

Abstract
sbag is a standalone, command-line tool used to extract

Shellbag artifacts from Windows user account registry

hives. It can operate on a live target hives or on separately

captured registry hives. All artifacts can be outputted in

one of three formats for easy inclusion with other forensics

artifacts.

Copyright © TZWorks LLC

www.tzworks.com

Contact Info: info@tzworks.com

Document applies to v0.80 of sbag

Updated: Apr 25, 2025

TZWorks® ShellBag Parser (sbag)
Users Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 25, 2025 Page 1

Table of Contents

1 Introduction .. 2

2 How to Use sbag ... 4

2.1 Processing Individual Hives ... 4

2.2 Processing Volume Shadow Copies (Individual Hive or Entire Volume) 5

2.3 Processing all User Hives on Partition... 6

2.4 Enumerating Available User Hives .. 6

3 Results of the Parsing .. 7

4 Results when some of the shellbag entries are deleted ... 9

5 GUIDs for Common Desktop Items ... 10

6 Cell Slack Artifacts in Bags ItemPos Data .. 12

7 Using Inode Information to Analyze an Entry ... 12

8 Anatomy of a sbag Entry ... 14

8.1 Extra Metadata ... 15

8.2 Timestamps ... 15

9 Timestamp verification ... 15

10 Available Options .. 17

11 Authentication and the License File .. 19

11.1 Limited versus Demo versus Full in the tool’s Output Banner .. 19

12 References .. 19

Copyright © TZWorks LLC Apr 25, 2025 Page 2

TZWorks® ShellBag Parser (sbag) Users
Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.com/prototype_page.php?proto_id=14

Contact Information: info@tzworks.com

1 Introduction

sbag is a command line version of a Windows registry

parser that targets the Shellbag subkeys to pull useful

directory and file artifacts to help identify user activity.

There are binaries available for Windows, Linux and Mac

OS-X. The Windows version allows one to parse hives

resident from a live system.

As background, the ShellBag information is a set of subkeys

in a user registry hive (eg. ntuser.dat and usrclass.dat files)

used by the Windows operating system to track user

window viewing preferences. It does this by storing

various Windows Explorer settings that relates to

dimensions, settings, etc. This allows one to reopen the same folder at a later time with the settings

from the previous time. Each user will have separate preferences for folders, and therefore, these

settings are stored in the appropriate user hive.

 Since the ShellBag subkeys store various metadata on how Windows Explorer items were arranged, and

since they are recorded for each user, from a computer forensics standpoint, one can parse the data and

pull out various pieces of information that relate to user interaction. When combined with other

available computer artifacts, it could provide a more complete picture of what files were accessed, or

deleted by the user, and from what storage device they were accessing (could be either an internal,

external or network storage device). The 'ShellNoRoam\BagXxx' key(s) has data for local folders and the

'Shell\BagXxx' key(s) has data for the remote folders.

The registry subkeys that sbag evaluates include the following:

• NTUSER.DAT\Software\Microsoft\Windows\Shell\BagMRU

• NTUSER.DAT\Software\Microsoft\Windows\Shell\Bags

• NTUSER.DAT\Software\Microsoft\Windows\ShellNoRoam\BagMRU

• NTUSER.DAT\Software\Microsoft\Windows\ShellNoRoam\Bags

mailto:info@tzworks.net

Copyright © TZWorks LLC Apr 25, 2025 Page 3

• UsrClass.DAT\Local Settings\Software\Microsoft\Windows\Shell\BagMRU

• UsrClass.DAT\Local Settings\Software\Microsoft\Windows\Shell\Bags

• UsrClass.DAT\Local Settings\Software\Microsoft\Windows\ShellNoRoam\BagMRU

• UsrClass.DAT\Local Settings\Software\Microsoft\Windows\ShellNoRoam\Bags

On Vista and Windows 7, the UsrClass.dat hive is new from the older Windows XP and is located in the

C:\Users\<user>\AppData\Local\Microsoft\Windows directory.

Copyright © TZWorks LLC Apr 25, 2025 Page 4

2 How to Use sbag

sbag is a console application, and thus, to use this tool on a live system, one will need to open the

command prompt with administrator privileges first. One can display the menu options by typing in the

executable name without parameters. A screen shot of the menu is shown below.

