

Network Xfer Xtra (nxx)
Client/Server Utility

Abstract
nxx enables simultaneous acquisition of raw forensic

artifacts on many clients to one or more collection points.

All artifacts are securely transported to ensure data

integrity and confidentiality. Artifacts are recorded with

critical metadata, signatured with unique hashes, and

archived in segregated client based directories for ease in

follow-on analysis. Each deployment of nxx on a client

machine can be customized with its own script for

automated, repeatable collection.

Copyright © TZWorks LLC

www.tzworks.net

Contact Info: jon@tzworks.net

Document applies to v0.05 of nxx

Updated: March 29, 2012

http://www.tzworks.net/
mailto:jon@tzworks.net

Copyright © TZWorks, LLC March 29, 2012 Page 1

Table of Contents
1 Introduction .. 3

2 How to use nxx to complement live forensics collection ... 4

3 Configuring nxx as a server ... 4

3.1 Server Archive Directory Hierarchy... 6

4 Configuring nxx as a Client .. 7

4.1 Tagging a Client with Identifiers ... 8

5 Sending data to the server .. 9

5.1 Running 3rd party commands with the –pipe switch .. 10

5.2 Using –comment and -name switches .. 10

5.3 Name Construction and Server Log Metadata ... 11

5.4 Carriage Return/Line Feed Issues ... 12

5.5 Keying off Directory listings to Copy files ... 12

5.6 Copying files at the cluster level (Windows version only) .. 13

5.6.1 Copying slack space during a file copy (Windows version only) ... 14

5.6.2 Copying without including the sparse clusters (Windows version only) 14

5.7 Copying raw disk sectors (Windows version only) .. 14

5.8 Collecting a Screen Capture (Windows version only) ... 14

6 Automating Collection through Configuration files .. 15

6.1 Push the desired Collection artifacts to the Server .. 15

6.2 Pull the type of artifacts from the Server ... 15

7 Building a configuration file .. 16

7.1 Configuration File Syntax .. 16

7.1.1 General Rules .. 17

7.1.2 Command Lines ... 17

7.1.3 Environment Variables .. 17

7.2 Built in ‘custom’ commands (!custom-) .. 18

7.3 Spawning third party tools to supplement collection (!spawn-) .. 19

7.4 Using a Combination Spawn and Custom Invocation ... 20

7.5 Miscellaneous Configuration File Commands ... 20

7.5.1 !comment- .. 20

7.5.2 !name- ... 21

Copyright © TZWorks, LLC March 29, 2012 Page 2

7.5.3 !repeat- ... 21

8 Example of a collection configuration file .. 21

9 Authentication and the License File .. 22

10 Various nxx Binaries and their Naming Convention ... 23

11 References .. 23

Copyright © TZWorks, LLC March 29, 2012 Page 3

1 Introduction

nxx is a tool that has the ability to act as either a client or server for the purposes of transferring data

from more than one computer (acting as clients) to a central computer (acting as the server). The server

in this case, would be the forensic workstation gathering information during an incident response. The

clients would be those computers that are under investigation. nxx is an enhanced version of the nx

tool. The nx tool is available for download on the TZWorks LLC website.

There are other tools available that perform the client/server function such as netcat and cryptcat. nxx,

however, focuses on (a) secure collection, (b) archiving the file metadata (c) creating a complete log file

of all the transactions that occurred and (d) incorporating a scripting ability to automate a series of

commands that can be controlled via a timer. For extracted files, a MD5 hash, the original directory

path, and timestamp information are logged.

The client version of nxx has the following capabilities:

 Windows specific:

o Perform low level ‘live’ copying at the cluster and/or NTFS MFT level.

o Take a screen snapshot and send the image to the server.

 All operating systems that nxx runs on

o Copy user accessible files and forward to the server.

o Spawn any executable and forward the resulting standard output generated by the

executable to the nxx server.

o Script a collection of commands into a group for automated sequence execution. This

also includes the ability to replay a script based on a user defined interval.

o Run in a mode where the server tells the client what instructions to run.

The nxx server has the following capabilities (applies to all operating systems that nxx runs on):

 Use a configuration file to identify which commands to send to clients. These commands can be

grouped into collections of commands, where each group can service a specific set of client

computers.

 Create a multi-tier subdirectory structure to store all artifacts collected. These tiers are uniquely

defined by each of the clients. This allows similar clients to be grouped in the first tier directory.

The second tier will have a subdirectory name unique to each client. In this way, all artifacts

from a specific client will be contained in its own separate directory.

