

Abstract
ntfswalk is a standalone, command-line tool that traverses

a specified NTFS volume reading all MFT entries while

extracting useful metadata about each file and folder.

ntfswalk can operate on a live volume, an image of a

volume or a VMWare volume. All artifacts can be

outputted in one of three formats for easy inclusion with

other forensics artifacts. ntfswalk runs on Windows, Linux

and macOS.

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v0.95 of ntfswalk

Updated: Apr 25, 2025

TZWorks® NTFS Metadata
Extractor (ntfswalk) Users Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 25, 2025 Page 1

Table of Contents

1 Introduction .. 3

2 How to Use ntfswalk ... 3

2.1 The Command line options for the above .. 4

2.2 Understanding the Output .. 5

2.3 Parsing Live Volume .. 8

2.3.1 Targeting a Partition ... 8

2.3.2 Targeting a Drive Number ... 8

2.3.3 Targeting a Volume Shadow Copy .. 9

3 Considerations when using ntfswalk .. 10

4 Available Options .. 11

4.1 Source options .. 12

4.2 Filtering Options .. 12

4.2.1 Selecting Deleted Files .. 14

4.2.2 Selecting Files with Specified Extensions .. 15

4.2.3 Selecting Files that include a partial name ... 15

4.2.4 Selecting Files with in a MFT entry (inode) range ... 15

4.2.5 Selecting Files are that have a certain parent directory ... 15

4.2.6 Selecting Files based on their Binary Signature (Executable files, Registry Files, Event Logs,

or SQLite Files) .. 16

4.2.7 Selecting Files in a Time Range ... 16

4.2.8 Selecting Files that are present in unallocated clusters ... 17

4.2.9 Linux and macOS Specific Notation .. 17

4.3 Extraction Options .. 17

4.3.1 Extracting the Data from a file .. 18

4.3.2 Extracting the First 32 bytes of the file ... 19

4.3.3 Extracting the Cluster Information Associated with a file .. 19

4.3.4 Extracting the Owner Security Identifier .. 19

4.4 Output Options ... 19

Copyright © TZWorks LLC Apr 25, 2025 Page 2

4.4.1 Computing the hash of the file ... 21

4.5 General Purpose Options .. 21

4.5.1 Using a Script File .. 23

4.5.2 Spawning multiple instances of ntfswalk .. 24

5 Authentication and the License File .. 26

5.1 Limited versus Demo versus Full in the tool’s Output Banner .. 26

6 References .. 27

Copyright © TZWorks LLC Apr 25, 2025 Page 3

TZWorks® NTFS Extractor (ntfswalk) Users
Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=12

Contact Information: info@tzworks.com

1 Introduction

ntfswalk is a command line tool that traverses a specified NTFS volume reading all the MFT entries and

pulling predefined statistics as it runs.

Originally, the NTFS engine was designed as a widget for other applications to help pull data out from

targeted categories of files on NTFS partitions. After successfully using the functionality in other tools, it

was determined that the utility in making a standalone tool would be helpful in debugging and

understanding the internals of any NTFS volume. This new tool, coined ntfswalk, is named after its

ability to walk an entire NTFS volume and output each MFT entry it encounters.

Designed to work with live NTFS partitions, there is also functionality for traversing NTFS images created

with the dd utility (as well as some versions of VMWare VMDK files). There are options to filter on file

extension, timestamp range, binary signature, partial filenames, and directory contents. For the entries

found, one can list the summary metadata, extract the header bytes, or extract the entire file contents

into a designated directory. Since the engine is Windows API agnostic, there are compiled versions for

Windows, Linux and macOS.

If targeting a volume mounted on a live Windows system, one needs to be run ntfswalk with

administrator privileges.

2 How to Use ntfswalk

ntfswalk has a number of command line switches, and for the occasional user, it can be confusing which

options can be used together and which cannot. The figure below divides ntfswalk's processing flow

into 4 main areas.

mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 25, 2025 Page 4

Starting with the first area, this identifies which data sources can be inputted into ntfswalk. Currently,

they include: (i) an $ extracted MFT file, (ii) a ‘dd’ image of a drive or volume, (iii) a drive or volume

currently in use on a live system, (iv) a VMWare single volume disk, or (v) a volume shadow copy.

The second area shown above is filtering. This defines what files (or MFT entries) are analyzed and

displayed to the user. One can filter on deleted files/folders, extensions, partial names, and binary

signatures. For binary signatures, currently ntfswalk allows one to find: registry hives, event logs,

SQLite databases, or portable executable files. Also in this area, one can choose to analyze all

unallocated clusters instead of the normal allocated clusters, or to pull files from a specified directory.

The third area in the diagram is the extraction options. Whatever option is chosen, at a minimum,

ntfswalk will produce a results file. This results file will contain much of the metadata one needs for

forensic analysis. For more detailed analysis, one can add extra data to the results, including: (a) the

bytes in the header for each file or (b) the cluster run information. To physically extract the contents of

the file, one can specify an archive directory as well as whether to include slack data or not. If one does

extract the file data, ntfswalk will compute the MD5 hash of the file and annotate this data to the

results file as well.

