword. Sometimes the payload data is truncated, which

can be derived when the size of the payload disagrees with the actual number of bytes left before the

start of the next log record. For these cases, the ‘data_truncated’ keyword is used and the data is

parsed to the extent possible given that it was truncated.

Keyword Meaning

open_record Relates to the payload data associated with the OpenNonresidentAttribute operation

file_record Relates to the payload data associated with the InitializeFileRecordSegment operation

Name is derived from
one of the MFT attributes

Partial data within the payload data that can affect any of the MFT attributes,
including: $filename, $stdinfo, $indx_direntry, $data, etc

usnjrnl Contains a $UsnJrnl:$J record embedded in the payload data

hex_bytes Contains an unparsed series of bytes in the payload data

cluster_run_data Contains a cluster run embedded in the payload data

bitmap_set Relates to the payload data associated with the SetBitsInNonresidentBitMap
operation

set_size Relates to the payload data associated with the SetNewAttributeSizes operation

mftfile Comes directly from any inode data from a separate $MFT file. If listed for an
operation, it directly relates to the operation log entry

metadata This is the metadata associated during the parsing of the operation record.

data_truncated This relates to the operation’s record reference to the payload data and the fact that
the size for the payload doesn’t reflect the number of bytes present. Some payload
data exists, but the data is truncated.

Below is a sample output showing an entire transaction and the relationship of the normal fields and the

comments field.

If we expand the comments field for the operation that contains the embedded $UsnJrnl data, the

parsed data is shown below prefixed by the “usnjrnl” keyword. The output also includes the “mftfile”

keyword for the filename and path information.

Copyright © TZWorks, LLC Apr 24, 2025 Page 13

4 Pulling Artifacts off a Live System

The raw artifact files used by mala (eg. $Logfile and $MFT) are locked down if trying to access them from

the running system. One solution is to look to other tools to copy the appropriate artifact files. If you

are on a Windows machine, one can use the TZWorks’ tool dup (Disk Utility and Packer). It will allow

one to copy a file, or an entire directory, even if some of the files are locked down by the operating

system. To use dup to target the system files used by mala, one could use the following command:

dup -copygroup -pull_sysfiles -out <results folder>

The above command will also pull other system files not needed by mala, but all the files used by mala

will be extracted.

5 Available Options

Option Description

-log
Specifies which $LogFile to act on. The syntax is:

 -log <file>

-mftfile

Use the specified $MFT file for $LogFile analysis. The syntax is:
 -mftfile <file>. There is a sub-option [-showall_inodes] to display all the

inodes in the output

-csv

Outputs the data fields delimited by commas. Since filenames can have
commas, to ensure the fields are uniquely separated, any commas in the

filenames get converted to spaces.

-base10
Ensure all size/address output is displayed in base-10 format versus
hexadecimal (base-16) format. Default is hexadecimal format.

-no_whitespace
Used in conjunction with -csv option to remove any whitespace between the
field value and the CSV separator.

-csv_separator

Used in conjunction with the -csv option to change the CSV separator from
the default comma to something else. Syntax is -csv_separator "|" to change
the CSV separator to the pipe character. To use the tab as a separator, one can
use the -csv_separator "tab" OR -csv_separator "\t" options.

Copyright © TZWorks, LLC Apr 24, 2025 Page 14

-dateformat

Output the date using the specified format. Default behavior is -dateformat
"yyyy-mm-dd". Using this option allows one to adjust the format to mm/dd/yy,
dd/mm/yy, etc. The restriction with this option is the forward slash (/) or dash
(-) symbol needs to separate month, day and year and the month is in digit (1-
12) form versus abbreviated name form.

-quiet Show no progress during the parsing operation.

-utf8_bom
All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8 byte
order mark to the CSV output using this option.

6 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

7 References

1. NTFS Log Tracker, blueangel, forensic-note.blogspot.kr, JungHoon Oh briefing charts,
http://forensicinsight.org/wp-content/uploads/2013/06/F-INSIGHT-NTFS-Log-TrackerEnglish.pdf

2. NTFS.com, NTFS Transaction Journal [https://www.ntfs.com/transaction.htm]

3. G-C Partners, File System Journal Analysis, David Cowen and Matthew Seyer and

ANJPv3.11.07_FE.exe tool

4. LogFileParser, https://github.com/jschicht/LogFileParser

5. Windows Internals, Microsoft Press

	1 Introduction
	2 NTFS Transactional Log Internals
	2.1 Operation Log Record
	2.2 Operation Types Using in Log Records
	2.3 Data Structure interdependencies
	2.4 Log records and partial MFT attribute data
	2.5 Transactions and operations
	2.6 Time is not explicitly recorded in the records

	3 How to Use mala
	3.1 Parsing with only the $Logfile for analysis
	3.2 Reporting

	4 Pulling Artifacts off a Live System
	5 Available Options
	6 Authentication and the License File
	7 References