The transport used in nxx is TCP/IP with the data content encrypted in a RC4 stream cipher. While this

requires a specific crypto key to be stored in the nxx binary, the key is cryptographically salted with

temporal client metadata, so the final key generated is unique. The client temporal metadata is

obfuscated in the packet that is sent to the server allowing the server to decrypt the data. For

maximum security during network transport, the user is recommended to input a separate passphrase

to generate a unique key. To ensure data integrity from the client computer to the final archived file on

Copyright © TZWorks, LLC March 29, 2012 Page 4

the server, an MD5 hash is computed on the client side before transmission, and again, by the server

during its receipt of the data. A mismatch in hashes results in the archive file being labeled as having

errors. Addressing nxx binary integrity, an authentication system checks whether or not the binary has

been modified prior to execution.

Currently, nxx is restricted to IPv4. While there are compiled versions for Windows, Linux and Mac OS-

X, only the full set of client/server specifications work on the Windows architecture. A subset of nxx

client and most of the server specifications have been tested on Linux and Mac OS-X, but they are still

prototype. The architecture is such that any nxx client can talk to any nxx server running on Linux,

Windows or Mac OS-X.

2 How to use nxx to complement live forensics collection

The terms 'client and server' are used here as 'roles' for the nxx tool. Any machine that nxx runs on

does not require the operating system to be configured as a client or server. Any normal (non-server

operating system) computer configuration will work. All that is required is that there is some network

connectivity between the computers.

The direction of artifact data flow is always from the client to the server. Although the server can pass

data back to the client, the network connection needs to originate from the client. One can think of the

clients as those workstations you would like to

extract forensics artifacts from, and the server as

the single workstation you would like to store the

extracted artifacts on. In the server role, nxx can

handle multiple clients at once. Since it was

designed as a multi-threaded application, nxx

simply spawns a separate thread per client

connection. Therefore, simultaneous collection from

a few clients should not be an issue under normal

loading conditions. The maximum number of

simultaneous client connections is really a function

of: (a) the computer resources of the machine acting

in the server role, (b) the amount of data being transferred from each client, and (c) the network

bandwidth of the system.

3 Configuring nxx as a server

To configure nxx in a server role, one uses the -server command option. Without specifying this

option, nxx runs in the default, client mode. Since nxx can be configured as one of two roles (client or

server), the menu options are broken out accordingly. Secondly, the protocol version number of a

client is synchronized with the same protocol version of the server. A mismatch in client and server

Copyright © TZWorks, LLC March 29, 2012 Page 5

protocol versions will cause the connection between client/server to fail. See picture below where the

version number is displayed.

The required parameters for the server are: (a) IP address of the server, (b) unique port number to

identify how to contact the nxx service, and (c) the directory to store all the collected artifacts to. The

two optional parameters are the: -key parameter and the -script parameter. The -key option can be

used to set the crypto key to some user defined passphrase. Without using this option, nxx still

encrypts the data transferred over the network (for clients sending data to the server) using its own

internal algorithm. As stated earlier, it is not recommended to rely on this encryption scheme by itself.

To ensure maximum data protection during network transmission, it is strongly recommended to use

the -key <user specified password> option.

The -script parameter is used to identify a directory containing configuration files. Each configuration

file is associated with a unique client customer identifier. The sections on (a) Tagging a Client with

Identifiers and (b) Building a Configuration File go into depth on this topic.

The screenshot below is an example of setting up the nxx server on an Ubuntu Linux box. If everything

checks out, nxx will output the IP address and port it is listening on, as well as the directory that it will

use to archive data.

Copyright © TZWorks, LLC March 29, 2012 Page 6

Note: If the server was run on a Windows 7 box, the user should get a request from the operating

system to allow incoming connections at the port that was specified for the server. Below is the popup

when running an nxx server on Window 7. Without allowing access, the personal firewall will block all

nxx client requests to connect to the nxx server.

3.1 Server Archive Directory Hierarchy

The server archive directory structure is segregated into various subdirectories starting from the parent

directory that was specified during the server setup. The first two subdirectories that get created are

the: (a) discard and (b) logs. The discard subdirectory is used as a place where temporary files are

created when data is received from clients. Once the complete file is constructed on the server side, the

file is renamed, moved from this temporary directory, and placed in the proper client subdirectory. The

logs subdirectory is the repository for the server logs. The server log is named based on the date and

time the server instance started. The log file will continue to grow in size until the nxx server is

stopped.

The second category of subdirectories that is created is strictly controlled by the clients that contact the

server. The client identifies to the server what the two level subdirectories should be, and the server

dynamically creates these subdirectories. The default mode, assuming the analyst has not given any

specific client information (when starting the client), is to use the IP address of the client and the client’s

Copyright © TZWorks, LLC March 29, 2012 Page 7

hostname. See the annotated snapshot below of an example directory tree created when one client

connects to the server. More information on how to set the client with specific identifying information

is located in the section, Configuring nxx as a Client.