While the menu shows a number of different options, the only required parameter to pass in is the user

hive one wishes to extract shellbag artifacts from. The available options include: (a) annotating

username and/or hostname to the output (version 0.23+), (b) specifying what type of format one wishes

to put the output data in, (c) whether to extract data from cell slack space (version 0.24+), (d)

miscellaneous and date/time format options (version 0.29+), (e) the ability to pipe in hives for analysis

(version 0.33+), and (f) the ability to parse all the user hives by either pointing to a drive letter or a

Volume Shadow copy (version 0.38).

The output options include: (a) the default output, where each record is on a separate line and each

field is separated by the pipe character, (b) the SleuthKit body-file format [5] and (c) the log2timeline CSV

(comma separated value) format. [6]

2.1 Processing Individual Hives

Below is an example of parsing a user hive in an off-line manner. For this example, it assumes a user hive
was extracted to the c:\dump directory beforehand. To parse the hive, one could then invoke the
following command:

Copyright © TZWorks LLC Apr 25, 2025 Page 5

 sbag -hive c:\dump\ntuser.dat > results.txt

Since the output that is generated is very wide, it is recommended that one redirect the output of the

command into a results file as shown above. Then, it can be reviewed in any text editor by turning off

the word wrap option to see each record on a separate line. If one wants to take advantage of the

Comma Separate Value (CSV) format that is easily opened with any spreadsheet application, one could

use the -csv option, like below:

sbag -hive c:\dump\ntuser.dat -csv > results.csv

The only difference in the results between the normal output and the CSV output is the CSV processed

output is checked for any occurrences of commas. If any commas are found, they are changed into

semicolons so as to not disrupt the CSV format for separating the fields. Thus, if one needs exact data

without any possible modifications, one should choose the normal (default) output. The normal

(default) output uses the pipe character ‘|’ for a delimiter which does not conflict with any valid

Windows filename syntax.

2.2 Processing Volume Shadow Copies (Individual Hive or Entire Volume)

For starters, to access Volume Shadow copies, one needs to be running with administrator privileges.
Also, Volume Shadow copies, as is discussed here, only applies to Windows Vista, Win7, Win8 and
beyond. It does not apply to Windows XP.

To make it easier with the syntax, we’ve built in some shortcut syntax to access a specified Volume

Shadow copy, via the %vss% keyword. This internally gets expanded into

\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy. Thus to access index 1 of the volume shadow

copy, one would prepend the keyword and index, like so, %vss%1 to the normal path of the hive. For

example, to access a user hive located in the testuser account from the HarddiskVolumeShadowCopy1,

the following syntax can be used:

 sbag -hive %vss%1\Users\testuser\ntuser.dat > results.txt

To determine which indexes are available from the various Volume Shadows, one can use the Windows

built-in utility vssadmin, as follows:

 vssadmin list shadows

To filter some of the extraneous detail, type

 vssadmin list shadows | find /i "volume"

While the amount of data can be voluminous, the keywords one needs to look for are names that look

like this:

 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1

 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy2

 ...

Copyright © TZWorks LLC Apr 25, 2025 Page 6

From the above, notice the number after the word HarddiskvolumeShadowCopy. It is this number that

is appended to the %vss% keyword.

In addition, there is the ability to automatically find and parse all the ntuser.dat and usrclass.dat hive on

a given Volume Shadow, by using the -vss <index of Volume Shadow> option. To invoke this, just pass

in which Volume Shadow copy you wish to analyze. One does not need to specify a hive since it will find

and parse all the hives in the user directories. For example, to analyze copy 1:

sbag -vss 1 -csv > results.txt

When using the default output option or the normal CSV option, the output will include a separate

header for each hive found and parsed. The hive location will be annotated with the volume shadow

copy symbolic name and hive path (see below). If using the -csvl2t option, all the records will be

integrated under one header.

2.3 Processing all User Hives on Partition

Added with version 0.38, one can process all the user hives on a specified volume (including the live

system volume). This option is invoked with the following syntax: -partition <drive letter>. This option

only looks in the normal users’ directories to find which hives are available, and then proceeds to

process those hives. It is useful if mounting a collected image of a system volume as another drive

letter.