The fourth area allows one to select how one wishes to see the results. As mentioned above, even if one

only wishes to extract data to a directory, there will be a results file that logs every file that passes the

filter tests. The default output is plain text, which by itself, has reasonable formatting when viewed in

notepad and word wrap is turned off. The other formats are geared for spreadsheet analysis or other

post processing tools. Typically, any data containing numbers is defaulted as hexadecimal; however,

there is an option to transform the output into base10 notation, if desired. As an add-on to ntfswalk, is

the ability to generate a hash set type file.

2.1 The Command line options for the above

The syntax for each of the options that correlate to the above ntfswalk flow diagram is shown in the

figure below. The figure also identifies which options can be used in combination with others.

Therefore, one can select: (a) one source of input, (b) none or any combination of filters, (c) none or one

extraction option, and (d) one type of format for the output results.

Copyright © TZWorks LLC Apr 25, 2025 Page 5

2.2 Understanding the Output

Let’s say you wanted to search all the names on a live volume that contained the string wordpad.exe

and store the output into CSV format. That way you could double click on the resulting CSV file and Excel

could easily open the file. The syntax would be the following for scanning the 'c' partition and

redirecting the output to some results file:

 ntfswalk -partition c -filter_name "wordpad.exe" -csv > results.csv

When examining the results.csv file, one would see prefetch, mui and exe entries all containing the

string wordpad.exe. Since the prefetch entry has a name longer than the DOS 8.3 length, the normal

windows system would have a set of timestamps for the long filename as well as a set of timestamps for

the 8.3 version of the filename. Below is an annotated output of the results.

Copyright © TZWorks LLC Apr 25, 2025 Page 6

Many of the above timestamps are duplications, and thus, by using the compressed macb timestamp

notation, one can show all the pertinent data without taking too much room, as is highlighted above.

Also highlighted are entries where there are multiple parent directories for one MFT entry (in this case,

there are 2 parents for wordpad.exe). This means that wordpad.exe as a single MFT entry, has two hard

links to separate directories.

Other data that can be extracted from ntfswalk includes cluster information. By using the

option -action_include_clusterinfo, one can view all the cluster information available for each attribute

that contains data. Below is an example:

 ntfswalk -partition c -action_include_clusterinfo -csv > results.csv

The figure below shows a snapshot of a sample output. After trimming out some of the rows/cols, one

can see the data type, filename, and the location where the data resides. For those datasets that are

easily parsed, such as the volume information or object identifier, ntfswalk shows the interpreted data.

For other entries, the cluster information is shown, if applicable.

Copyright © TZWorks LLC Apr 25, 2025 Page 7

As a third example, if one wishes to extract cluster data associated with a MFT entry, one can use

the -action_copy_files <directory to store extracted files>. The syntax below shows we want to

enumerate only those deleted files that have an extension of lnk. As part of the copy, we tell ntfswalk

to copy each of the clusters associated with these resulting files to a dump directory. The syntax of the

command is:

 ntfswalk -partition c -filter_deleted_files -filter_ext "lnk" \

 -action_copy_files c:\dump\deleted.lnk -csv > results.csv

The first figure shows each MFT entry and the associated path/name of the extracted file. The second

figure shows the output of the extracted files. The syntax of the extracted file uses <last modify

date>_<md5 hash>_<filename w/ extension>_<data type>.bin

Copyright © TZWorks LLC Apr 25, 2025 Page 8

2.3 Parsing Live Volume

There are three options when parsing a mounted live volume for Windows, all which require

administrative privileges. This includes the -partition, -drivenum and -vss options.

2.3.1 Targeting a Partition

This first option was used in the previous examples and just needs to identify which partition letter to

analyze.

2.3.2 Targeting a Drive Number

The second option requires one to specify a drive number, as well as an offset, to the NTFS volume one

wishes to analyze. The syntax is as follows:

ntfswalk64 -drivenum <num> [-offset <volume offset>] [options]

Copyright © TZWorks LLC Apr 25, 2025 Page 9

The -drivenum option is useful in those cases where there is no drive letter associated to an NTFS

volume. This occurs for those volumes that are hidden from the user when using Windows explorer.

They are created by default in the newer Windows operating systems to store operating specific

information/boot information that the normal user should not access. To assist a user in locating

volume offsets, one can invoke the -drivenum <num> command without an offset and ntfswalk will

return the volumes and their volume offsets for that particular physical drive. Once you have the

volume offsets, you can issue the complete command to analyze the desired volume. Below is an

example of pulling the volume offsets from drive 0. The results will also show the user some sample

syntax they can use to analyze a particular volume of the specified drive.

2.3.3 Targeting a Volume Shadow Copy

The last option is used to tell ntfswalk to analyze a Volume Shadow Copy. The syntax is

-vss <index of volume shadow>

To determine which indexes are available from the various Volume Shadows, one can use the Windows

built-in utility vssadmin, as follows:

 vssadmin list shadows

 To filter some of the extraneous detail, type

 vssadmin list shadows | find /i "volume"

While the amount of data can be voluminous from that above command, the keywords one needs to

look for are names that look like this:

 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1

 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy2

 ...

From the above, notice the number after the word HarddiskvolumeShadowCopy. It is this number that is

passed as an argument to the -vss option.