All metadata information that is received by the server is archived within its log. This log is named

'<start_date_time>_results.csv'. From the extension, one can see, it is formatted as a Comma Separated

Value (csv) file. This format was chosen since it is ubiquitous across various platform spreadsheet

applications. The only disadvantage with the csv format, however, is that some filenames contain

commas, since the comma is a valid filename character on Windows. nxx handles this by converting

every comma in the filename to a space when putting it into the log file. This is something to be aware

of when matching names from the log file to that of the original filename.

4 Configuring nxx as a Client

Configuring nxx in the client role is simply a matter of specifying the same IP address and port number

used when configuring the server, and then, issuing the desire command to transfer data. As a test, one

should try to 'ping' the server from the client computer using the -ping option in nxx (vice the built-in

operating system ping command). This will ensure the crypto is synchronized between the client and

server as well as gather several important statistics. Below is an example of doing this with a Windows 7

computer (for the client) talking to an nxx server.

Copyright © TZWorks, LLC March 29, 2012 Page 8

First off from the snapshot above, one can see that some timing statistics are displayed to the user.

During the ping, the client will send its system time to the server. The server will then respond with the

time it received the client’s packet. Finally, the client takes the server’s response and reports when it

received the server’s packet. These timing statistics are archived in the server log. With this

information, one can later compute the round trip delay, as well as estimate the time mismatch

between the server and client system clocks. System time of the client relative to the server is a good

metric to archive. The client machine may have a system clock that has been altered, or is just out of

sync, with other client computers on the network you are analyzing. For any timeline analysis, knowing

what the system clock of the computer you are analyzing relative to a source of time you trust is a good

practice.

The second thing that the nxx -ping command did is not visible in the client’s display. Prior to the

initial ping packet being sent by the client, the client computed its own MD5 hash of the nxx binary.

This hash is sent along with the initial packet to the server. The server logs this hash value along with

the timing statistics. This allows the analyst to check if the version of the nxx client used is what was

expected, or if it was modified. This becomes more important when running the nxx client in an

automated mode, spawned from the task scheduler or other method, on a repetitive basis for some

duration of time without user intervention. Below shows how the server log documents these statistics.

4.1 Tagging a Client with Identifiers

Previously, there was a discussion on how the server sets up the client directories based on the client’s

identification. This section discusses this in more detail.

The default client identifier that the server uses is the client’s source IP address and hostname. These

artifacts are packaged by the client automatically and sent to the server. To change this behavior, the

user can specify that the client use some other identifier. There are two optional switches available to

do this: -cust_id <name1> and -host_id <name2>. The -cust_id affects the first tier subdirectory

at the server end and is meant to identify a specific customer. The -host_id affects the second tier

subdirectory and is meant to identify a specific host computer at the customer’s facility. The only

limitation is that each name (or identifier) can only be up to 16 characters each. This flexibility was

added along with the tiered directory structure so one could easily associate the results at the server

end to that of its source.

Copyright © TZWorks, LLC March 29, 2012 Page 9

As an example, we will use TZWorks as the customer identifier and leave the host identifier as default.

For a ‘test’ command to send data to the server, the client invokes a simple ipconfig /all command and

pipes the output into nxx. The screen snapshots below show the interaction between the client and

server. One can see that the customer identifier, TZWorks, was created as a first tier subdirectory and

the client’s host name was used as the second tier.

5 Sending data to the server

With nxx, there are a number of ways to send artifacts from a client computer to the server. Most of

the options are enumerated in the menu displayed from the command prompt, shown below:

Copyright © TZWorks, LLC March 29, 2012 Page 10

5.1 Running 3rd party commands with the –pipe switch

The most basic command, which has already been shown in a previous example, is the ability to take

any console output and pipe it to nxx, whereupon it will be relayed to the server. This is particularly

handy if one wants to use a built-in tool from the operating system or some other 3rd party tool that

outputs some result to the screen. The -pipe switch is used to tell nxx to expect data input from

standard input.

5.2 Using –comment and -name switches

Taking the simple example used before, one can annotate the data passed to the server with a specific

comment and name. This is done with the -comment <”any text”> and -name <filename to use>

switches.

From the annotated screen snapshots shown below, one can see the interaction of setting

the -comment and -name switches on the client end, and how it affects the results on the server end.

For the -comment, the data associated with it just gets added to the server log. The -name parameter

is used by the server in the construction of the archived file.

Copyright © TZWorks, LLC March 29, 2012 Page 11

5.3 Name Construction and Server Log Metadata

Name construction of the archived file will consist of: (a) IP address, (b) date/time, (c) md5 hash, and (d)

any name that was requested to be used (via the -name switch). While this makes for long filenames, it

solves the problem of identifying where the data came from and what time it was collected. Finally, the

name construction will ensure all names are unique, which is important when dumping many files into

one subdirectory.