2.4 Enumerating Available User Hives

Copyright © TZWorks LLC Apr 25, 2025 Page 7

To just enumerate which hives are available for processing ShellBag artifacts from a live system, one can

use the -livehives option. Once the path of the location of the user hives are known, one can parse any

of the desired hives by passing in the path of the active hive. For this type of live processing, sbag will

take care of taking a snapshot of the requested hive by reading the appropriate raw NTFS clusters and

then proceed to extract the artifacts from the snapshot.

3 Results of the Parsing

In previous versions of sbag (prior to version 0.24), the BagMRU and Bags datasets were separated into

independent outputs. Since the BagMRU data primarily represents the folders (or directories) of the

files and the Bags dataset primarily represents the files in the folders, it made sense to integrate like

BagMRU\Bags datasets into one output. So, starting in version 0.24, this is now the baseline output. It

happens, however, that multiple datasets can still be displayed, one for the Shell\[BagMRU | Bags]

dataset and one for the ShellNoRoam\[BagMRU | Bags] dataset.

Copyright © TZWorks LLC Apr 25, 2025 Page 8

Below is an annotated example of sbag’s output rendered on a spreadsheet. The artifacts are extracted

from an ntuser.dat file from a Windows 7 box. Each of the command line switches used in the example

are explained in the Available Options section of this paper. Finally, all the timestamp information was

truncated to highlight some of the other fields, and more specifically, some interesting items.

Example: sbag -hive c:\dump\ntuser.dat -base10 -inc_slack –csv > results.csv

Below are some observations one should note from the above snapshot:

a. The value name Shell\ Bags\ <bag#>\ Desktop\ ItemPos<screen resolution> contains the

metadata associated with files that were part of the Desktop. However, (not shown in the

above snapshot), it can also contain metadata about folder data as well.

b. Since the ItemPosXxx registry value is a large blob of binary data, there are cases where there is

sufficient cell slack space to pull out additional artifacts.

c. The Shell\BagMRU subkeys, while mainly containing folder metadata, can also contain file

metadata, with complete MACB timestamps as well as size information.

d. The last column of the screenshot above shows where the data was derived from. As it

happens, some of the folder/file data ‘appears’ to be redundant, so this last column adds more

confidence to the results presented so as to identify the origins of the data. This more easily

allows one to ‘hand’ parse the data to verify any of the results generated. We, in fact, use it to

help verify our results as we make changes to the baseline software.

e. Shellbag data may contain an inode (MFT entry) and MFT sequence number to reference the

target entry. One can use this inode/sequence number pair to help find the target entry, and if

found, will yield additional metadata to the examiner.

sbag shows other data in the output as well, but the display is rather long; so we broke up the data

further to highlight these other fields with another example. This data was taken from parsing a

Copyright © TZWorks LLC Apr 25, 2025 Page 9

UsrClass.dat hive provided by Rob Lee and used in the SANS 408 Forensics challenge exercise. The

output fields we focus on in this example are the registry key timestamps for the parent BagMRU entries

and the indicator to the right of these times displays which BagMRU entry is the last associated with the

registry time. This is known as the MRU (for Most Recently Used) entry. Also shown in this example

are Bag timestamps that are related to each BagMRU entry. Since each BagMRU points to a Bag entry,

it is useful to use these Bag timestamps to also correlate MRU times for those entries that do not have

one. This gives one some additional data to help understand when this entry was last changed. One

should note, in some cases, sbag provides more than one Bag timestamp (as shown below). The reason

for this is that sbag extracts all the registry subkey timestamps for the parent Bag entry to identify the

times this Bag entry (and thus related to the BagMRU entry) was updated as opposed to only the main

one.

As the last example to show the amount of data sbag can provide, the metadata field is expanded from

the previous example. Three entries are only shown to highlight the additional data portable devices

store in ShellBag entries. From this particular entry, one can see the Vendor and Product Identifier,

serial number, security identifier, etc.; useful information from an investigators perspective.

4 Results when some of the shellbag entries are deleted

Occasionally sbag will come across entries in the shell bag hierarchy that are missing. This most likely

occurs by deleting certain entries and leaving others. Empirical data suggests that the operating system

does not do this. So when this occurs, it was most likely intentionally done with anti-forensics in mind.

When considering these types of cases, there are two possibilities: (a) deleting subkeys and (b) deleting

values. The graphic below shows an example of this.