Copyright © TZWorks LLC Apr 25, 2025 Page 10

3 Considerations when using ntfswalk

Since the NTFS volume can have hard links, it is possible for a specific MFT entry to have multiple

parents (or directories) that it belongs to. Furthermore, in addition to, multiple parents, an MFT entry

can have different long filenames. The bottom line is there may be more filename attributes per MFT

entry than one might expect. Thus, when reporting timestamps, all these additional filename attribute

entries need to be considered. Fortunately, the NTFS parsing engine in ntfswalk can traverse all the

parent directories given a specific MFT entry. When representing additional parents for a MFT entry,

the output can be messy and confusing.

To accommodate the additional data, the output is expressed in the macb [Modify, Access Changed

MFT, Birth] format to allow easy display of the timestamps associated with all the possible parents

(directories) and/or differing filenames. Thus, if an MFT entry has more than one parent directory or

multiple names, there will be separate macb entries to accommodate those attributes.

There is also the capability for ntfswalk to parse an extracted $MFT file vice simply using an image of a

drive or a live system. Just one caution when using this option, however; for MFT entries that rely on

non-resident attribute lists, the data is obviously contained in a cluster outside the normal $MFT set of

clusters. This means that the attribute data associated with the non-attribute list will not be reflected in

the output.

In addition to the default text output, where each field is delimited by the pipe ‘|’ character, there also

exists options for: (a) normal CSV format, (b) The SleuthKit's v3 bodyfile format, and (c) a log2timeline

CSV format, to allow for easier data import into a timelining tool. Of the output formats available, the

default and normal CSV formats will yield the most data to the user.

For CSV (comma separated values) output, there are restrictions in the characters that are outputted.

Since commas are used as a separator in CSV, any data that has commas in its name are changed to

spaces. For the default (non-csv) output no changes are made to the data, since the pipe character is

used as the delimiter, which does not have any character collision problems with filenames.

Finally, the newer versions of ntfswalk incorporate the ability to make use of multiple cores to process

the data. Whether this option is appropriate to use for your system will depend on your machine’s

configuration and whether the system is resource bound or not. Refer to the section on “Spawning

multiple instances of ntfswalk” for more information.

Copyright © TZWorks LLC Apr 25, 2025 Page 11

4 Available Options

The command prompt shows many of the available options. Below is a screen shot of the menu
displayed.

These options can be broken up into the ntfswalk flow diagram shown earlier. The main categories are:
(a) Source options, (b) Filter options, (c) Extraction options, (d) Output options, and a catch all of (e)
General purpose options.

Copyright © TZWorks LLC Apr 25, 2025 Page 12

4.1 Source options

When running ntfswalk, one needs to identify the source of the data. There are five possible options

one can use, whether it is a mounted volume, a ‘dd’ image of a volume or drive, etc. These options are

enumerated below. The options labeled as 'Extra' require a separate license for them to be unlocked.

Option Extra Description

-mftfile
Assuming one has an $MFT file that has been copied from a volume, one can

analyze the file. The syntax is: -mftfile <extracted $MFT file>.

-image
Extract artifacts from a volume specified by an image and volume offset. The

syntax is -image <filename> -offset <volume offset>

-drivenum ***

Extract artifacts from a mounted disk specified by a drive number and volume

offset. The syntax is -drivenum <#> -offset <volume offset>

-partition
Extract artifacts from a mounted Windows volume. The syntax is -partition <drive

letter>.

-vmdk

Extract artifacts from a VMWare monolithic NTFS formatted volume. The syntax is

-vmdk <disk name>. For a collection of VMWare disks that include snapshots, one

can use the following syntax: -vmdk "disk1 | disk2 | ..."

-vss ***

Experimental. Extract artifacts from Volume Shadow. The syntax is -vss <index

number of shadow copy>. Only applies to Windows Vista, Win7, Win8 and

beyond. Does not apply to Windows XP.

4.2 Filtering Options

The second area is filtering. This defines what files (or MFT entries) are analyzed and displayed to the

user. One can filter on deleted files/folders, by various extensions, multiple partial names, and/or binary

signatures. Also in this area, one can choose to analyze all 'unallocated clusters' instead of the normal

'allocated clusters' or to pull files from a specified directory. For binary signatures, currently ntfswalk

allows one to find: registry hives, event logs or portable executable files. The options available and their

syntax are:

Option Extra Description

-filter_ext
Filter on one or more extensions. The syntax is: -filter_ext "<ext1> |

"<ext2> | ...".

Copyright © TZWorks LLC Apr 25, 2025 Page 13

-filter_name
Filters on one or more partial names (case insensitive). The syntax

is: -filter_name "<partial name1> | "<partial name2> | ...".

-filter_deleted_files
Filters on deleted files. This option only looks only at the $MFT file

to find the deleted files.

-filter_fullname
Filters on one or more fully qualified path/filename entries. The

syntax is: -filter_fullname "<path\name1> | "<path\name1> | ...".

-filter_inode
Filters on one or more inodes. The syntax is: -filter_inode "<inode1> |

"<inode2> | ...".

-filter_deleted_files_all

Filters on all deleted files in a volume. Looks at both the $MFT file

and unallocated clusters to find deleted files. This option is still

experimental, in that when scanning unallocated clusters certain

boundary conditions may cause ntfswalk to crash, since various

metadata will be corrupted.