Copyright © TZWorks, LLC March 29, 2012 Page 12

When looking at the other server metadata that gets archived in the log, one can see each transaction

that occurred. Metadata such as: status, date, time, source IP, source port, data type, etc. are stored.

For those transactions that created a file in the archive directory, an MD5 hash will be computed and

documented as well.

5.4 Carriage Return/Line Feed Issues

While it is not the case with the previous examples, if the situation were reversed, and nxx was running

on a Linux client and the server was on Windows, one would see that the data would be archived with

line feeds (LF) for ‘end of line’ characters. This behavior is normal to Linux/Unix operating systems.

Windows, however, would like to see carriage return/line feed (CRLF) pairs. To address this, nxx has

a -crlf switch which performs this conversion as part of the transmission. Since this is only affected by

Linux and Mac OS-X clients, the menu option is only displayed with Linux (and Mac OS-x) nxx binaries.

5.5 Keying off Directory listings to Copy files

nxx has the ability to take information from standard input and use this information to copy files. In

using the built-in operating system directory listing to copy files, one needs to configure the command in

two ways.

The first nuance is based on the restriction that the directory listing needs to contain the exact path and

filename of the file you wish to copy. For Windows, one can accomplish this via the command

dir <path> /b /s. The /b option tells the directory listing to use bare formatting with no headers. The

Copyright © TZWorks, LLC March 29, 2012 Page 13

/s option tells the directory listing to traverse to lower level subdirectories. The combination of /b /s

forces the directory listing to contain an absolute path with the filename.

The second configuration step tells nxx that the data received from standard input is really just a bunch

of path/filenames that should be copied to the server. This is done via the -copyfiles switch, which

implicitly invokes the -pipe switch. nxx will not only copy the files, but it will package each copied file

with the appropriate metadata that contains the original source path of the file and the original MACB

set of timestamps. Thus, when the server receives the data, it can be annotated in the server log so

traceability is retained. The series of snapshots displayed above are an example of copying all the

prefetch files from the Windows prefetch directory to the server. While the content of the data is

shrunk to fit on the page, one can see that both original path and filename are stored in the server log

along with the MACB date and timestamps of the file. Also, the original filename is used in the archive

file that is stored the results directory.

5.6 Copying files at the cluster level (Windows version only)

In the previous example, nxx copied a file from the target computer using standard C/C++ calls to (a)

open the file, and (b) read the contents of the file. This is acceptable for most situations. The advantage

is that it is fast, is not file-system unique, and is cross platform. The disadvantage with this technique is

that it is restricted to only those files that the operating system allows one to read. The second

disadvantage is if the system under analysis has been suspected of being compromised, then the files

read by traditional means may have suspect integrity when doing a data read. nxx, therefore, has the

ability to read any file on an NTFS filesystem at the cluster level.

Cluster level reading of files means that one does not go through the operating system to read a file, but

instead traverses the volume at the raw disk level to find the file in question and read the appropriate

raw clusters associated with that file. The biggest issues with raw cluster level copying are: (a) it is file

system specific, and (b) it is much slower than the normal copy.

Taking into account the speed issues with cluster level file copying, one should use this option sparingly.

It should be restricted to a handful of files, such as: registry hives, the pagefile, the $MFT file, the change

log journal, etc.

To use the raw cluster reads in nxx, one uses the -ntfsraw switch in conjunction with the -copyfiles

or -copy <file> switches. The former is with standard input to identify the path/files to copy and the

latter is to explicitly specify which file to copy. Finally, additional metadata is gathered with a raw

cluster file copy, such as MFT entry number, standard information MACB timestamps and filename

MACB timestamps.

Copyright © TZWorks, LLC March 29, 2012 Page 14

5.6.1 Copying slack space during a file copy (Windows version only)

In forensic analysis, many are interested in the data contained in the slack space of a file. This is space

allocated to a file, but has not been used yet. Any data in the slack space would be data that was left

there by the previous owner of the cluster.

To perform a copy of a file, and also copy its slack space, one would use the -incl_slack switch. The

resulting file archived at the server will have the slack space appended to the end of the normal file.

Therefore, the size reported when using this option will include the slack space (which is different than

when the operating system reports size).

5.6.2 Copying without including the sparse clusters (Windows version only)

Windows uses the concept of sparse clusters for reserving a size for a file without actually using clusters.

Normally when copying a file, one could care less about the sparse clusters. This is because sparse data

is not backed by real clusters, and thus the sparse data would be realized as just zeros

nxx allows one to skip these types of clusters via the -skip_sparse_clusters switch. This option is

important since blindly copying a file, that is possibly sparse, may be much more data than you

expected. A useful file in forensics that contains sparse data is the change log journal. The size of the

change log journal can be significantly smaller when using this option.