Copyright © TZWorks LLC Apr 25, 2025 Page 10

When a subkey is deleted, the rest of the entries are deleted as well. For recovery, one needs to rely on

reconstructing the deleted subkeys from the registry unallocated hive space. While yaru can do this,

sbag currently does not automatically do this. The second example is when one of the values is deleted.

In this case, sbag can reconstruct most of the path while marking the deleted value in the path

accordingly. Below is an example of the output for this second case:

5 GUIDs for Common Desktop Items

Many of the shellbag datasets have Globally Unique Identifiers (GUIDs) to represent common desktop

items. Microsoft publishes a list of well-known GUIDs. Another location one can extract GUID/desktop

item is in the desktop namespace subkeys in the software registry hive.

In the example in the previous section, there a number of entries that use the term

CLSID_ComputersAndDevices. This name is constructed from the registry subkey

HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\Desktop\NameSpace\{GUID}. One

particular GUID is highlighted from the snapshot below along with its string definition. The GUID

{f02c1a0d-be21-4350-88b0-7367fc96ef3c} from the graphic below equates to the name “Computers and

Devices.” Thus, when sbag finds a GUID, such as the one above, it uses this GUID/name relationship to

generate the name CLSID_ComputerAndDevices when rendering the output.

Copyright © TZWorks LLC Apr 25, 2025 Page 11

Other names representing GUIDs that one will see sbag displaying regularly are listed below. Many of

these can be resolved in one of the namespaces in the Software registry hive.

CLSID_MyComputer = {0d04fe0-3aea-1069-a2d8-08002b30309d}
CLSID_RecycleBin = {645ff040-5081-101b-9f08-00aa002f954e}
CLSID_ControlPanel = {21ec2020-3aea-1069-a2dd-08002b30309d} & { 26ee0668-a00a-44d7-9371-beb064c98683}
CLSID_MyNetworkPlaces = {208d2c60-3aea-1069-a2d7-08002b30309d}
CLSID_MyDocuments = {450d8fba-ad25-11d0-98a8-0800361b1103}
CLSID_UserLibraries = {031E4825-7B94-4dc3-B131-E946B44C8DD5}

…

Copyright © TZWorks LLC Apr 25, 2025 Page 12

6 Cell Slack Artifacts in Bags ItemPos Data

For cases where there is sufficient slack space available in the registry cell value data, sbag will try to

parse this data into some intelligible output. Since this option is still experimental, it has been added as

a separate option one can invoke. This allows one to isolate the option, should it exhibit any instability,

until sufficient testing has been done. To use this option, use the –inc_slack switch.

For those wishing to analyze cell slack space in a hex dump view, one can use our yaru [7] utility. Just

navigate to a similar registry value that is shown below, and scroll to the end of the data output. If there

is any slack space, it will be displayed at the end. The results of processing the slack space below was

shown in the screenshot displayed on section 3 above.

7 Using Inode Information to Analyze an Entry

To do this, we will make use of the gena tool to help provide insight to specific inode’s. Note, one could

have used ntfswalk, ntfsdir, etc., or any tool that allows for inode evaluation. For this example, we will

use the results shown on screen shot in section 3 above. Only a portion of this information is shown

below, so we can focus on the entry that is highlighted in red.

Copyright © TZWorks LLC Apr 25, 2025 Page 13

By using the inode and sequence number, one can confidently find the entry in question on a volume.

One must, of course, identify the volume in question, since a desktop item shown in the sbag results

could have been sourced anywhere. For this case, to make it easy, we selected an entry that came from

the ‘C’ volume.

When using gena to analyze this entry, there are really a few steps to get to the entry desired. Each of

these steps is enumerated in the graphic below:

Copyright © TZWorks LLC Apr 25, 2025 Page 14

8 Anatomy of a sbag Entry

Each entry, sbag shows data from various sources within the BagMRU and Bags subkeys. Parsing this

manually is confusing and prone to errors. To show where all data is taken from, an example is taken

by looking at the Shell\BagMRU\1\3\26 entry and its corresponding sources of data. Each source of

data is annotated with the actual registry data used to populate the sbag entry. This includes: (a) time

from the parent subkey (Shell\BagMRU\1\3\26), (b) MRUListEx entry that is a child of the parent

directory, (c) DOS timestamps embedded in the shellbag data in the target entry, (d) NodeSlot data that

identifies the companion Bag entry, and (e) the corresponding Bag entry subkey timestamps.