-filter_unalloc_clusters

Analyzes files and directories in a volume. Looks just at unallocated

clusters and doesn't analyze the $MFT file. This option is still

experimental, in that when scanning unallocated clusters, certain

boundary conditions may cause ntfswalk to crash, since various

metadata will be corrupted.

-filter_all_clusters

Analyzes files and directories in a volume. Looks at both the $MFT

file and unallocated clusters to find files and directories. This option

is still experimental, in that when scanning unallocated clusters

certain boundary conditions may cause ntfswalk to crash, since

various metadata will be corrupted.

-filter_sig

Filters on one or more built in signatures. mz = exes, dlls, and driver

files, hive = registry hives, evt = event logs (both .evt and .evtx

types), and sqlite = SQLite v3 databases. The syntax is: -filter_sig

"mz|hive|evt|sqlite" to filter on all signatures associated with mz,

hive, evt and sqlite.

-filter_dir

Filters on one or more directories. Will filter the first level down in

default mode. The syntax is: -filter_dir "<dir1> | <dir2> | ...". To filter

beyond one directory, use a wildcard '*' and a number pair to

specify the number of directories to scan. For example: -filter_dir

"c:\$Recycle.Bin*3" to enumerate 3 directories down in the recycle

bin directory. Use this wildcard carefully, in that if too many

Copyright © TZWorks LLC Apr 25, 2025 Page 14

directories are specified, ntfswalk will need to take a lot time to

compute all the subdirectories prior to processing the data. It is

usually much faster to do an entire drive in default mode than to

specify a deep directory scan.

-filter_dir_inode
Filters one or more directory inodes. Will filter the first level down.

The syntax is: -filter_dir_inode "<inode1> | <inode2> | ...".

-filter_start_time

Filters on a time start. Time is specified in UTC format using the

following notation: mm/dd/yyyy hh:mm:ss, or without time,

mm/dd/yyyy. The syntax is: -filter_start_time <date>.

-filter_stop_time

Filters on a time stop. Time is specified in UTC format using the

following notation: mm/dd/yyyy hh:mm:ss, or without time,

mm/dd/yyyy. The syntax is: -filter_stop_time <date>.

-filter_max_size

Filter on the size of the file, so it doesn't exceed the max specified

here. Only applies to the 'unnamed' data attribute.

-filter_min_size

Filter on the size of the file, so it at least has the specified amount

of data. Only applies to the 'unnamed' data attribute

-filter_min_ads_size

Filter on the size of the ADS (alternate data stream), so it at least

has the specified amount of data.

4.2.1 Selecting Deleted Files

There are three options for analyzing deleted files. The first is just running ntfswalk with any

combination of filters and it will return those MFT entries that meet those conditions whether they are

deleted or not (e.g. you get both deleted and normal files and each are marked appropriately). The

second and third options, however, specifically target just deleted files. The -filter_deleted_files option

only analyzes those MFT entries that are file record’s in the $MFT file itself, while

the -filter_deleted_files_all option analyzes both the $MFT file and unallocated clusters in the target

volume. The last option can be extremely slow and will depend on how many unallocated clusters are

present.

Copyright © TZWorks LLC Apr 25, 2025 Page 15

4.2.2 Selecting Files with Specified Extensions

An easy and quick way to analyze specific file types is to filter on certain extensions. Many good files to

perform forensic analysis on can be easily located with this option. A few examples includes: prefetch

files (*.pf), LNK files (*.lnk), Microsoft Office files (*.doc, *.docx, …), email files (*.eml, *.pst), graphics

files (*.bmp, *.gif, ..), and many others. By using the -filter_ext “ext1 | ext2 |…”, option, one can place

as many extensions in the expression, where each extension is delimited by a pipe character and the

entire expression of extensions is double quoted. To make this work properly, ntfswalk treats the

extension filter as an ‘OR’ filter, meaning if any one of the conditions in this filter (or any other filter) are

met, it will cause the file to pass. Below is an example of filtering for Microsoft Office files:

-filter_ext “.doc | .docx | .ppt | .pptx | .xls | .xlsx”

4.2.3 Selecting Files that include a partial name

One can filter on a partial name of the file or directory by using the -filter_name “name1 | name2 | …”

option. Similar to the extension filter example shown above, this filter allows one to put a number of

partial names to filter on, where each name is delimited by a pipe character. This filter is also treated as

an ‘OR’ filter, meaning if any one of the conditions in this filter (or any other filter) are met, it will cause

the file or directory to pass. A couple of use-cases for using this type of filter are to locate and process

Jump List artifacts, thumbcache files, or system logs (which can have various extensions in their names).

Below is an example:

-filter_name “destinations-ms | thumbcache | setupapi”

4.2.4 Selecting Files with in a MFT entry (inode) range

If you know the inodes (or MFT entry number) of the file, one can specify one or more inodes in a filter.