5.7 Copying raw disk sectors (Windows version only)

nxx has the capability to pull any sectors off a disk and send it back to the server, via the three

switches -copydrive <drive#> -sector <start> -numsectors <#>. Presumably, one could image

an entire drive this way, however, it was not intended for this purpose since the network bandwidth

required would be staggering. Instead one could pull out the Master Boot Record of the drive, or any

sector that was suspected of being used to hide data, if a rootkit was suspected.

5.8 Collecting a Screen Capture (Windows version only)

One of the more interesting items to look at when examining a computer is the screen. Therefore, nxx

has the ability to collect a screen capture via the -screendump switch. If the computer you are

examining has more than one monitor, this option only takes a screen capture of one of the monitors

(not both). The file that is generated is a standard bitmap file.

Copyright © TZWorks, LLC March 29, 2012 Page 15

6 Automating Collection through Configuration files

One of the biggest advantages of nxx over the free nx tool is the ability to script out a number of

commands in the form of nxx configuration files. The configuration file is a series of steps you instruct

the nxx client to perform. The rules and syntax of building configuration files are discussed in the

Section on Building a Configuration File.

There are two ‘use-cases’ for using these configuration files. The first is to have the client run with its

local version of the configuration file, and the second is to have the server deliver to the client a

configuration file. The syntax for the configuration file is identical between both use-cases. The

switches, however, for using these options vary depending on the use-case and are discussed in their

respective sections below.

6.1 Push the desired Collection artifacts to the Server

In this scenario the configuration file is pre-built and installed with the nxx client on the target box.

When the nxx client is invoked with the option, -script <config file> [-repeat <#seconds>], the

client will read the configuration file specified and proceed to execute each command. The

optional -repeat parameter will cause the client to wait for the specified number of seconds before re-

running the commands in the configuration file.

6.2 Pull the type of artifacts from the Server

In this scenario, the configuration file resides on the server side. The client will request from the server

to issue a set of commands to be executed. The client syntax to invoke this behavior is –queryserver

<#seconds>. The nxx server needs to be set up as well via the -script <path for configuration

files>. On the server side, the configuration files use the following naming convention

<cust_id>.config.txt. This convention enables the server to match a specific client cust_id to a

companion configuration file.

Since the steps involved in setting up the server and client can be confusing, the following steps are

enumerated and relate to the annotated diagram provided below.

1. Starting with the server setup, one needs to put the configuration file(s) that will be used in a

common directory. For this example, the directory is named nxxscripts, and the configuration

file placed in that directory is called tzworks.config.txt. From the naming convention of the

configuration files, the keyword is ‘tzworks’ that a client needs to use for the server to select the

proper configuration file. The server now can be launched with the additional option of -server

./nxxscripts.

Copyright © TZWorks, LLC March 29, 2012 Page 16

2. Now that the server is up and running, the client needs to be configured so that it continuously

queries the server and identifies itself with a customer identifier of tzworks. This is done via

the -queryserver <#secs> -cust_id tzworks. The value of number of seconds selected, for

this example, was 60. This means anytime the client is idle for 60 seconds, it will query the

server for commands to run.

3. At this point the server has received a request from the client for commands. The server looks

at the client’s customer identifier to see if there is a companion configuration file in the -script

directory. If it finds one, it is parsed and the commands are sent back to the client.

4. Now the client has received commands from the server and the client proceeds to execute them

in the order they were received. Each command is executed synchronously. Therefore, if one

command stalls, then the client will stall.

7 Building a configuration file

7.1 Configuration File Syntax

The configuration file is a text based script that allows one to automate nxx. The parsing engine used to

read the command from a configuration file is reliable if the rules are followed. There are some

nuances, however, that are caused by text editors used in Windows and those used in Unix based

operating systems. Windows text editors, for example, will put both <CR><LF> (two separate

Copyright © TZWorks, LLC March 29, 2012 Page 17

characters, 0x0d, 0x0a hexadecimal) at the an end of a line, while Unix text editors, like to put <LF> (one

character, 0x0a hexadecimal) for an end of line. The older version of the Mac operating system used to

put a <CR> (one character, 0x0d hex) for an end of line. Since the nxx parsing engine tries to parse one

line at a time it uses either <CR><LF> or <LF> sequences to determine when the line ends and when a

new lines starts. Therefore, either the Windows OR Unix format is supported, but not both in one

document. Thus if a configuration file is created in Windows with notepad, and then edited in Linux

with gedit, there can be a mixture of <CR><LF> and <LF> combinations for end of line characters. The

caution here is stick to the same editor when editing a configuration file that it was created with.

The syntax rules for configuration files are as follows:

7.1.1 General Rules

1. Each line is parsed separately.

2. A line that starts with two forward slashes (eg. //) is ignored and used for comments.

3. A blank line is ignored.

4. Any line not satisfying the above Rules 2 and 3 is assumed to be a command.

5. All command lines are in CSV (comma separated value) format. The commas are used to

separate the keywords listed in Section 7.1.2.