Copyright © TZWorks LLC Apr 25, 2025 Page 15

8.1 Extra Metadata

Aside from the normal parameters extracted, sbag will also try to parse any other data it finds. This

data is typically additional properties specific to that entry and can details such as dates, more path

information, icons used, etc. Any additional properties that are parsed are displayed to the user in the

column titled “extra metadata”. This field is currently just a catchall for any extra information. This

field can get populated by extra data found in entries from: (a) RecycleBin, (b) cellphone, (c) networking,

(d) Music, (e) Pictures, (f) Searches, etc. By looking at the ‘extra metadata’ one can see if this entry has

any unique properties. Below is an example of grouping a few of these entries.

8.2 Timestamps

When parsing the last Item ID node for a particular entry, if there are DOS time stamps present, sbag

will populate the fields: modify date (mdate/time), access date (adate/time) and create date

(cdate/time). Obviously, if none are present, these fields are blank. In some cases, however, sbag will

include additional time stamps that get reported in the ‘extra metadata’ field. In these cases, sbag

found both DOS time stamps as well as other time stamp data embedded in one of the property

structures for that node. In some cases, the DOS time stamps will not be present, but there will be

timestamps available as a property.

9 Timestamp verification

For sbag algorithm updates, we internally perform regression testing as a normal course of action to

verify the entries are valid. Likewise, it is highly recommended that any user of our tools do some sort

of integrity validation to ensure the data reported is accurate. Below is a quick way of one way to verify

the timestamps reported by sbag reflect the raw data.

One starts out by identifying where the source of an entry came from (shown as #1 in the diagram). This

can be viewed in the last column of the sbag output. Next, one can use any registry viewer to extract

the binary data from the appropriate cell value (shown as #2 in the diagram). For the example below,

Copyright © TZWorks LLC Apr 25, 2025 Page 16

we used yaru to extract and review the binary data. The timestamps embedded are DOS based (versus

FILETIME based), and thus, are four byte values. After locating the three DOS timestamps, one converts

these timestamps into a readable form. Step #3 below shows a multipurpose utility we use to convert

between various time formats, however, any trusted time conversion tool that is available online will

suffice.

Copyright © TZWorks LLC Apr 25, 2025 Page 17

10 Available Options

The options labeled as 'Extra' require a separate license for them to be unlocked.

Option Description

-hive

Use this option to specify which hive to process artifacts from. Syntax

is -hive <hive file>

-vss

Experimental. This option allows one to point to a Volume Shadow copy

and process any user hives in the standard users’ directories. Syntax is -vss

<index of volume shadow copy>. Only applies to Windows Vista, Win7,

Win8 and beyond. Does not apply to Windows XP.

-partition

Experimental. This option allows one to point to a drive letter and process

any user hives in the standard users’ directories. Syntax is -partition <drive

letter>

-livehives

Switch to enumerate the user hives on the current system. Since this option

only makes sense when running sbag on a Windows box, this option will

not show up when running on Linux or Mac OS-X.

-csv

Outputs the data fields delimited by commas. Since filenames can have

commas, to ensure the fields are uniquely separated, any commas in the

filenames get converted to spaces.

-csvl2t
Outputs the data fields in accordance with the log2timeline format.

-bodyfile

Outputs the data fields in accordance with the 'body-file' version3 specified

in the SleuthKit. The date/timestamp outputted to the body-file is in terms

of UTC. So if using the body-file in conjunction with the mactime.pl utility,

one needs to set the environment variable TZ=UTC.

-base10

Ensure all size/address output is displayed in base-10 format vice

hexadecimal format. Default is hexadecimal format

-username

Option is used to populate the output records with a specified username.

The syntax is -username <name to use>.

-hostname

Option is used to populate the output records with a specified hostname.

The syntax is -hostname <name to use>.

-userstats Switch tells sbag to try to extract the user account name from the

Copyright © TZWorks LLC Apr 25, 2025 Page 18

ntuser.dat hive and populate it in the data that is outputted.

-pipe

Used to pipe files into the tool via STDIN (standard input). Each file passed

in is parsed in sequence.

-enumdir

Experimental. Used to process files within a folder and/or subfolders. Each
file is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs
<#>.