This filter is also treated as an ‘OR’ filter, meaning if any one of the conditions in this filter (or any other

filter) are met, it will cause the file or directory to pass. One can, for example, pull system files that are

of interest that have immutable inode numbers. Files such as $MFT (inode 0), $LogFile (inode 2),

$Bitmap (inode 6), $Boot (inode 7), $Secure (inode 9), etc. If desiring to analyze or collect any of these

system files, one could use the following syntax:

-filter_inode “0 | 2 | 6 | 7 | 9”

4.2.5 Selecting Files are that have a certain parent directory

If one is interested in a certain directory of files, one can use the -filter_dir “dir1 | dir2 | …” or the inode

variant -filter_dir_inode “inode1 | inode2 | …” options to specify that you want to analyze any file

under one or more directories. These filters are also treated as ‘OR’ filter, meaning if any one of the

Copyright © TZWorks LLC Apr 25, 2025 Page 16

conditions in these filters (or any other filter) is met, it will cause the file or directory to pass. The

normal use-case is the use the -filter_dir option vice the -filter_dir_inode option. The latter was added

since the capability was needed for internal testing and analysis.

To get away from the default behavior of only looking at the current level deep in the directory, one can

use wildcards to specify how deep to analyze. One should try to avoid this option, however, unless the

user knows the number of child directories are relatively small, since using this option requires ntfswalk

to preprocess the all the children directories before analyzing it, which could take a long time.

Below are examples. The first example will analyze those files in the recycle bin down two

subdirectories deep. The second example will look at all the files in the current system32\config

directory, which contains the non-user registry hives.

-filter_dir “\$Recycle.Bin*2”

-filter_dir “\Windows\system32\config”

4.2.6 Selecting Files based on their Binary Signature (Executable files, Registry
Files, Event Logs, or SQLite Files)

Sometimes using external attributes of a file, such as an extension and/or partial name are not enough

to locate the files of interest. In the age of malware, there may be instances where a portable

executable (PE) file is trying to hide and mask its name to something that doesn’t resemble an

executable file. For this type of case, instead of filtering on .exe or .dll or any other traditional PE

extension, one would be better suited to scan on the internals of the file seeing if it had the binary

signature of a PE file. To invoke this option with ntfswalk, one would use the -filter_sig

“mz” option. The “mz” here is part of the signature scanned for and is common in all PE files.

There are also binary signature filters for: (a) registry hives (ref: “hive”), (b) both formats of event logs

(eg. evt and evtx) using the “evt” filter, or (c) SQLite files (ref: “sqlite”). Similar to the previous filters

discussed above, this filter also uses ‘OR’ logic, meaning if any one of the conditions in this filter (or any

other filter) are met, it will cause the file to pass. Below is an example of scanning for registry hives and

event log files:

-filter_sig “hive | evt”

4.2.7 Selecting Files in a Time Range

If one filters a time range, it will be an ‘AND’ type filter. What this means is if it is used in conjunction

with another filter, the time range must be satisfied in order for the overall filtering to pass. When

expressing time ranges, one needs to express the time in Universal Coordinate Time (UTC) and in the

format “mm/dd/yyyy hh:mm:ss”. One can use either the -filter_start_time <time> or -filter_stop_time

Copyright © TZWorks LLC Apr 25, 2025 Page 17

<time> or both to specify a range. The first specifies the start date and the second specifies a do not

exceed date. Below are examples.

-filter_start_time "02/03/1950 19:20:30"

-filter_stop_time "01/01/2013 00:00:00"

4.2.8 Selecting Files that are present in unallocated clusters

More typically, one is interested in the data on the unallocated clusters, primarily to determine what

artifacts were once present that the user of the machine tried to erased.

The option -filter_unalloc_clusters will cause ntfswalk to scan only the unallocated clusters. It does this

by reading the $Bitmap (inode 6) file to determine the cluster mapping of which clusters are allocated

and which are not.

4.2.9 Linux and macOS Specific Notation

Specific for Linux and macOS. When specifying directories to enumerate, one should use the forward

slash when separating subdirectories versus the backslash that is used in Windows.

For example, to enumerate the contents of the drivers folder when running in Linux (or macOS)

<path of app>/ntfswalk -image /<vol mount point> -filter_dir /Windows/System32/drivers -out results.txt

When specifying directories that start with a dollar sign '$', it needs to be escaped with a backslash. For

example, $Recycle.Bin is a directory in the root directory of an NTFS partition. To list the contents of this

directory, one needs to use the following notation:

<path of app>/ntfswalk -image /<vol mount pt> -filter_dir /\$Recycle.Bin/*3 -out results.txt

The first slash in '/\$Recycle.Bin' specifies the root directory. The next character is a backslash to specify

the $ is included after the first slash, and the rest of the characters are normal.

4.3 Extraction Options

Any file passing the filtering test will be a candidate for extraction. There are a few extraction options:

(a) extract the entire file, (b) extract only the header of the file (32 bytes worth), or (c) extract the

cluster run associated with the data of the file. The syntax and explanation of these options are listed in

the table below:

Option Extra Description

-action_copy_files

Extracts the file data into the specified directory. The syntax is:

-action_copy_files <directory to store files> [-raw]

[-skip_sparse_clusters]. The -raw sub-option says to copy all

clusters associated with a file in a bit-for-bit copy operation.

This include slack space as well as not uncompressing any data

Copyright © TZWorks LLC Apr 25, 2025 Page 18

that may use native NTFS compression. The

-skip_sparse_clusters sub-option says to ignore any clusters that

are sparse during the copy operation. Applies only to -csv and

-csvperpath output options.

-action_include_header
Extracts the first 32 bytes of data and appends it to the CSV

output. Applies only to -csv and -csvperpath output options.