6. Custom type commands (eg. those built into nxx), use a semicolon to separate custom

command parameters.

7. Script files are called config files and use the naming convention <cust_id>.config.txt

7.1.2 Command Lines

1. Must start with the sequence: !cmd

2. Can contain the following options, CSV delimited (in any order). The main ones are listed below:

a. !spawn- <cmd to execute>

b. !custom- <custom cmd>

c. !name- <name to output file>

d. !repeat- <#secs to wait before executing the cmd again>

 Note: only one !repeat- option is allowed per configuration file and it applies to the

entire script contained in the configuration file.

e. !comment- <any comment you want associated>

7.1.3 Environment Variables

1. nxx tries to resolve any environment variables that are passed as part of the command line

parameters. Environment variables are surrounded by percent characters (eg. %)

2. nxx defines two internal, custom environment variables

a. %userbase%, which gets resolved to:

i. C:\users [Vista, Win7 and higher]

ii. C:\Documents and Settings [pre Vista]

Copyright © TZWorks, LLC March 29, 2012 Page 18

b. %eventlogs%, which gets resolved to:

i. %systemroot%\System32\winevt\Logs [Vista, Win7 and higher]

ii. %systemroot%\System32\config [pre Vista]

Note: When using environment variables, one needs to account for the expansion of the variable to a

name that may contain spaces. Therefore, it is recommended to always use quotes around the

path/filename that include an environment variable to avoid problems.

7.2 Built in ‘custom’ commands (!custom-)

nxx built-in commands are referred to as custom commands in the configuration file. To invoke an nxx

built-in command, one uses the !custom- <custom cmd> syntax. As stated in the Section above on

General Rules, the custom commands use a semicolon to delimit any extra parameters.

Below are some examples of using nxx built-in commands to perform some action:

 Desired Action Example custom command used in configuration file

1 Ping the server !cmd, !custom- -ping

2 Take a screen snapshot !cmd, !custom- -screendump

3 Copy the Volume C: boot
record

!cmd, !custom- -copy; c:\$boot; -ntfsraw

4 Copy the Volume boot record
from the 1st drive partition

!cmd, !custom- -drivenum; 0; -first_ntfsvol; -copy; \$boot; -ntfsraw

5 Copy the first 200 sectors
from hard drive 0

!cmd, !custom- -copydrive; 0; -sector; 0; -numsectors; 200

6 Copy the change log journal
on the C volume

!cmd, !custom- -copy; c:\$extend\$usnjrnl:$j; -ntfsraw; -skip_sparse_clusters

7 Terminate a script !cmd, !custom- -terminate_client

Actions 1 and 2 are simple custom commands with no extra parameters. Actions 3-6 are custom

commands with additional parameters. Notice that these additional parameters are delimited by a

semicolon.

The last command is unique for a configuration file. If this command is used, then it is always the last

command in the script. The -terminate_client tells the client to terminate its execution and go away.

The ‘use-case’ for this option is for the following scenario: (a) instructions are provided by the server to

the client, and (b) the client is spawned as a result of a cron or task scheduler job. When the client is

launched from the cron job, the client will seek out instructions from the server and terminate on

completion. This cycle is repeated every time the client is spawned. In summary,

the -terminate_client forces a single execution of a script.

Copyright © TZWorks, LLC March 29, 2012 Page 19

If the above commands were put into a text file and then invoked by the client using the -script option,

the client would proceed to execute commands 1-7 in sequence.

7.3 Spawning third party tools to supplement collection (!spawn-)

There are many times when you just want to use one of the operating system’s built-in commands, or a

3rd party tool. From a configuration file perspective, the syntax to do this is !spawn- <cmd to

spawn>. The implicit behavior for nxx when spawning another tool is to extract any console output

from the tool and transport the data to the server.

Below are some examples of spawning another tool to perform some action:

 Desired Action Example spawn command used in configuration file

1 Send network configuration
data

!cmd, !spawn- ipconfig.exe /all , !comment- “ipconfig /all”

2 Send all open network
connections

!cmd, !spawn- netstat -anob, !comment- “netstat –anob”

3 Send the process list !cmd, !spawn- tasklist /svc, !comment- “tasklist /svc”

4 Send the processed result of
the prefetch files

!cmd, !spawn- dir “%systemroot%\prefetch*.pf” / b /s | pf.exe -v

5 Send the processed results of
the change log journal.

!cmd, !spawn- jp.exe –partition c -v

6 Send the processed results of
all the LNK files

!cmd, !spawn- dir “%userbase%*.lnk” /b /s | lp.exe -csv

Notice that the command that is ‘spawned’ includes the name of the command and its related

arguments. Notice also that that there are NO commas except before the !spawn- keyword and after

all the arguments relating to spawn keyword, or the end of line. This is important, since the nxx script

interpreter uses commas to separate keywords, so it is essential that the command that is spawned and

its arguments do not have commas in the sequence.