-filter

Filters data passed in via STDIN via the -pipe or -enumdir options. The

syntax is -filter <"*.ext | *partialname* | ...">. The wildcard character

'*' is restricted to either before the name or after the name.

-inc_slack

Switch to extract and parse any slack data in the Bags ItemPosXxx value

data.

-no_whitespace

Used in conjunction with -csv option to remove any whitespace between

the field value and the CSV separator.

-csv_separator

Used in conjunction with the -csv option to change the CSV separator from

the default comma to something else. Syntax is -csv_separator "|" to

change the CSV separator to the pipe character. To use the tab as a

separator, one can use the -csv_separator "tab" OR -csv_separator "\t"

options.

-dateformat

Output the date using the specified format. Default behavior is -dateformat

"yyyy-mm-dd". Using this option allows one to adjust the format to

mm/dd/yy, dd/mm/yy, etc. The restriction with this option is the forward

slash (/) or dash (-) symbol needs to separate month, day and year and the

month is in digit (1-12) form versus abbreviated name form.

-timeformat

Output the time using the specified format. Default behavior is

-timeformat "hh:mm:ss.xxx" One can adjust the format to microseconds,

via "hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no

fractional seconds, via "hh:mm:ss". The restrictions with this option is a

colon (:) symbol needs to separate hours, minutes and seconds, a period (.)

symbol needs to separate the seconds and fractional seconds, and the

repeating symbol 'x' is used to represent number of fractional seconds.

(Note: the fractional seconds applies only to those time formats that have

the appropriate precision available. The Windows internal filetime has, for

example, 100 nsec unit precision available. The DOS time format and the

UNIX 'time_t' format, however, have no fractional seconds). Some of the

times represented by this tool may use a time format without fractional

Copyright © TZWorks LLC Apr 25, 2025 Page 19

seconds, and therefore, will not show a greater precision beyond seconds

when using this option.

-pair_datetime
Output the date/time as 1 field vice 2 for csv option

-utf8_bom

All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8

byte order mark to the CSV output using this option.

11 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital

X509 code signing certificate embedded into the binary (Windows and macOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools

(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any

modification to the license, either to its name or contents, will invalidate the license.

11.1 Limited versus Demo versus Full in the tool’s Output Banner

The tools from TZWorks will output header information about the tool's version and whether it is

running in limited, demo or full mode. This is directly related to what version of a license the tool

authenticates with. The limited and demo keywords indicates some functionality of the tool is not

available, and the full keyword indicates all the functionality is available. The lacking functionality in the

limited or demo versions may mean one or all of the following: (a) certain options may not be available,

(b) certain data may not be outputted in the parsed results, and (c) the license has a finite lifetime

before expiring.

12 References

1. MiTec Registry Analyzer, by Allan S Hay, 12/2004
2. Shell BAG Format Analysis, by Yogesh Khatri
3. Using shellbag information to reconstruct user activities, Yuandong Zhu, Pavel Gladyshev, Joshua James,

Centre for Cybercrime Investigation, University College Dublin, Belfield, Dublin 4, Ireland, DFRWS 2009
4. SANs Institute. Forensics 408 course (Jan 2010)
5. SleuthKit Body-file format, http://wki.sleuthkit.org
6. Log2timeline CSV format, http://log2timeline.net/
7. yaru - Yet Another Registry Utility, www.tzworks.com

http://wiki.sleuthkit.org/index.php?title=Body_file
http://log2timeline.net/
http://www.tzworks.net/

	1 Introduction
	2 How to Use sbag
	2.1 Processing Individual Hives
	2.2 Processing Volume Shadow Copies (Individual Hive or Entire Volume)
	2.3 Processing all User Hives on Partition
	2.4 Enumerating Available User Hives

	3 Results of the Parsing
	4 Results when some of the shellbag entries are deleted
	5 GUIDs for Common Desktop Items
	6 Cell Slack Artifacts in Bags ItemPos Data
	7 Using Inode Information to Analyze an Entry
	8 Anatomy of a sbag Entry
	8.1 Extra Metadata
	8.2 Timestamps

	9 Timestamp verification
	10 Available Options
	11 Authentication and the License File
	11.1 Limited versus Demo versus Full in the tool’s Output Banner

	12 References