-action_include_clusterinfo

Show additional information regarding data types and cluster

runs and appends it to the CSV output. Applies only to -csv and

-csvperpath output options.

-action_include_zoneinfo

Extract and display any Zone.Identifier information in the

output. Applies only to -csv and -csvperpath output options.

-action_find_strings_in_hdr

Examine the first 256 bytes of data in the file and scan for any

strings. Applies only to -csv and -csvperpath output options.

4.3.1 Extracting the Data from a file

Extracting files is a common need, especially when gathering critical data from an incident response

request. By using the -action_copy_files <root directory> [-raw] [-skip_sparse_clusters] one can direct

the files copied to a root directory, but also indicate whether you want to include the file slack (-raw

option) or to skip sparse clusters (-skip_sparse_clusters option).

During the copy operation, various subdirectories within the root directory will be created automatically

to store the extracted files. The subdirectories are based on: (a) derived user account, (b) whether the

file was deleted or not, and (c) what filter caused the file to be passed. Below is a directory hierarchy

that was created based on the ntfswalk command:

ntfswalk -partition c -filter_ext “.gif | .jpg | .lnk” \

-filter_name “index.dat | destinations-ms” \

-action_copy_files 2013_06_12_1817_02_981

Copyright © TZWorks LLC Apr 25, 2025 Page 19

4.3.2 Extracting the First 32 bytes of the file

If one does not want to capture the entire file, one can collect the header of the file internals. The

default is for 32 bytes of data using the -action_include_header option. The output bytes are appended

to each line of the results file that is created.

4.3.3 Extracting the Cluster Information Associated with a file

To extract just the cluster run information of the file, one can invoke the -action_include_clusterinfo

option. The cluster run information is appended to each line of the results file that is created.

4.3.4 Extracting the Owner Security Identifier

To extract the Owner SID (security identifier), one appends the -action_include_ownersid option to the

command line.

4.4 Output Options

The fourth area allows one to select how one wishes to see the results. As mentioned above, even if one
only wishes to extract data to a directory, a results file will also be produced. This results file will log all
the files passing the filter tests. The default output for the results file is a csv type with a pipe delimiter,
which by itself, has reasonable formatting when viewed in notepad and word wrap is turned off. The
other formats are geared for spreadsheet analysis or other post processing tools. Typically, any data
containing numbers is defaulted as hexadecimal; however, there is an option to transform the output
into base10 notation if desired. The options available and their syntax are:

Option Extra Description

-csvperpath

Experimental. Forces one line of CSV output per path/file entry. Since only one

line is used, the MACB dates for standard information and filename is also

spanned across one entry, which makes for a long record. This is useful for those

Copyright © TZWorks LLC Apr 25, 2025 Page 20

users wishing to parse the output of ntfswalk into another application where

most of the fields are in a separate field.

-csv

Outputs the data fields delimited by commas. Since filenames can have commas,

to ensure the fields are uniquely separated, any commas in the filenames get

converted to spaces.

-csvl2t Outputs the data fields in accordance with the log2timeline format.

-bodyfile

Outputs the data fields in accordance with the 'body-file' version3 specified in the

SleuthKit. The date/timestamp outputted to the body-file is in terms of UTC. So if

using the body-file in conjunction with the mactime.pl utility, one needs to set

the environment variable TZ=UTC.

-hashfile ***

Outputs a hash with either MD5, SHA1, SHA256 or any combination of hashes.

The syntax is: -hashfile "md5" to output the MD5 hash, -hashfile "sha1" to output

the SHA1 hash, or

-hashfile "md5 | sha1" to output them both or -hashfile "md5 | sha1 | sha256" to

output them all.

Copyright © TZWorks LLC Apr 25, 2025 Page 21

4.4.1 Computing the hash of the file

There are a number of excellent tools available on the Internet that perform hashing and creating hash

sets. While ntfswalk was not originally designed to generate hash sets, it does have the ability to hash

any desired target file. The main difference between ntfswalk’s approach to that of a normal hash tool,

is ntfswalk accesses the contents of the file at the cluster level directly, whereas other hashing tools do

not. This becomes more important when considering your target machine may be infected with

malware, and whether the actual file contents that are viewed have been masked by malicious software.

Using the switch -hashfile [md5 | sha1 | sha256], will invoke the hash set option. The hashing routine will

only target files with data (more specifically, only the ‘unnamed’ data streams vice any alternate data

streams).

Running the hash option while filtering on executable type files is a good way to generate a hash set on

any exe, dynamic link library or device driver. An easy way to target these file types is to use the filter

option: -filter_sig “mz”. Below is an example run on a Linux box targeting an old XP ‘dd’ image.

If one desired to generate both the MD5 and SHA1 hashes during a run, one would modify the example

command from: -hashfile “md5” to -hashfile “md5 | sha1”.

4.5 General Purpose Options

There are a number of options that fall in the miscellaneous or ‘general purpose’ options and are listed

below:

Option Description

-out
Put the summary information in the specified path/filename. The syntax

is -out <results file>.

-hide_dos_fntimes Don't include any DOS 8.3 filename timestamps in the output

Copyright © TZWorks LLC Apr 25, 2025 Page 22

-hostname
Option is used to populate the output records with a specified

hostname. The syntax is -hostname <name to use>.

-script
Use the specified file to express which options to use. The syntax is:

-script <file>.