The complexity of the command to be spawned is up to the user. One can use environment variables,

multiple tools on one command line, etc. The use of the !comment- <”any text”> is used to

document in the log which command was used to gather the data. While it is only shown on the first 3

examples, it is generally a good idea to use it for any !spawn- command that is not specifically tied to a

file copy (see next section).

Examples 4 and 6 use two commands each. The first command uses the built-in operating system

directory listing which then gets piped into a 3rd party TZWorks tool. Example 4’s directory listing gets

piped into the prefetch parsing tool (called pf.exe) and example 6’s directory listing gets piped into the

LNK parsing tool (called lp.exe). The results of the parsing are sent to the server. The %userbase% is

an nxx custom environment variable that was discussed in the Section on Environment Variables. Note

Copyright © TZWorks, LLC March 29, 2012 Page 20

that double quotes were used around the variable and path/filename to avoid errors in processing the

command on a Windows XP box. Windows XP would resolve the above to be “C:\Documents and

Settings*.lnk” vice in Windows 7 “C:\users*.lnk”.

7.4 Using a Combination Spawn and Custom Invocation

There are many cases when one may want to use both the -spawn and the -custom options as part of

one configuration command. The general use-case for using these two options together is (a) to get a

directory listing of a particular type of file and (b) then copy the file. The syntax rules discussed in the

Section on General Rules still apply.

Below are some examples

 Desired Action Example spawn & custom commands used in configuration file

1 Copy all ntuser.dat hives !cmd, !spawn- dir “%userbase%*ntuser.dat” /b /s /a:h, !custom- -copyfiles -ntfsraw

2 Copy all LNK files !cmd, !spawn- dir “%userbase%*.lnk” /b /s, !custom- copyfiles

3 Copy Win7 event logs !cmd, !spawn- dir “%eventlogs%*.evtx / b /s, !custom- copyfiles

7.5 Miscellaneous Configuration File Commands

7.5.1 !comment-

The !comment- option is the script version of the -comment option for when running nxx in

command-line mode. It can be used as a standalone command or in combination with any other

command. Below are examples.

 Desired Action Example spawn & custom commands used in configuration file

1 Send just a comment to
the server log

!cmd, !comment- This is the start of a new sequence

2 Use a comment to
clarify what command
was used

!cmd, !spawn- netstat -anob, !comment- “netstat –anob”

Copyright © TZWorks, LLC March 29, 2012 Page 21

7.5.2 !name-

The !name- option is the script version of the -name option for when running nxx in command-line

mode. Similar to the command-line, this option is usually used in combination with spawning a

command and gives a hint to the server how to name the resultant archive file.

 Desired Action Example spawn & custom commands used in configuration file

1 Use the name when
creating the archive file
on the server end

!cmd, !spawn- netstat -anob, !name- “netstat”

7.5.3 !repeat-

The !repeat- <#seconds> option can be used in a configuration file to identify how often to repeat

the script sequence. The client or server, depending on the reader of the configuration file, uses the

value of seconds to pace how often to invoke the script.

Changed from previous versions of nxx, the !repeat- option, if used, can only have one invocation per

configuration file.

8 Example of a collection configuration file

// nxx ver: 0.05, [protocol: ver: 0.05 (beta)], Copyright (c) TZWorks LLC

// sample config/script demo

//

!cmd, !comment- Test live collect using various techniques to gather data

!cmd, !custom- -ping

// copy the usnjrnl file for the 'C' volume

!cmd, !comment- change log journal

!cmd, !custom- -copy; c:\$extend\$usnjrnl:$j; -ntfsraw; -skip_sparse_clusters

// copy the prefetch files

!cmd, !comment- normal copy of prefetch files

!cmd, !spawn- dir %systemroot%\prefetch*.pf /b /s, !custom- -copyfiles

// dump the screen

!cmd, !custom- -screendump

// copy the event logs

!cmd, !comment- event log raw copies

Copyright © TZWorks, LLC March 29, 2012 Page 22

!cmd, !spawn- dir %eventlogs%*.evtx /b /s, !custom- -copyfiles

// copy the system32/config hives

!cmd, !comment- registry hive raw copies [ntfs raw required since this files are locked down]

!cmd, !custom- -copy; "%systemroot%\system32\config\sam"; -ntfsraw, !name- sam_hive.bin

!cmd, !custom- -copy; "%systemroot%\system32\config\security"; -ntfsraw, !name- security_hive.bin