-base10
Ensure all size/address output is displayed in base-10 format vice

hexadecimal format. Default is hexadecimal format.

-use_orig_ext
Normal behavior is to append a ".bin" extension to any file copied. This

option says not to append the .bin, but to use use the original extension.

-mftstart
Filter an inode range. The syntax is: -mftstart <inode> [-mftrange <number

of inodes>].

-filerecord_offset Output the absolute offset of the MFT filerecord metadata

-quiet This option suppresses status output as each file is processed.

-no_whitespace
Used in conjunction with -csv option to remove any whitespace between

the field value and the CSV separator.

-csv_separator

Used in conjunction with the -csv option to change the CSV separator

from the default comma to something else. Syntax is -csv_separator "|"

to change the CSV separator to the pipe character. To use the tab as a

separator, one can use the -csv_separator "tab" OR -csv_separator "\t"

options.

-dateformat

Output the date using the specified format. Default behavior is -

dateformat "yyyy-mm-dd". Using this option allows one to adjust the

format to mm/dd/yy, dd/mm/yy, etc. The restriction with this option is

the forward slash (/) or dash (-) symbol needs to separate month, day

and year and the month is in digit (1-12) form versus abbreviated name

form.

-timeformat

Output the time using the specified format. Default behavior is

-timeformat "hh:mm:ss.xxx" One can adjust the format to

microseconds, via "hh:mm:ss.xxxxxx" or nanoseconds, via

"hh:mm:ss.xxxxxxxxx", or no fractional seconds, via "hh:mm:ss". The

restrictions with this option is a colon (:) symbol needs to separate

hours, minutes and seconds, a period (.) symbol needs to separate the

seconds and fractional seconds, and the repeating symbol 'x' is used to

Copyright © TZWorks LLC Apr 25, 2025 Page 23

represent number of fractional seconds. (Note: the fractional seconds

applies only to those time formats that have the appropriate precision

available. The Windows internal filetime has, for example, 100 nsec unit

precision available. The DOS time format and the UNIX 'time_t' format,

however, have no fractional seconds). Some of the times represented by

this tool may use a time format without fractional seconds, and

therefore, will not show a greater precision beyond seconds when using

this option.

-pair_datetime Output the date/time as 1 field vice 2 for csv option

-cpu

This option is experimental and can only be used for processing MFT

entries (as opposed to scanning unallocated clusters or other clusters

outside the MFT). Its purpose is to take advantage of multiple CPUs to

process a desired target. This option also requires one to specify an

output file, via -out <result file>. Since this option creates multiple

temporary files before merging the results into a final results file, one

can also specify a folder where the temporary files can be stored. The

option to specify a temporary folder is -tempdir <folder name>. The

option to instruct the tool to not merge each instance spawned

is -separate_files. The syntax is: -cpu <# children instances> -out

<results file> [-tempdir <folder>] [-separate_files]

-utf8_bom
All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-

8 byte order mark to the CSV output using this option.

4.5.1 Using a Script File

When using ntfswalk across a number of host machines or images, it is good practice to use the

-script <file> option. The script file is just a text file listing all the options you want ntfswalk to use. One

can put one option per line or two options per line. The script engine just treats one file as one blob of

options for it to run. The only things the script engine skips are blank lines and lines that start with a

double slash (//), which are used for comments. Below is a sample script to extract all various

extensions, partial names, system files, etc. that could be used to collect information during an incident

response. The script option, thus, is very useful when combining many options into one session to

collect exactly the information that is desired. To assist in generating these script files, see the gena

application from TZWorks.

Copyright © TZWorks LLC Apr 25, 2025 Page 24

4.5.2 Spawning multiple instances of ntfswalk

ntfswalk can spawn multiple instances of itself to make use of more than one CPU to process a target

MFT file or image. This capability was able to be implemented as an add-on option by splitting the MFT

file into separate chunks and telling each instance of ntfswalk to target a specific MFT range. Each

instance then creates its own results file and the parent instance merges the intermediate results files

into a final one when each of the children instances terminate. To invoke this option, use the -cpu <#

instances> syntax.

Below is a functional diagram of what happens when using an example of three worker instances,

invoked with the option -cpu 3. The number 3 was picked since it represents the case of operating with

a quad core processor. The main instance (eg. parent) spawns 3 child instances of ntfswalk and

instructs each one to work on a specific section of the MFT to process. When a child instance finishes

the task, they die off and leave behind the results in the form of a temporary file. The parent is

Copyright © TZWorks LLC Apr 25, 2025 Page 25

synchronized to the child finishing and begins the task of merging all the intermediary results files (in

their proper order) to a final results file. The temporary files are then deleted. Below is a diagram

showing this flow.

For resource constrained systems, using this option will actually slow your processing down. Therefore,

this option should only be used for systems that have enough memory and additional cores to process

the target MFT.

Below are some examples of where you can use this parallel processing feature. These examples assume

you are running on a quad core computer with sufficient memory to run ntfswalk in each core. In this

case we set the -cpu # to be 3; one core for the main instance and 3 cores for each of the children

instances:

a. Creating hashes (the second is slower, when creating 2 sets of hashes).

ntfswalk64 -image e:\test_image.dd -hashfile md5 -cpu 3 -out hashresults.md5.txt

ntfswalk64 -image e:\test_image.dd -hashfile “md5|sha1” -cpu 3 -out hashresults.both.txt

b. Pulling MFT artifact data

ntfswalk64 -image e:\test_image.dd -cpu 3 -csvperline -out results.txt

c. Copying files (copy all files with the extension ‘.docx’ to the folder datadir)

ntfswalk64 -image e:\test_image.dd -cpu 3 -action_copy_files datadir –filter_ext “docx” -out results.txt

Current the parallel processing feature does not apply to the traversing ‘unallocated clusters’ or

‘random clusters’. It only applies to those cases where ntfswalk uses the MFT data to traverse

the volume. Therefore, the following options will not work with

the -cpu#: -filter_deleted_files_all, -filter_unalloc_clusters, -filter_all_clusters.

Copyright © TZWorks LLC Apr 25, 2025 Page 26

For more complicated cases, one can just wrap all the desired option in a script and invoke the -script

<script file> option along with the -cpu # option.

4.5.2.1 Discussion on when and when not to use parallel processing

When parsing NTFS artifacts, either in an online fashion or offline mode, there is usually significant disk

I/O just to read the desired data so it can be parsed. Then on the back end there is more disk I/O to

store the results. ntfswalk, for example, will reads the MFT data from a volume or an extracted MFT

file. If the volume is mounted (or unmounted, but backed by a typical disk drive that spins its platters,

as opposed to a RAM disk), then the likely limiting factor is the disk I/O and not the CPU. What this

means is adding more CPU cores, in this case, to parse the data may not buy you too much in speed

enhancement, and in some cases, may actually be slower. For the case, where slower times occur, it is

because parallel processing requires some additional overhead to coordinate the other instances on

which data chunk to target and again during the reconstruction, whereas the single core option doesn’t

have this additional overhead. This coordination requires the use of synchronization objects which may

or may not be cheap in terms of resources and will depend on your system configuration.

Where the parallel processing really has noticeable gains, is when one maximizes the I/O speed (there

are a number of ways to do this, but a RAM disk comes to mind). If you are able to sufficiently minimize

the I/O latency and make the limiting factor the CPU, then using multiple cores to process the data

makes sense.

For those that use SSD hard drives, then you most likely will gain some overall speed by using the -cpu #

option. To test your system, we suggest you use one of our options we use for our internal testing of

our tools (we exported with the newer version of the tool so users can make use of it). This option is

just to profile the tool to see how fast it runs. By issuing the -profile option, with the rest of your normal

arguments, will cause the tool to measure the start and stop time, displaying the results at the

command line when the processing is finished. The results are displayed in seconds and fractions

thereof.

5 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

5.1 Limited versus Demo versus Full in the tool’s Output Banner

Copyright © TZWorks LLC Apr 25, 2025 Page 27

The tools from TZWorks will output header information about the tool's version and whether it is

running in limited, demo or full mode. This is directly related to what version of a license the tool

authenticates with. The limited and demo keywords indicates some functionality of the tool is not

available, and the full keyword indicates all the functionality is available. The lacking functionality in the

limited or demo versions may mean one or all of the following: (a) certain options may not be available,

(b) certain data may not be outputted in the parsed results, and (c) the license has a finite lifetime

before expiring.

6 References

1. http://en.wikipedia.org/wiki/NTFS website
2. Brian Carrier's book, File System Forensic Analysis, sections on NTFS

3. Various Microsoft Technet articles

4. SleuthKit's Body file format

5. log2timeline CSV format - currently under evaluation

http://en.wikipedia.org/wiki/NTFS
http://wiki.sleuthkit.org/index.php?title=Body_file
http://log2timeline.net/

	1 Introduction
	2 How to Use ntfswalk
	2.1 The Command line options for the above
	2.2 Understanding the Output
	2.3 Parsing Live Volume
	2.3.1 Targeting a Partition
	2.3.2 Targeting a Drive Number
	2.3.3 Targeting a Volume Shadow Copy

	3 Considerations when using ntfswalk
	4 Available Options
	4.1 Source options
	4.2 Filtering Options
	4.2.1 Selecting Deleted Files
	4.2.2 Selecting Files with Specified Extensions
	4.2.3 Selecting Files that include a partial name
	4.2.4 Selecting Files with in a MFT entry (inode) range
	4.2.5 Selecting Files are that have a certain parent directory
	4.2.6 Selecting Files based on their Binary Signature (Executable files, Registry Files, Event Logs, or SQLite Files)
	4.2.7 Selecting Files in a Time Range
	4.2.8 Selecting Files that are present in unallocated clusters
	4.2.9 Linux and macOS Specific Notation

	4.3 Extraction Options
	4.3.1 Extracting the Data from a file
	4.3.2 Extracting the First 32 bytes of the file
	4.3.3 Extracting the Cluster Information Associated with a file
	4.3.4 Extracting the Owner Security Identifier

	4.4 Output Options
	4.4.1 Computing the hash of the file

	4.5 General Purpose Options
	4.5.1 Using a Script File
	4.5.2 Spawning multiple instances of ntfswalk
	4.5.2.1 Discussion on when and when not to use parallel processing

	5 Authentication and the License File
	5.1 Limited versus Demo versus Full in the tool’s Output Banner

	6 References