!cmd, !custom- -copy; "%systemroot%\system32\config\system"; -ntfsraw, !name- system_hive.bin

!cmd, !custom- -copy; "%systemroot%\system32\config\software"; -ntfsraw, !name- software_hive.bin

!cmd, !custom- -copy; "%systemroot%\system32\config\components"; -ntfsraw, !name- software_hive.bin

// copy the user hives to retrieve shell bags and other metadata [ntfs raw required since this files are locked down]

!cmd, !spawn- dir "%usersbase%*ntuser.dat" /b /s /a:h, !custom- -copyfiles; -ntfsraw,

!cmd, !spawn- dir "%usersbase%*usrclass.dat" /b /s /a:h, !custom- -copyfiles; -ntfsraw,

// copy the index.dat files [normal copy - try both non-hidden and hidden files]

!cmd, !comment- index.dat raw copies

!cmd, !spawn- dir "%usersbase%*index.dat" /b /s, !custom- -copyfiles;

!cmd, !spawn- dir "%usersbase%*index.dat" /b /s /a:h, !custom- -copyfiles

// copy the lnk files

!cmd, !comment- lnk files [normal copy - try both non-hidden and hidden files]

!cmd, !spawn- dir "%usersbase%*.lnk" /b /s, !custom- -copyfiles

!cmd, !spawn- dir "%usersbase%*.lnk" /b /s /a:h, !custom- -copyfiles

// copy some $boot records. The first copies the $boot on a hidden partition

// if it exists. The second copies the $boot on the 'C' drive, which may

// be the second partition, if there is a hidden partition.

!cmd, !comment- $boot raw copies [require ntfs raw copy]

!cmd, !custom- -drivenum; 0; -first_ntfsvol; -copy; \$boot; -ntfsraw

!cmd, !custom- -copy; c:\$boot; -ntfsraw

// copy MBR plus extra sectors

!cmd, !comment-MBR w/ extra sector [requires disk raw copy]

!cmd, !custom- -copydrive; 0; -sector; 0; -numsectors; 200

9 Authentication and the License File

nxx has authentication built into the binary. There are two authentication mechanisms: (a) the digital

certificate embedded into the binary and (b) the runtime authentication. For the first method, only the

Windows and Mac OS-X versions have been signed by an X-509 digital code signing certificate, which is

Copyright © TZWorks, LLC March 29, 2012 Page 23

validated by Windows during operation. If the binary has been tampered with, the digital certificate will

be invalidated.

For the second (runtime authentication) method, the authentication does two things: (i) validates that

nxx has a current license present and (ii) validates the nxx binary has not been corrupted. The license

needs to be in the same directory of the nxx binary. Furthermore any modification to the license,

either with its name or contents, will invalidate the license. The runtime binary validation hashes the

executable that is running and fails the authentication if it detects any modifications.

10 Various nxx Binaries and their Naming Convention

The nxx binary comes in fifteen different forms. Below are various combinations with their names:

 Architecture Name Comment

1 Win 32 bit nxx.exe Both client and server in one binary. This 32 bit binary works on
Windows 64 bit architectures as well.

2 Win 64 bit nxx64.exe Both client and server in one binary. Only works on Windows 64 bit
architectures.

3 Win 32 bit nxxc.exe Just the client binary. This 32 bit binary works on Windows 64 bit
architectures as well.

4 Win 64 bit nxxc64.exe Just the client binary. Only works on Windows 64 bit architectures.

5 Win 32 bit nxxs.exe Just the server binary. This 32 bit binary works on Windows 64 bit
architectures as well.

6 Win 64 bit nxxs64.exe Just the server binary. Only works on Windows 64 bit architectures.

7 Linux 32 bit nxx Both client and server in one binary.

8 Linux 64 bit nxx64 Both client and server in one binary. Only works on Windows 64 bit
architectures.

9 Linux 32 bit nxxc Just the client binary.

10 Linux 64 nxxc64 Just the client binary. Only works on Windows 64 bit architectures.

11 Linux 32 nxxs Just the server binary.

12 Linux 64 nxxs64 Just the server binary. Only works on Windows 64 bit architectures.

13 Mac OS-X nxx.mac Both client and server in one binary. Works on either 32 or 64 bit
architectures.

14 Mac OS-X nxxc.mac Just the client binary. Works on either 32 or 64 bit architectures.

15 Mac OS-X nxxs.mac Just the server binary. Works on either 32 or 64 bit architectures.

11 References

1. Fall 2011, CFRS 660, Network Forensics class at George Mason University

2. nx from TZWorks, LLC, ref: http://tzworks.net/prototype_page.php?proto_id=18

3. Jones, Bejtlich, Rose, Real Digital Forensics, Computer Security and Incident Response, 200

http://tzworks.net/prototype_page.php?proto_id=18

